
Test and Evaluation/Science and Technology
Program

Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

AMT-40
NST “Middleware Enhancements for a Netcentric Simulation

Architecture (MENSA)”

Philip Tsao, Michael Cheng, Clayton Okino
{ptsao,mkcheng,cokino}@jpl.nasa.gov

Jet Propulsion Laboratory
California Institute of Technology

December 18, 2008

2

• Introduction
• Source Coding

– Huffman Coding
– Lempel-Ziv

• Channel Coding
– LT Codes

• Source and Channel Coding
• Results
• Acknowledgements

Outline

3

ISR

C2

NSUTS

Test Control

Instrumentation

TBMCS

JFMCC

ABCS

Jo
in

t E
nd

-to
-E

nd
 M

is
si

on
 T

hr
ea

ds DATA
FLOWS

Open Air
Ranges

Project Description
NST Gap Addressed

• Minimize congestive failure in NST environments.

• Overcome unreliable network environments in NST infrastructure.

• Dynamically optimize information delivery with graceful degradation
in NST infrastructure.

Description
• Improving network efficiency (i.e.

“blending” of the data)
• Improving reliability (using redundancy)
• Improving utilization (through

dynamically coding)

Minimal responsiveness to data flows for the
synthetic battlespace that congest the link

Minimal responsiveness to data flows on
open range environment that use unreliable links

Minimal responsiveness to data flows to open range
environment that use varying bandwidth links

CURRENT STATE

PROJECT END STATE (lab testing of:)

“Blended”
data flows
efficiently

Improved
redundancy

(filled in the gaps)

Dynamic
“concentration”

for graceful
degradation

4

In-lab Demo

• JPL in-lab demonstration of coding gain using swarm based platform

1. Swarm
based
simulation
data used to
generate
TENA data

2. Selected TENA
platform used to
run real-time
MENSA
compression &
decompression
algorithms

3. Simulation shows real-time compression gains on outgoing packets

5

• Lossy compression
– Quantization

• Lossless compression

– Non-Uniform Distribution of Symbols -> Uniform Distribution of Fewer Symbols
– Non-Uniform Distribution of Sequences of Symbols -> Uniform Distribution of Sequences of Fewer Symbols

Source Coding algorithms

6

• Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.
2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the

code “0”.
3. Merge the two lowest probability symbols into one symbol with the combined probability of the

two symbols.
4. Go to step 1 unless there are two symbols left.
– The codeword for each symbol is determined by concatenating the codes encountered

through traversing the resulting tree from the leaf node (symbol) to the root.

Huffman Coding

Symbol Probability Code

B 1/7 1

S 1/7 0

N 2/7

A 3/7

[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the I.R.E., September 1952, pp 1098-1102

7

Huffman Coding

Symbol Probability Code

B 1/7 1

S 1/7 0

N 2/7

A 3/7

2nd Itr

{B,S} 2/7 1

N 2/7 0

A 3/7

[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the I.R.E., September 1952, pp 1098-1102

• Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.
2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the

code “0”.
3. Merge the two lowest probability symbols into one symbol with the combined probability of the

two symbols.
4. Go to step 1 unless there are two symbols left.
– The codeword for each symbol is determined by concatenating the codes encountered

through traversing the resulting tree from the leaf node (symbol) to the root.

8

Huffman Coding

Symbol Probability Code

B 1/7 1

S 1/7 0

N 2/7

A 3/7

2nd Itr

{B,S} 2/7 1

N 2/7 0

A 3/7

3rd Itr

A 3/7 1

{{B,S},N} 4/7 0
[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the I.R.E., September 1952, pp 1098-1102

• Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.
2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the

code “0”.
3. Merge the two lowest probability symbols into one symbol with the combined probability of the

two symbols.
4. Go to step 1 unless there are two symbols left.
– The codeword for each symbol is determined by concatenating the codes encountered

through traversing the resulting tree from the leaf node (symbol) to the root.

