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ABSTRACT   

Cognitive robots in the context of space exploration are envisioned with advanced capabilities of model building, 

continuous planning/re-planning, self-diagnosis, as well as the ability to exhibit a level of 'understanding' of new 

situations. An overview of some JPL components (e.g. CASPER, CAMPOUT) and a description of the architecture 

CARACaS (Control Architecture for Robotic Agent Command and Sensing) that combines these in the context of a 

cognitive robotic system operating in a various scenarios are presented. Finally, two examples of typical scenarios of a 
multi-robot construction mission and a human-robot mission, involving direct collaboration with humans is given. 
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1. INTRODUCTION  

 

There are a number of different approaches to building a 
cognitive architecture for control of single and multiple 

physical robots. Among the cognitive architectures that have 

been fielded thus far are symbolic/production systems such 

as Soar1 and Robo-Soar2, ACT*3 and extensions such as 

ACT-R4 and ACT-R/E5, EPIC6, and ADAPT7; connectionist 

systems such as CTRNN8, and ART9 and variants such as 

ARTMAP10,11, and Psi12 and MicroPsi13; and hybrid 

systems14.  The symbolic processing systems are derived 

from studies of human cognition, and as such don’t always 

port well onto robotic platforms, particularly in the area of 

multi-robot cooperation. ACT-R/E addresses this issue 
through the addition of an internal simulation process to 

ACT-R that mimics the ‘like-me’ behavior evidenced in 

primates and humans15. This simulation process enables the 

cognitive system to map external sensed actions by other 

agents into its own behavior base (walking in someone 

else’s shoes, so to speak). There have been numerous 

studies into the common ground between cognitive 

processing and formal process algebras38-40. JPL has 

developed a tightly integrated instantiation of a cognitive 

agent called CARACaS (Control Architecture for Robotic 

Agent Command and Sensing), a block diagram of which is 
shown in Figure 1, to address many of the issues for 

survivable, autonomous unmanned vehicle control23-25. 

CARACaS is composed of a Dynamic Planning Engine 

(currently CASPER), a Behavior Engine (currently 
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Figure 1. Block diagram of the CARACaS system. 

Connections between components are indicated by 
relative proximity. 



 
 

 

CAMPOUT), a Perception Engine, and a World Model. The Behavior Engine in CARACaS is mapped into a process 

algebra formalism in order to maintain a linear complexity for inferring sensed behaviors of other agents. 

This internal simulation process also addresses another key problem that needs to be solved by any "intelligent" system 

regardless of its level of consciousness, that of being able to operate in new, previously “unseen” contexts - that are not 

simple small deviations from previously seen contexts, but dramatically different16. Such anticipatory capabilities have 

been studied in the context of organic and robotic systems17-20. While small deviations may be handled in a simple 
interpolation/extrapolation framework (neural, fuzzy, etc), a totally novel context may 'confuse' a robot. Such contexts 

could be sensing artifacts (e.g. deteriorated sensor/vision chip in which all images get alternating black bars of certain 

thickness, rendering embedded object recognition routines useless, to seeing objects of very different shape, color and 

variation in time compared to previously seen/memorized ones). These unseen contexts may require actions that are 

novel combinations of action primitives. Yet in order to determine how appropriate these combinations are, it is useful to 

exercise a capability to determine the answer to "what if" type scenarios.  

Running an internal simulation with potential robot actions as inputs to a model of the world will generate consequences 

that are to be evaluated, ranked, and from which optimal actions can be selected. Other "what if" input context may not 

be initiated by the robot, but by other actors in the world model (e.g. what if I lost one sensory modality, what if another 

robot comes towards me at high speed, etc). The results of such simulations could be used not only for determining robot 

behavior, but also for improving its model of the world and raising its own level of capability in the presence of a 

teacher. In the worst case, the teacher generates only reinforcement (self-guided experimentation may generate similar 
effects, albeit at higher risks and energy consumption), while in a better case the teacher could suggest "what if" contexts 

and indicate at least preferences if not exact responses for such contexts. Particularly interesting in the context of 

implementations of simulation theories is the work by Svensson21, which offers the Representation-as-Simulation 

Hypothesis (RaSH) thesis, seeing simulation processes as off-line representations. 

