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Abstract—Synthetic Aperture Radar systems provide
raw data that need focusing to achieve full�resolution
imaging� Current SAR applications� including inter�
ferometry� require accurate� phase�preserving� and pre�
cisely co�registered coherent images over large ground
swaths with the highest achievable resolution� In addi�
tion to these challenges� stripmap SAR data may be
acquired with an o��broadside �squinted� geometry�
either by design or through platform motion� The pre�
cise batch focusing of these large aperture and wide
bandwidth data sets is known to require a �D fre�
quency processing approach� The standard wave domain
focusing algorithm� however� is only exact for data
acquired on a rectilinear trajectory� We investigate
a generalization of the standard omega�k focusing for�
mulation that allows curved data acquisition tracks�
The new formulation can be used in conjunction with
a known extension for conical� squinted imaging grids�
The approximations necessary to allow the general�
ized geometry are analysed to determines the range of
applicability of the proposed algorithm� The theory is
validated using data simulated with parameters similar
to the UAVSAR L�band SAR system�

I� Introduction

SAR systems using wide bandwidths and low frequen�
cies are being developed for new sensors and applications
that require a high azimuth resolution	 The approximation
made in traditional SAR processing algorithms that range
migration and azimuth focusing are strictly one�dimen�
sional operations in range�Doppler coordinates is invalid
for these new radar con
gurations	 Wave domain migra�
tion algorithms are known to provide optimal focusing
in such cases��������������������	 However� these algorithm
assumes a rectilinear �ight path� while the actual sensor
might follow a curved track� or orbit	 A motion compen�
sation procedure is then required to correct deviations from
a straight line due the earth curvature	 Wide azimuth
beamwidth and large bandwidth systems yield motion
compensation displacements which depend on the instan�
taneous position of the target within the the antenna beam
and can be di�cult to compensate	 A focusing operator
modi
ed to correct for curved antenna tracks minimizes
the need for� or the extent of motion compensation as
a requirement for accurate processing	 In earlier work�
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Figure 	� Antenna track and image reference geom�

etry� antenna sK and scatterer tK � otK ⊥ os for y → x� a
is the radius of the earth� h the platform altitude�

the aperture curvature problems was addressed through
motion compensation ���� through the introduction of an
e�ective platform velocity ���� or also through a Singular
Value Decomposition �SVD� of the wavenumber domain
propagation phase ������	 In this work� an exact expression
for the phase history is exploited to justify a simple factor�
ization of the migration phase that provides high focusing
accuracy for air� or spaceborne systems	

II� Focusing from stationary phase principle

A model for a fully focused and geometrically correct
SAR image S(x, r) produced from the acquired RF data
D(x, τ) is obtained by 
ltering the raw data by the space�
variant system impulse response�

S(x, r) =

∫ ∫
dydτ

w(x− y)

ρP
D(y,τ ) h[ρ(x, y ;r)−τ ]. ���

The raw data D� coherent image S� and transmitted wave�
form h are RF modulated signals� before down�conversion
and 
ltering	 The range propagation o�set τ of D(x, τ)
and h(τ ) is the length τ = (2/c) ∗ t , where time t is the
two�way echo delay and c� the speed of light	 Coordi�

nates x and y are along track arc lengths� ‖ ot‖ = r is

�



the broadside slant range in a plane perpendicular to the
orbit plane� ‖ st‖ = ρ(x, y; r) is the slant range history
from antenna sK at y to image point tK (x, r). Factors w
and ρ−P compensate the radiometric antenna and range
weighting� and will be discarded for convenience� w = 1�
P = 0. Performing the range convolution of Eq���� in the
Fourier domain and assuming that range compression has

been carried out� h̄ (kω) = 1� focusing is seen to consist of
the removal of a pure phase propagation factor�

S(x, r) =

∫
d y

∫
d kω D̄(y, kω) e

ikωρ(x,y;r) , �	


in which the notation D̄ and h̄ means that a [τ → kω]
Fourier transform on D or h has been carried out� Note
that D and S have implicit carriers� while Sω0 and Dω0 are
basebanded and band�limited�

D(x, τ)=Dω0(x, τ)eikω0τ , S(x, r) =Skr0(x, τ)eikr0 τ .