9

Huffman Coding

Symbol Probability Code

B 1/7 1

S 1/7 0

N 2/7

A 3/7

2nd Itr

{B,S} 2/7 1

N 2/7 0

A 3/7

3rd Itr

A 3/7 1

{{B,S},N} 4/7 0
[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the I.R.E., September 1952, pp 1098-1102

• Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.
2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the

code “0”.
3. Merge the two lowest probability symbols into one symbol with the combined probability of the

two symbols.
4. Go to step 1 unless there are two symbols left.
– The codeword for each symbol is determined by concatenating the codes encountered

through traversing the resulting tree from the leaf node (symbol) to the root.

10

Huffman Coding

Symbol Probability Code

B 1/7 1

S 1/7 0

N 2/7

A 3/7

2nd Itr

{B,S} 2/7 1

N 2/7 0

A 3/7

3rd Itr

A 3/7 1

{{B,S},N} 4/7 0
[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the I.R.E., September 1952, pp 1098-1102

• Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.
2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the

code “0”.
3. Merge the two lowest probability symbols into one symbol with the combined probability of the

two symbols.
4. Go to step 1 unless there are two symbols left.
– The codeword for each symbol is determined by concatenating the codes encountered

through traversing the resulting tree from the leaf node (symbol) to the root.

11

Huffman Coding

Symbol Probability Code

B 1/7 1

S 1/7 0

N 2/7

A 3/7

2nd Itr

{B,S} 2/7 1

N 2/7 0

A 3/7

3rd Itr

A 3/7 1

{{B,S},N} 4/7 0
[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the I.R.E., September 1952, pp 1098-1102

• Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.
2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the

code “0”.
3. Merge the two lowest probability symbols into one symbol with the combined probability of the

two symbols.
4. Go to step 1 unless there are two symbols left.
– The codeword for each symbol is determined by concatenating the codes encountered

through traversing the resulting tree from the leaf node (symbol) to the root.

12

Huffman Coding

Symbol Probability Code

B 1/7 1

S 1/7 0

N 2/7

A 3/7

2nd Itr

{B,S} 2/7 1

N 2/7 0

A 3/7

3rd Itr

A 3/7 1

{{B,S},N} 4/7 0
[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the I.R.E., September 1952, pp 1098-1102

• Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.
2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the

code “0”.
3. Merge the two lowest probability symbols into one symbol with the combined probability of the

two symbols.
4. Go to step 1 unless there are two symbols left.
– The codeword for each symbol is determined by concatenating the codes encountered

through traversing the resulting tree from the leaf node (symbol) to the root.

13

Huffman Coding

Symbol Probability Code

B 1/7 1

S 1/7 0

N 2/7

A 3/7

2nd Itr

{B,S} 2/7 1

N 2/7 0

A 3/7

3rd Itr

A 3/7 1

{{B,S},N} 4/7 0
[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the I.R.E., September 1952, pp 1098-1102

• Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.
2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the

code “0”.
3. Merge the two lowest probability symbols into one symbol with the combined probability of the

two symbols.
4. Go to step 1 unless there are two symbols left.
– The codeword for each symbol is determined by concatenating the codes encountered

through traversing the resulting tree from the leaf node (symbol) to the root.

14

Huffman Coding

Symbol Probability Code

B 1/7 1

S 1/7 0

N 2/7

A 3/7

2nd Itr

{B,S} 2/7 1

N 2/7 0

A 3/7

3rd Itr

A 3/7 1

{{B,S},N} 4/7 0
[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the I.R.E., September 1952, pp 1098-1102

• Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.
2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the

code “0”.
3. Merge the two lowest probability symbols into one symbol with the combined probability of the

two symbols.
4. Go to step 1 unless there are two symbols left.
– The codeword for each symbol is determined by concatenating the codes encountered

through traversing the resulting tree from the leaf node (symbol) to the root.

15

• Lempel-Ziv [LZ] is a popular example of a dictionary coding algorithm
in which references to a history buffer are transmitted in lieu of the
uncompressed data.

– Symbols that are not found in the dictionary are represented explicitly. For
example, the string BANANAS might be transmitted as “BAN(2,3)S”. The pair
(2,3) denotes the string that begins with the 2nd to last symbol in the dictionary (in
this case, “A”) that is 3 symbols long (ANA). Note that the third symbol of the
string is not (yet) in the dictionary until the first symbol of the string is appended to
the end of the dictionary.