A recent study that evaluated issues associated with remote interaction with an autonomous vehicle within the 

framework of grounding found that missing contextual information was a recurring problem for the operations team22. 

This missing contextual information led to uncertainty in interpretation of data that was collected and possible errors in 

how the autonomous vehicle was commanded. The problems that were encountered increased as the remote agent 

became more and more autonomous through activation of additional capabilities. Behavior of the remotely located 

autonomous vehicle would not always fit the “mental model” of the operators, leading to inefficient use of the platform.  

One of the conclusions of the study was that the common ground would be better established if the autonomous agents 
could describe what they do and why. This capability is provided if the robotic agents have enough onboard self-

awareness to dynamically adjust the information conveyed back to the operator based on a detail level component 

analysis of requests. A cognitive system that provides a formal mathematical basis for onboard representation of the 

behavior-based control of autonomous agents, combined with an integrated, adaptive explanation capability can provide 

common grounding between operator and vehicle. 

Fielding robots in space places some restraints on what can be done due to limited computing capabilities, mass and 

volume constraints, low bandwidth communication channels coupled with oftentimes long delays, and power issues. 

Several key aspects of a cognitive approach to unmanned vehicle control for space exploration include the handling of 

the inherently uncertain nature of dynamic surface operations, sensing for hazard detection/avoidance and situation 

awareness, behaviors for obeying the social rules during interactions with other manned and unmanned vehicles, 

cooperation among heterogeneous vehicles, onboard resource-based planning for mission operations, integrated system 

health maintenance for long duration missions, and the human operator command interface. The processes running 
within CARACaS include reactive processes for autonomous safe navigation and path planning, deliberative processes 

for planning and reasoning about complex, possibly conflicting goals during mission operations, and reflective processes 

for resource management and self-preservation.  

Reactive components in space robotics require deterministic reaction to unanticipated occurrences which can be captured 

through three components: (1) reacting to the occurrence with an appropriate response, (2) reacting to the occurrence 

within a predictable timeframe, and (3) providing other system components with updated autonomous vehicle state 

information. The first requirement is met by using a behavior coordination mechanism based on Multiple Objective 

Decision Theory (MODT) that guarantees a solution that is “good enough” within mission constraints. The second 

requirement is met with finite state machines using embedded resource and timing operators to define the tactical 



 
 

 

behavior network. The third requirement is met by the direct feedback loop from the behavior network to the 

reasoning/planning components of the system for internal state information transfer using a common shared format. 

The next section presents the individual components of CARACaS, followed by a brief discussion of the formal methods 

used for the implementation in terms of process algebras. This is followed by application of the system to two scenarios, 

and finally closing with a summary, discussion of results and references. 

2. COGNITIVE SYSTEM – OVERALL ORGANIZATION  

 
Dynamic Planner 

The Dynamic Planner leverages the CASPER (Continuous Activity Scheduling Planning Execution and Replanning) 

continuous planner26 developed at JPL. Given an input set of mission goals and the autonomous vehicle’s current state, 

CASPER generates a plan of activities that satisfies as many goals as possible while still obeying relevant resource 

constraints and operation rules. The “what-if” capabilities of CARACaS are based on the event horizon look-ahead view 

that CASPER maintains throughout the mission. CASPER has been used to autonomously perform the planning/re-

planning for the Earth Observation 1 (EO1) satellite27 continuously since November 2004 and recently won the NASA 

Software of the Year Award. A description of the autonomous vehicle, including resources and state information, as well 

as applicable mission and operations rules is encoded in the planner’s modeling language. Plans are dynamically updated 

using an iterative repair algorithm that classifies plan conflicts (such as a resource over-subscription) and resolves them 

individually by performing one or more plan modifications. CARACaS takes a most-committed, local, heuristic, 

iterative repair approach to producing and modifying plans. This approach gives CARACaS the advantages of 1) 

allowing the repair algorithm to be applied at any time and on any given plan (abstract or detailed), 2) enabling fast re-
planning when conditions or goals change, 3) allowing the easy incorporation of heuristics to prune the search space, and 

4) incurring less overhead during search since a local repair algorithm does not require the saving of intermediate plans 

or backtracking points. 