Assuming that the slant�range history is stationary
ρ(x, y; r) = ρ(x − y, r)� the range variant along track
convolution becomes the product of the data with a phase
transfer function I in the 	D wave domain [τ→kω, x→kx] �

S̄ (kx, r) =

∫
d kω D̄̄ (kx, kω)I(kx, kω; r)

I(kx, kω; r) =

∫
dx e ikωϕ(x ,r;kx/k

w
),

ϕ(x , r; kx/k
w

) = ρ(x, r)− kx
kω
x.

��


The wavenumber domain focusing phase factor I(kx, kω; r)
can be simplied in this geometry using the principle of
stationary phase �SP�
 The antenna track is assumed
to produce range histories with along track derivatives
varying slowly enough to be able to assume uniqueness
of the SP point x̃ at which the phase derivative ∂ϕ/∂x =
∂ρ/∂x − kx/kω vanishes� A reasonably stable platforms
satisfy this requirement� The SP point x̃ is the point where
the dimensionless Doppler angle y=kx/kω equals the slant

range along track slope ∂ρ(x, r)/∂x� or ρx
′

(x̃ , r) = y� in
the domain |y |� 1� The SP phase ϕ(x̃(y), r; y) = φ(y, r)
can be evaluated two ways� ,

1: φ(y, r) = ρ(x̃(y, r), r)− y x̃(y, r), or

2: φy
′

(y, r)=− x̃(y, r)� φ(y, r) = −
∫ y

dy ′ x̃(y ′, r).

Once the stationary phase is known� the wavenumber
domain transfer function is a range and frequency depen�
dent phase factor that is applied to the 	D transform of
the data�

S̄(kx, r) =

∫
d kω D̄̄ (kx, kω) e

ikωφ(kx/kω,r) . ��


Slowly varying amplitude factors are ignored for clarity�

III� straight and curved apertures

Next we apply the above approach to two types of
antenna trajectories� In the well�known linear case�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ(x, r)= r2 + x2
√

� ρx
′

(x, r)=
x

r2 + x2
√ �

ρx
′

(x̃ , r)= y, x̃(y, r)= r
y

1− y2
√ ,

φ(y, r)= r 1− y2,
√

φy
′

(y, r)=− x̃(y, r) �

the SP phase has the separable form φ(y, r) = r 1− y2
√

�

With the wavenumber denition kr = kω
2 − kx

2
√

� Eq� ���
becomes a Fourier transform�

S̄ (kx, r)=

∫
dkω D̄̄ (kx, kω)e

ikrr,

S̄̄ (kx, kr)= D̄̄ (kx, kω) .

��


Equation ��� is the familiar results that the band�limited
transform of the object is the transform of the data�
In the case where the trajectory is a circular arc� which

is a good approximation for orbit segments within the syn�
thetic aperture� taking a as the local earth radius� h as the
platform altitude� and x and y as arc lengths with radius
a �see Figure �	�
� the slant range history and slope are�

ρ(x, r) = r2 + 2γ(r) sin2(
x

2a
)

√
,

γ(r) = (h+ a)2 + a2− r2 ,

ρx
′

(x, r) =
γ(r) sin(

x

a
)

2a r2 + 2γ(r) sin2(
x

2a
)

√ .

The reference range r is taken as the distance of closest
approach� in the plane perpendicular to the plane of the
arc� The SP point x̃ is obtained from ρx

′

(x̃ , r) = y with
solutions�

x̃(y, r)=± 2a arcsin b(1− 1− c/b2
√

)
√

,

⎧⎪⎪⎨
⎪⎪⎩
b=

1

2
− a2y2

γ(r)

c= (
ayr

γ(r)
)2 �

A quartic equation in the slant range ρ relating it to the
range slope y=∂ρ/∂x� the reference range r� and the sphere
radius a and orbit height h� can also be exploited to solve
for ρ(x̃(y), r) �

ρ4 + (4y2a2− 2r2− 2γ(r)) ρ2 + r4 + 2γ(r)r2 = 0 �

There are again two ways to the compute the SP �

φ(y, r)= ρ(x̃(y, r), r)− y x̃(y, r)=−
∫ y

dy ′ x̃(y ′, r) .

