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Outline

• Observations

• Thermal instability

• Condensation in a sheared magnetic field

• Linear analysis

• Nonlinear simulation
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Observations

• Filaments are observed to separate regions of opposite, 
line-of-site magnetic polarity in the photosphere.
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Spectrum of filaments
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Magnetic field configuration
for  filaments (from Sara Mar tin)
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Thermal stability

ρ0 T0 p0

Adiabatic compression: perturbed pressure provides a restoring force

density temperature pressure

ρ0 T0 p0

Thermal equilibrium with radiation: H + C = 0         H = H(ρ) C = Rρ2Tr

Radiative compression: here adiabatic and non-adiabatic heating dominates
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Thermal instability
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Condensation occurs when a density 
enhancement allows radiative 
losses to dominate.
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Thermal conduction

density temperature pressure

ρ0 T0 p0

Compression with thermal conduction: heat flow stabilizes perturbation

ρ0 T0 p0

Compression with magnetic field: field provides thermal insulation in transverse direction
Magnetic pressure opposes density enhancement

B0B0
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Filament thread formation by condensational 
instability?

Key question:
How is it possible for a magnetic field to inhibit heat flow in a coronal 
plasma without simultaneously restricting the mass flow required for the 
growth of density condensations?

• Under coronal conditions, thermal conduction inhibits the condensational 
instability.

• Filament thread formation from a condensational instability requires a 
magnetic field to inhibit thermal conduction.

• Coronal condensations cannot form in a uniform magnetic field:
(1) the magnetic field prevents transverse mass flow from contributing to 

a local growth in density;
(2) heat flow parallel to the field ensures that parallel mass flow will not 

contribute to a condensational instability.
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Condensations in a sheared magnetic field

Magnetic field is force-free.

a is the shear scale
 

B0 = B0 sech y
a
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Localization of density in the shear layer

No heat flow Parallel heat flow

density

ρ0
B0

y

magnetic pressure
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kinetic (p) and
total (q) pressure
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B0 B0

Parallel heat flow  
forces perturbation
to vanish at boundary.

kinetic (p) and
total (q) pressure

Total pressure gradient 
pushes plasma into the 
shear layer.
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Model equations

Assume classical (small) resistivity.
Note: no gravity.

Continuity eq.

Momentum eq.

Maxwell’s eqs.
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Energetics

Energy eq.

Ideal gas law

Heating function H is assumed constant in time.

Classical thermal conductivity tensor κ has κ⊥<< κ||.
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Character istic time scales

 

a =100  km,

 

τh = a 4πρ0 /B0
2
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Linear  modes for  thermal instability
in a sheared magnetic field

Growth rate vs. wavenumber
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Dynamic condensations

Characteristics of dynamic condensations:

- spatial scale is determined primarily by force balance

- plasma mass flow is directed perpendicular to the magnetic field
- less compressible, the magnetic field inhibits (transverse) 

plasma compression
- only a drop in temperature contributes to growth

- the growth rate increases with number of nodes in mode

- analog of classical resistive tearing mode is a spatial case
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Density per turbations for pr incipal dynamic 
condensation mode and 1st harmonic

S = 108

S = 1010

ka = 2 x 10-3

 

k|| yd( )vA = Ωp

B0
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Kinematic condensations

kinematic - “of or relating to aspects of motion apart from 
considerations of mass and force”

Characteristics of kinematic condensations -
- exist only in the presence of anisotropic heat flow
- spatial scale is determined primarily by energy balance
- plasma mass flow is directed parallel to the magnetic field
- highly compressible; most compressible when sound 

waves traveling parallel to the magnetic field can 
maintain pressure balance

- both a drop in temperature and mass flow parallel to field 
lines contribute to growth

- exhibit higher growth rates than dynamic modes
- growth rate decreases with number of nodes in mode
- growth rate increases as number of nodes in mode decrease
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Density per turbations for 
pr incipal kinematic condensation mode

 

k|| yd( )vA = Ωp

 

k|| ys( )cs /γ1/2 = υ

 

k2B0z
2 yk( )
B0

2 =
γp0 Ωp − υ( )− υ2ρ0a

2Ω||

2 p0a
2Ω||

S = 108

S = 1010

ka = 4 ka = 40

B0
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Non-linear  evolution of thermal instability
in sheared field

Types of perturbations studied:

(1) Generic perturbation with T0 < Tc

(2) Generic perturbation with T0 = Tc

(3) Random perturbation with T0 < Tc
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Temperature evolution for  
gener ic per turbation with T0 < Tc

T = 178 sec T = 293 sec

T0 = 5.0 x 105

y-scale is non-linear

Probes

Choose k so that only kinematic modes are thermally unstable.
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Density evolution for  
gener ic per turbation with T0 < Tc

T = 178 sec T = 293 sec

Density at peaks increases by nearly two orders of magnitude.

y-scale is non-linear
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Time evolution at outer  probe for  
gener ic per turbation with T0 < Tc

Temperature, density, and pressure Heating rate: h = H/p
Cooling rate: c = C(T)/p

Simulation is run until gradients can no longer be resolved.
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Time evolution at inner  probe for  
gener ic per turbation with T0 < Tc

Temperature, density, and pressure Heating rate: h = H/p
Cooling rate: c = C(T)/p

A new radiative equilibrium is established at the inner probe.
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Time evolution at probe for  
gener ic per turbation with T0 = Tc

Temperature, density, and pressure Heating rate: h = H/p
Cooling rate: c = C(T)/p

Similar results but slower to develop - a much longer computation.
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Temperature evolution for  
random per turbation with T0 < Tc

Initial temperature is T0 = 5 x 105 K 
Final temperature in condensation is ~ T0 / 100.

t = 218 sec t = 290 sec
y-scale is non-linear



28LCS

ANAS

Napa Valley Meeting, 12/17/2008

Density evolution for  
random per turbation with T0 < Tc

t = 218 sec t = 290 sec

Final peak density is ~ 100ρ0.

y-scale is non-linear
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Summary for  linear  analysis

• A condensation will form preferentially in regions near where k is 
perpendicular to B0.

• Dynamic condensations:
- spatial structure is determined primarily by force balance 
- have plasma mass flow perpendicular to the magnetic field
- only a drop in temperature contributes to growth; 

• Kinematic condensations: 
- exist only in the presence of anisotropic heat flow.
- have plasma mass flow parallel to the magnetic field
- are most compressible when sound waves traveling parallel to 

the magnetic field can maintain pressure balance.
- exhibit the fastest growth
- both a drop in temperature and mass flow parallel to field lines 

contribute to growth
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Summary for  non-linear  simulations

Nonlinear two-dimensional MHD simulations (neglecting 
gravity) have traced the local genesis and growth of plasma 
filament threads in a force-free, sheared magnetic field until 
they attain both a minimum temperature and a maximum 
mass density characteristic of observed solar filaments.

A locally sheared magnetic field can thermally insulate regions 
of a coronal plasma without simultaneously impeding the 
mass flow required for the growth of condensations.
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Linear ized equations of motion
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Linear  modes in a uniform magnetic field

 

k ⋅B0 = 0

Solutions of the form: q(y) = (A e+sy + Be-sy) eikx
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Growth rate vs. Lundquist number  for 
kinematic condensation modes

ka = 10
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Growth rate vs. S for  dynamic condensation, 
resistive heating mode and resistive tear ing mode

ka = 2 x 10-3
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