Kinematic slip model for 12 May 2008 Wenchuan-Beichuan Mw 7.9 earthquake from joint inversion of ALOS, Envisat & Teleseismic

Eric Fielding
Jet Propulsion Laboratory, California Institute of Technology*

Anthony Sladen, Jean-Philippe Avouac
Caltech

Zhenhong Li
COMET, Univ. Glasgow

Isabelle Ryder, Roland Bürgmann
UC Berkeley

* Work partially performed under contract with the National Aeronautics and Space Administration
Wenchuan-Beichuan earthquake

- eastern Sichuan province
- 12 May 2008, Mw 7.9
- >70,000 fatalities
- epicenter at SW end
- surface ruptures 250 km along mountain front
- steep Longmen Shan mountains at east edge of Tibetan plateau
Geomorphologic mapping
Active faults mapped before earthquake

Densmore et al., *Tectonics*, 2007
ALOS PALSAR range offsets

- Range offsets measure LOS displacement like InSAR
- Combination of vertical and horizontal motion
- Discontinuity maps surface ruptures
- PALSAR azimuth offsets heavily contaminated

Beichuan Fault
Hanwang thrust
Xiaoyudong
ALOS PALSAR interferometry

- six paths cover rupture, plus two at ends
- ROI_pac processing & SNAPHU unwrapping
- coherence lost in steep slopes with longer baselines, and where displacements large
- artifact waves cause up to 1 m of range change variations
Envisat IM interferometry

- three descending tracks in image mode (strip map)
- long time intervals and baselines
- poor coherence except in plains, less steep mountains
- vertical and horizontal motion add
Envisat ScanSAR

- WS mode pairs acquired on three tracks
- Track 476 pair best baseline and burst sync.
- 2007/07/15–2008/06/29
- low coherence but fringes after strong smoothing
Joint GPS-InSAR inversion (static)

- six PALSAR ascending, three ASAR descending
- Five fault segments
  - Beichuan fault dipping at 33° (south) and 51° (north)
  - Hanwang faults dipping at 20°
- coseismic GPS from CMONOC (black and gray arrows)

**red & green**: predicted horizontal & vertical
Joint GPS-teleseismic inversion (kinematic)

- modified C. Ji code
- 21 P and 15 SH waveforms
- five fault segments
- Beichuan fault (south) split with 8 s delay 1st to 2nd segment
- hypocenter adjusted 15 km to SW
Joint GPS-teleseismic inversion

- animation of cumulative slip
- total slip at each second of rupture model
- quasi-static displacements at GPS stations
- played at four times faster than real time
Joint GPS-teleseismic inversion

- 8 s delay from 1st to 2nd rupture
- early slip nearly pure thrust
- later slip much more strike-slip
- most slip shallow <10 km, except near Wenchuan & NE
- landslides of Beichuan area over largest slip
Conclusions

• Beichuan fault system was main rupture, with rotation of slip: thrust to right-lateral from SW to NE

• Hanwang fault in Pengguan fault system had large thrust motion, shallow block near Xiaoyudong also had large lateral motion

• Joint inversions with InSAR, GPS, and teleseismic combine time and space constraints on kinematics

• InSAR angle diversity necessary for understanding complex rupture

• SAR pixel offsets map near-fault large deformations and surface ruptures