2 Section III



However� unlike in the linear case� the migration phase of
Eq���� for a curved aperture is not separable into a range
factor R and frequency factor Q �

φ(y, r)� Q(y)R(r) ,

which prevents mapping the Fourier data domain into the
image domain as in the linear case Eq�����

IV� Range�Frequency Migration Separability

A series expansion of the stationary phase in powers of
h/a is used to estimate the errors of separable approxima	
tions to the phase φ(y, r)� This expansion bridges the
gap between the separable linear case and the curved case

h/a= 0)�

φ(y, r) �
a→∞

r

[
1− y2

√
+
h

2a

y2

1− y2
√ +

h2

8a2

y2(y2− 2)

(1− y2)3/2
+

r2

��a2

y2(5y2− 6)

(1− y2)3/2
+O(

h3

a3
)

]
. 
�

The lowest order term is exactly the expression found in
the linear case� kωφ

(0)(kx/kω, r)=krr� The �rst order term
is separable 
linear in r and quadratic in kx �

kωφ
(1)(

kx
kω
, r)=

h

2a

kx
2

kr
r . 
�

This term compensates a change in range curvature due
to the deviation of the circular orbit from a straight line�
The second order terms 
h/a)2 has two contributions� one
is cubic in r and is the lowest order unseparable term �

kωφ
(2)(

kx
kω
, r)=

h2

8a2

kx
2(kx

2 − 2kω
2)

kr
3 r+

r2

��a2

kx
2(5kx

2 − 6kω
2)

kr
3 r.

The magnitude of that term determines the range of
validity of a separable approximation to the migration
phase� Since only the range dependent part of that term
is non	separable� its range factor r2 may be �xed mid	swath

r2→ rmid
2 � Up to second order in h/a� the separable phase

model becomes�

φ(
kx
kω
, r) � Qa(

kx
kω

)Ra(r), Ra(r) = r , 
�

kωQa(
kx
kω

)= kr+
h

2a

kx
2

kr
+
h2

8a2

kx
2(kx

2 − 2kω
2)

kr
3

+

rmid
2

��a2

kx
2(5kx

2 − 6kω
2)

kr
3 .

The purpose of the series expansion is to provide a phase
error estimates kωδφ for the QR separation of Eq�����

kωδφ(
kx
kω

) = (rmid+
Δr

2
)(rmidΔr+

Δr2

4
)
kx

2(5kx
2 − 6kω

2)

��a2kr
3 ,

Δr is the slant range swath width� If kωδφ is su�ciently
small� a simpler separation is simply to �x all range depen	
dence of φ at mid	swath rmid�

Qmid(
kx
kω

)=
1
rmid

φ(
kx
kω
, rmid) , Rmid(r)= r ,

which is the method proposed here� As will be seen below�
it produces smaller errors than Eq����� The focusing algo	
rithm then becomes similar to Eq���� �

S̄ (kx, r) =

∫
d kω D̄̄ (kx, kω) e i kr r,

kr= kωQ(
kx
kω

).


�

Equation ��� shows that an ωk Stolt interpolation�
requiring the inversion of the kr(kx, kω) map into a
kω(kx, kr) map� focuses the data� The analytic derivative

∂kr
∂kω

=Q(
kx
kω

)+
kx
kωr

x̃(
kx
kw
, r)

is useful in computing the inverse map kω(kx, kr) for
|kx/kω | < 1 and |kr/kω | < 1 using the Newton	Raphson
method� for example�
Equations ��� and ��� need to be rewritten for basebanded

quantities to be useful for SAR processing� To do so� range
o�sets and down	conversion frequencies are introduced�
The notation X =X0 + δX is used for all o�sets�

S̄̄ (kx, kr)= D̄̄ [kx, kω(kx, kr)] ,

D(x, τ)=Dkω0(x, δτ )eikω0τ , τ = τ0 + δτ , kω= kω0 + δkω ,

Dkω0(kx, δkω)e
−iδkωτ0 = D̄̄ (kx, kω) ,

S(x, r)=Skr0(x, δτ)eikr0r, r= r0 + δr, kr= kr0 + δkr ,

Skr0(kx, δkr) e
−iδkr r0 = S̄̄ (kx, kr) ,

Skr0(kx, δkr) = e iδkr r0 e−iδkω τ0 Dkr0[kx, δkω(kx, δkr)],

where kω(kx, kr)=kω0 + δkω(kx, δkr) is implied� As in the
rectilinear path case� focusing is a �D phase shift and a �D
ω− k interpolation in the wavenumber domain�
The ωk processor may also be applied to squinted data