Behavior Engine 

CARACaS leverages the results of previous efforts at JPL in the multi-agent control architecture CAMPOUT (Control 

Architecture for Multi-robot Planetary Outposts)28-32 in order to develop behavior composition and coordination 

mechanisms. CARACaS uses finite state machines for composition of the behavior network for any given mission 

scenarios. These finite state machines give it the capability of producing formally correct behavior kernels that guarantee 

predictable performance using formal methods (Labeled Transition Systems, see next Section). 

For the behavior coordination mechanism (BCM) CARACaS uses a method based on Multi-Objective Decision Theory 

(MODT) that combines recommendations from multiple behaviors to form a set of control actions that represents their 
consensus. This approach provides for a coordination scheme that allows all behaviors to simultaneously contribute to 

the control of the system in a cooperative rather than a competitive manner, which explicitly addresses tasks that may 

have conflicting goals. CARACaS uses the MODT framework33 coupled with the interval criterion weights method34,35 

to systematically narrow down the set of possible solutions (size of space grows exponentially with the number of 

actions), producing an output within a time-span that is orders of magnitude faster than a brute force search of the action 

space. 

Perception 

The Perception Engine leverages algorithms derived from those used onboard the Mars Exploration Rovers (MER) for 

passive stereo imaging, hazard detection, and visual localization for navigation. Camera models based on polynomial 

expansions used to correct camera/lens distortions are derived from a series of images obtained during a calibration 

procedure. A fast stereo algorithm developed at JPL36 is used to generate a range map for hazard avoidance and sensing 
of other agents during the motion. 

World Model 

The World Model in CARACaS is based on explicit state knowledge of the robot and other agents that are in the same 

environment. The state knowledge of other agents is a mixture of information communicated from the other agents 

directly depending on bandwidth or through onboard sensing, as well as the anticipated states that are known from the 

mission plan. In addition, there are short-term-memory and long-term-memory components that interface to the behavior 



 
 

 

engine37, the dynamic planner and the perception submodules. There is also a global map of the mission area derived 

from any map information previously obtained (satellite, etc) supplemented with local sensory inputs from the agent and 

other agents that are in the area. 

The symbolic processing aspects of systems like SOAR are captured in CARACaS through the mapping of the behaviors 

into a process algebra that provides formal symbolic statement composition and inference operators. The inference 

operation for the ‘like-me’ analysis occurs when a sensory measurement is made and compared to the existing behavior 
base. SOAR is limited to first-order logic operations, whereas the Cost Calculus41 includes an explicit representation of 

unknown or uncertain information in the logic operations. The connectionist components of CARACaS are contained in 

the short term memory of the system, so in some sense CARACaS is a hybrid system. 

3. COGNITIVE SYSTEM - FORMAL BASIS 

 

Formal process algebras were originally developed to model and analyze distributed computation and communication 

processes. These types of processes have common features with the cognitive robotics community such as temporal 
sequencing, uncertainty representation, self/multi-system awareness, symbolic processing, and perceived cost. Features 

such as feelings and emotions don’t map directly into the process algebras, but can be phrased respectively as internal 

state awareness and action-urgency. 

3.1 Cost Calculus  

A Cost Calculus ($-Calculus)41 is a model for resource bounded computation based on process algebras that: 

1. Provides a means for generating incremental solutions for computationally hard, real-life problems 

2. Provides a uniform representation for the use of uncertain information during the cost-optimization process 

(k�-optimization) 

3. Provides an explicit representation of unobservable behavior (incomplete knowledge about an agent or the 

environment) using the silent (invisible) action � - particularly important since most sensors have limited range 

and will not be able to provide all needed information for decision making all of the time 

4. Currently is the basis for the CCL (Common Control Language) developed under ONR funding used for control 

of UUV (Unmanned Undersea Vehicles) at the Naval Undersea Warfare Center, Newport42,43. 

Behaviors are written as $-expressions organized into 6 sets (maneuver, navigate, communicate, configure, 

monitor/report, and execute convention). $-expressions are built using the algebraic operators of send/receive, cost 

assignment, defined simple/process call and sequential/parallel composition. 