Lempel-Zip Coding algorithm

History Encoded Decoded
B B

B

[LZ] Jacob Ziv and Abraham Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory, 23(3), pp.337-343, May
1977.

16

• Lempel-Ziv [LZ] is a popular example of a dictionary coding algorithm
in which references to a history buffer are transmitted in lieu of the
uncompressed data.

– Symbols that are not found in the dictionary are represented explicitly. For
example, the string BANANAS might be transmitted as “BAN(2,3)S”. The pair
(2,3) denotes the string that begins with the 2nd to last symbol in the dictionary (in
this case, “A”) that is 3 symbols long (ANA). Note that the third symbol of the
string is not (yet) in the dictionary until the first symbol of the string is appended to
the end of the dictionary.

Lempel-Zip Coding algorithm

History Encoded Decoded
B B

B BA BA
BA

[LZ] Jacob Ziv and Abraham Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory, 23(3), pp.337-343, May
1977.

17

• Lempel-Ziv [LZ] is a popular example of a dictionary coding algorithm
in which references to a history buffer are transmitted in lieu of the
uncompressed data.

– Symbols that are not found in the dictionary are represented explicitly. For
example, the string BANANAS might be transmitted as “BAN(2,3)S”. The pair
(2,3) denotes the string that begins with the 2nd to last symbol in the dictionary (in
this case, “A”) that is 3 symbols long (ANA). Note that the third symbol of the
string is not (yet) in the dictionary until the first symbol of the string is appended to
the end of the dictionary.

Lempel-Zip Coding algorithm

History Encoded Decoded
B B

B BA BA
BA BAN BAN
BAN

[LZ] Jacob Ziv and Abraham Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory, 23(3), pp.337-343, May
1977.

18

• Lempel-Ziv [LZ] is a popular example of a dictionary coding algorithm
in which references to a history buffer are transmitted in lieu of the
uncompressed data.

– Symbols that are not found in the dictionary are represented explicitly. For
example, the string BANANAS might be transmitted as “BAN(2,3)S”. The pair
(2,3) denotes the string that begins with the 2nd to last symbol in the dictionary (in
this case, “A”) that is 3 symbols long (ANA). Note that the third symbol of the
string is not (yet) in the dictionary until the first symbol of the string is appended to
the end of the dictionary.

Lempel-Zip Coding algorithm

History Encoded Decoded
B B

B BA BA
BA BAN BAN
BAN BAN(2,3) BANANA
BANANA

[LZ] Jacob Ziv and Abraham Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory, 23(3), pp.337-343, May
1977.

19

• Lempel-Ziv [LZ] is a popular example of a dictionary coding algorithm
in which references to a history buffer are transmitted in lieu of the
uncompressed data.

– Symbols that are not found in the dictionary are represented explicitly. For
example, the string BANANAS might be transmitted as “BAN(2,3)S”. The pair
(2,3) denotes the string that begins with the 2nd to last symbol in the dictionary (in
this case, “A”) that is 3 symbols long (ANA). Note that the third symbol of the
string is not (yet) in the dictionary until the first symbol of the string is appended to
the end of the dictionary.

Lempel-Zip Coding algorithm

History Encoded Decoded
B B

B BA BA
BA BAN BAN
BAN BAN(2,3) BANANA
BANANA BAN(2,3)S BANANAS

[LZ] Jacob Ziv and Abraham Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory, 23(3), pp.337-343, May
1977.

20

Compressibility of different length
strings from the Calgary Corpus using

a Lempel-Ziv Algorithm

[RFC] RFC2395 - IP Payload Compression Using LZS.

21

• Reducing redundancy (though source coding)
reduces reliability

• Channel Coding adds redundancy
– Automatic Repeat Request (ARQ)
– Forward Error Correction (FEC)

Channel Coding

22

• Randomly pick a set of packets from a fixed block of
message packets according to a probability
distribution and then linearly combine these selected
packets into code symbols

• Rinse and repeat as needed

• If probability distribution is Robust Soliton, average
excess transmission approaches zero as message
blocksize increases

LT Codes

[LT] M. Luby, “LT Codes,” in Proceedings of The 43rd Annual IEEE Symposium on Foundations of
Computer Science, 2002, pp. 271–282.