������� A squinted reference system is introduced for the

Range-Frequency Migration Separability 3



image domain� these new coordinates (rψ, xψ) and
their Fourier conjugates are obtained from the orthogonal
(r, x) system through linear transformations�

{
r= rψ sin ψ �
x= xψ+ rψcos ψ �

{
krψ= kx sin ψ+ kr cos ψ �
kxψ= kx �

Equation ��� can then be adapted to squinted data pro�

cessing using S̄̄ψ(kxψ , krψ)= S̄̄ (kx, kr)�

S̄̄ψ(kxψ, krψ) = D̄̄ [kxψ, kω(kxψ,
krψ− kxψ sin ψ

cos ψ
)].

The rotated imaging coordinates (rψ, xψ)� however� do not
have a straightforward geometrical interpretation due to
the curved reference path� as discussed in �	��
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Figure �� Phase error induced by the antenna track curvature for SAR parameters in Table ����

V� Applicability to L�Band Airborne SAR

To evaluate the usefulness of the proposed approach we
consider the case of an L�band� airborne SAR dedicated to
polarimetric and interferometric applications� The system
is similar to the UAVSAR instrument operated by JPL�
see Table �
�� The phases error induced by the orbit
curvature in this case is shown in Figure ���� The �rst panel
displays the phase dierence Δkωφ(kx/kω, r) between the
h= 
�Km platform height� θel= ����

a= ��� 
�6m local earth radius�
ψ= 
�◦ squint angle�

ν0 = 
��� 
�6Hz center frequency� kω0 =4πν0/c�
Laz = 
��m antenna length in azimuth�
Lel= ���m antenna length in elevation�
Δν= 	�Mhz radar bandwith�
δr= 
���m range resolution�
δx= ����m azimuth resolution�
Δr= 
�Km |r− rmid|: slant range to mid�swath�

Table �� SAR parameter table�

phase kωφ computed in the linear and curved cases� and
its main contribution is from the �rst order term in h/a
in Eq����� The middle panel shows the range dependence
at the edge of the Doppler band� and the right�hand panel
at the center frequency kω0. The magnitude of the phase
error is 
� radians at maximum� which shows that the track
curvature cannot be ignored�
Comparing the exact SP in the curved case to the power

series up to h2/a2� the maximal phase error is ���
◦� The

second order term φ(2) has a non�separable contribution
�last term in Eq������ and if that term is ignored the max�
imal phase error is ���◦� If the non�separable term is �xed
in range at mid�swath rmid� as in Eq��	� the maximal phase
error is 1◦� Finally the proposed method of Eq��	�� has
phase errors of ���◦� A simulated raw SAR data set using
parameters found in Table �
� and processed using the mid�
swath range separation of Eq��	� produces a focused image
with a structure shown in Figure ����
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Figure �� Range and azimuth cut of a point target focused using Eq���� and simulated using parameters in Table ����
FWHM is the full width at half maximum in meters� PSLR is the peak sidelobe to mainlobe power ratio in dB� ISLR
is the ratio of the integrated main lobe to sidelobe power in dB� MX�POS is the predicted minus observed image peak
position in meters� MX�VAL and MX�PHS are the power and phases at peak amplitude�

VI� Conclusions

The applicability of wave domain focusing algorithms

may be extended to data acquired on a curved path by

using a spherical image reference frame and a modi�ed

Stolt map� The optimal ωk map is derivable from the

phase history at mid�swath� The magnitude of the focusing

phase error is of order (r3/a2)� The extended algorithm

is compatible with squinted data collected either from an

airborne or spaceborne platform�

The research described in this paper was carried out

by the Jet Propulsion Laboratory� California Institute of

Technology� under contract with the National Aeronau�

tics and Space Administration�
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