The Behavior Engine in CARACaS is mapped to a Cost-Calculus ($-Calculus) framework41, and observed behaviors 

from other agents are matched to the existing tactical behavior base using well-known bisimulation equivalence 

relations. Bisimulation equivalences are binary relations between state transition systems, associating systems that 

behave in the same way in the sense that one system simulates the other and vice-versa. The advantages of this approach 

with regard to the current state of practice: 

1. Easy to integrate for testing on autonomous vehicles due to the existing base of tested behaviors already 

running onboard technology rovers under CARACaS 

2. Reduced computational complexity with respect to existing algorithms (linear vs. polynomial or exponential) 

leading to efficient onboard use 

3. Rigorous mathematical foundation (Process Algebras) that supports analysis 

4. First approach to explicitly factor in sensing from a moving platform and analysis of actions by other 

independent agents in the surrounding environment 

This approach has been used successfully in a number of different fields, including motor schemas for robotic control 

and plan recognition in economic processes. 



 
 

 

3.2 Inference 

For the inference of sensed behaviors, the observation equivalence of behaviors on a single autonomous agent and 

between two or more agents is done through bisimulation relations: 

1. Behaviors are formally expressed as a LTS (Labeled Transition System)44, and as such, the bisimulation 

equivalence can be established in linear time45 

2. Linear efficiency enables both onboard and/or offboard use of the technique 

 
3.3 Learning 

For the learning of sensed behaviors that is necessary for common grounding of behavior sequences that were not 

previously observed or in the command dictionary of the autonomous agent, reinforcement learning of observed 

behavior patterns is used. Reinforcement learning is a mode of the k� optimization built into the $-Calculus and: 

1. LTS representation used for generation of history of behavior use  (similar to networks of Michaud & 

Mataric46) 
2. Q-learning update equation is directly represented in the $-Calculus using cost / general choice and sequential 

composition operators  

Efficient onboard reinforcement learning algorithms have been previously developed at JPL and demonstrated for 

adaptive behavior in out-door environments on rovers47,48. These experiments used “rover health” defined in terms of 

available power and goal achievement as the objective function for the learning. The Q-learning component was not 

used because the behavior base is currently relatively small and the sequences built using the sequential composition 

operators could be exhaustible parsed. 

 

3.4 Explanation capabilities 

For the development of explanation capabilities, a dynamic decision tree decomposition49 of the observed behaviors is 

used to generate a set of rules for explanation: 
1. Decision tree generation uses information gain and pruning to limit the size of the tree 

2. Rules are evaluated based on hit rates, miss rates, pessimistic error rate, and information gain 

An adaptive level of detail is automatically built into this process in that all of the sensory information that led to a 

behavior is available and can be conveyed to the operator if the Human Machine Interface (HMI) has a detail level of 

request capability. 

 
3.5 Cognitive skill rating 

ConsScale (Consciousness Scale) levels introduced in Arrabales, et al.16 are used for a qualitative assessment of the 

cognitive skills of our system characterized by the architecture in Figure 1.  The ConsScale levels range from 1 to 11, 

with 1 (Decontrolled) having no relationships defined between sensors and actions, and 11 (Super-Conscious) having the 

ability to synchronize and coordinate multiple streams of consciousness.  In accordance with the authors’ indication that 

the metric needs to be seen in the context of the application specific domain, our architecture would be at a ConsScale 

level 6 (Emotional). This includes all levels below, and matches specific Cognitive Skills (CS) detailed in Table I in 

[Arrabales, et al., 2009] to Level 6: CS6.1 Self-status assessment (which we do not however interpret as background 

emotions); CS6.2: Status assessment (background emotions) cause effects in agent’s body; CS6.3 Representation of the 

effect of emotions in the organism; CS6.4: Ability to maintain a precise and updated map of body schema; CS6.5: Abstract 

learning. The primary difference between human and robotic cognition lies in this redefinition of “emotion” as internal 

state for the robotic system. The CLS (cumulative level score) of CARACaS is approximately 1.68, while the CQS 
(cognitive quantitative score) of our system is 101.08 (for comparison, self-consciousness is 200, super-conscious at 

1000). The calculation for CSL and CSQ come from equivalent of full level 6. 



 
 

 

 

4. SCENARIOS 

 

4.1 Scenario 1: Multi-robot construction 

Objects that are four to five times the length of a single mobile platform are extremely difficult to manipulate and 

transport.  The Robot Work Crew (RWC) concept assumes use of multiple rovers for coordinated operations such as 

those shown in Figure 2. Operations performed on such an extended payload include using two rovers that are 

cooperating to carry the beam over uneven terrain, with examples of row and column transport being shown in Figure 3. 

CAMPOUT, the behavior-based core of CARACaS, included goal arbitration in the outdoor environment in determining 

whether to execute Go-to-Goal, Avoid Obstacles, and Reconfigure Payload. These goals were internally represented 

using a Parallel Composition operator under the $-Calculus. The goal for the experimental study was the transport of an 

extended container by two rovers (SRR and SRR2K, the latter being a minimalist mechanization of the first) from a 

pickup point to a deployment zone that is up to 50 meters away, over unoccluded natural terrain. This was accomplished 

with a four-phase sequence that involved numerous realignments between the rovers due to load shifting when going 
over uneven ground. The rovers worked as a team with self-awareness of their roles in the transport process. The rovers 

anticipated when to make the corrections based on stress loads along the shared beam. 

As a general strategy, explicit communication between the rovers was minimized, as reflects possible operational 

constraints during an actual mission. This tailoring of the communication is facilitated by using the shared container as 

an implicit means of communication—e.g., relative positions of the rovers are known through the yaw gimbal angle on 

each rover.  Also, we are exploiting natural design constraints of the task where possible to assess useful trades of 

mechanized cooperation versus explicit closed loop controls (as one example, the use of passive compliance in both 

grippers along the beam axis). The number of simultaneous goals was kept low (3) in order to emulate a system 

constrained by limited computational capabilities. The current World Model in CARACaS is not a rich enough 

representation to be considered fully conscious for Scenario 1, being limited to short-term knowledge of the higher level 

goals of the construction process beyond the assembly manual for the structure. Full consciousness would include more 
context knowledge of the purposes of individual sub-components and sub-structures within the construction site. 

 

Figure 2: Artist’s concept of a variety of surface and 
on-orbit assembly and construction operations, 
including truss assembly, component transport, and 
site preparation. A heterogeneous team of robotic 
agents are shown, with both wheeled and walking 

Figure 3.  Coordinated transport of extended 
container (2.5 meters) by SRR and SRR2K, as 

performed in Arroyo Seco near JPL. (Left) row 
transport formation; (Right): column (leader-
follower) transport formation 



 
 

 

4.2 Scenario 2: Manned mission, humans collaborating with robots on the surface 

The Scenario focuses on human-robot collaboration, in the context of manned missions and robots operating in-situ on 

planetary/lunar surface. Astronauts may be interacting from an orbiting spacecraft or directly from surface as illustrated 

in Figure 4 (or a mixed case in which some astronaut is in orbit and others on the surface). 

Being in orbit means that there will be times of direct overhead viewing, and other cases when there would be perhaps 
an indirect viewing context via other orbiting spacecraft. A better global view is feasible, although at a lower resolution. 

Local imagery may be transmitted by the robots or other surface infrastructure imposing inherent bandwidth 

limitations/tradeoffs.   A certain degree of teleoperation is possible, the limitation not being communication delays (as it 

would be if trying to control from Earth) but possibly bandwidth and power restrictions at the robot end. If operation is 

to continue while satellite is not in view, or during the dark hours, robots need to have a high degree of autonomy.  

An important cognitive ability is determining the intent of other entities operating in the environment, which has 

predictive value. Joint attention (focusing attention to the same target/object that another entity/human is attentive to) 

assists in determining intent (‘mind reading’), and complements other cues, including various communication means 

such as language communication.  There is a body of literature focuses on joined attention (see for example the 

discussion in Sumioka50, and references cited therein). The traditional context is to exploit face expression. However, in 

the context of astronauts working in EVA suits (extra-vehicular activities) direct face observation by a robot is made 

difficult by the helmet. In such cases where robots cooperate with astronauts, embodiment of sensors inside the suit that 
record things such as eye movements (gaze), as well as possibly using biological signals (EEG, EMG, etc), with 

transmission of the signals to the robot is an alternate approach.  

One can conceive that the information about face expression or gaze direction is in fact processed by the EVA suit and 

broadcast to all participants in the scene, humans or robots, which in this case have to process less information, and also 

can receive it even if they are in a position in which they could not see the astronaut face directly (e.g. both astronaut and 

robot looking forward – without the robot needing to continuously alternate/shift gaze from human to object of human 

attention) 

Assume an assembly task. Perception (stereo vision, facilitated by artificial lighting at night) facilitates a situation 

assessment. The current most important goal is to continue to add beams to a structure under assembly. The Dynamic 

Planner determines a sequence of behaviors: find the beam in the workspace, retrieve beam, approach assembly structure 

from direction of next element insertion, insert beam in place, etc. Perception provides recognition of assembly elements 
(say beams) and their location in the scene, and during the entire process provides the Behavior Engine with context 

updates, while the Behavior Engine guides perception for retrieving need information, etc. In the context of the higher-

level architecture of human-robot collaboration, one can share roles in determining the next area of assembly structure to 

be completed, negotiate break times for battery recharge or inspection, or even to determine at a low level which beam to 

place next. In general an optimization at this level is not only feasible but also advantageous, as illustrated for example 

in Smith 51.  

Figure 4. Sketch illustrating two cases in Scenario 3. in which astronauts, either in orbiting spacecraft 
(left drawing), or on the planetary/lunar surface (right drawing), collaborate with robots, for various 
operations, such as repair, assembly, etc. . 



 
 

 

The optimization of task allocation between humans and robots becomes even more critical in the context of astronauts 

cooperating with robots on the surface. The humans have a direct/unobstructed view of the task area, and could more 

easily teleoperate the robots. Conventional teleoperation is however inefficient and tiring for astronauts. Novel human-

robot interfaces, using biological signals collected by sensors embedded in the suits (such as bio-sleeves collection 

EMG, bio-caps collecting EEG, etc) would provide friendlier interfaces and higher efficiency in operation, with greater 

bandwidths. For better efficiency however one should have the astronaut in supervisory or advisory roles to teams of 
multiple robots. Embedding sensors in the astronaut suit – particularly in the helmet, would allow collection of 

information about his face expression, including direction of gaze, which would be processed (and combined with verbal 

and other cues) to infer intent, etc.  

The cognitive mechanisms for the assembly task have many aspects in common with multi-robot assembly operations in 

the previous scenario. Yet, in this case the Planner would take in consideration other aspects including maintaining a 

safe work environment for the human (a context in which the Behavior Engine would engage safe behaviors of avoiding 

human proximity, reduction of power level and speed in human proximity) while Perception should, with a high priority 

obtain information about human position, trajectory, etc. direction of gaze, object manipulate, etc, all these being 

interpreted and updated in the world model. CARACaS is currently limited in its ability to include human agents, mostly 

due to the lack of capabilities for inferring human intent directly from sensory input. The behavior base would have to be 

supplemented in order to emulate “like-me” behavior. 

5. SUMMARY 

The cognitive architecture CARACaS was presented and some example space-based scenarios were discussed. 

CARACaS has been tested extensively on Unmanned Surface Vehicles (USV’s) under US Navy contracts as well23-25. 

Cognitive characteristics of self-awareness (each rover knew its role in the team), anticipatory planning (look-ahead 

projection of the convex hull of the two rover configuration was used to ensure clearance between the ensemble and 

hazards), and “like-me” behavior (projection along the shared beam was used to project relative orientation and current 

activities of the other rover) were demonstrated in the field in Scenario 1. Although Scenario 1 can be done using 
traditional robotic methods, as the complexity of the site increases, higher level consciousness characteristics of the 

system become important for inferring the state of the rover in order to stay safe in the possibly highly cluttered 

environment.  

CARACaS rated a Level 6 on the qualitative Consciousness Scale of Arrabales16, meaning that the system has the ability 

to generalize its learned behaviors and possesses “feelings” (agent well-being in this case). Current directions include the 

addition of model modification capabilities so that the World Model will be better able to represent alternate views of the 

environment around the agents. Explanation capabilities are limited to report of states within the sequences, and need a 

more intuitive grounding within the overall goal of the construction task. Also, the development and testing of alternate 

command methods such as gestures and teaching by example are currently being investigated. 
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