23

LT Codes

The average excess transmission required for error free
operation diminishes with increasing message length.

24

• Source Coding reduces reduces redundancy
– Good

• Source Coding reduces reliability
– Bad

• Channel Coding increases reliability
– Good

• Channel Coding increases redundancy
– Bad

• Why not do both?

Source and Channel Coding

25

Source and Channel Coding

26

• Not all forms of redundancy are equal
• Longer message lengths are better

– Source Coding efficiency increases
– Channel Coding excess transmission decreases

• Combination of Source and Channel Coding offers
additional design tradeoffs
– Processing overhead vs. compression
– Processing overhead vs. excess transmission
– Compression vs. excess transmission

Source and Channel Coding

27

TENA
Middleware

libTAO-rhel5-gcc41-d.so

libTENA-Middleware-rhel5-gcc41-d.so

libACE-rhel5-gcc41-d.so

…

libTAO-rhel5-gcc41-d.so

libTENA-Middleware-rhel5-gcc41-d.so

libACE-rhel5-gcc41-d.so

…

Libraries in TENA 5.2.2 distribution
TENA 5.2.2 distribution with
MENSA-modified libTAO

MENSA beta code in an
unofficial TENA library

• Aug 2008 – IIOP compression
patch available for Linux rhel5,
fc5 and fc6.

• MENSA code sent to Steve Bachinsky
at the end of November 2008.

• Various build Unix
versions (e.g. rhel5-
gcc-41, rhel5-
gcc41-d, fc5-gcc41,
fc5-gcc41-d, fc6-
gcc41)

• Different versions
of TENA (e.g. 5.2.2
versus 6.0)

• Highlighted in
BLUE are the
versions planned to
deliver under
MENSA. Other
variations will
require additional
funded effort.

Delivered MENSA Beta versions to Pt. Mugu on August 29, 2008
for inclusion in NSTATIE laboratory. Eight versions were
delivered. These are:

• xp-vc80 windows xp 32 bit
• xp-vc80-d windows xp 32 bit debug
• rhel5-gcc41 red hat enterprise linux 5
• rhel5-gcc41-d red hat enterprise linux 5 debug
• fc5-gcc41 fedora core 5
• fc5-gcc41-d fedora core 5 debug
• fc6-gcc41 fedora core 6
• fc6-gcc41-d fedora core 6 debug

28

In-lab Demo

• JPL in-lab demonstration of coding gain using swarm based platform

1. Swarm
based
simulation
data used to
generate
TENA data

2. Selected TENA
platform used to
run real-time
MENSA
compression &
decompression
algorithms

3. Simulation shows real-time compression gains on outgoing packets

29

Thanks to
JIM BAK

ELIZABETH BODINE
LOREN CLARE
SCOTT DARDEN
AARON KIELY

MATTHEW KLIMESH
SAMUEL NGUYEN
JEFFREY UNG
LIANG YU

Acknowledgements

Test and Evaluation/Science and Technology
Program

Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

Back Up

31

Wireshark tool

• April 2008 – Wireshark patch written to provide mechanism to
evaluate MENSA algorithms on InterTEC platforms

• June 2008 – Wireshark tool predicts MENSA IIOP compression
patch can achieve gains of 2-3X on InterTEC data (Performed by
InterTEC network engineer)

	AMT-40
	Outline
	Slide Number 3
	In-lab Demo
	Source Coding algorithms
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Lempel-Zip Coding algorithm
	Lempel-Zip Coding algorithm
	Lempel-Zip Coding algorithm
	Lempel-Zip Coding algorithm
	Lempel-Zip Coding algorithm
	Compressibility of different length strings from the Calgary Corpus using a Lempel-Ziv Algorithm
	Channel Coding
	LT Codes
	LT Codes
	Source and Channel Coding
	Source and Channel Coding
	Source and Channel Coding
	MENSA beta code in an �unofficial TENA library
	In-lab Demo
	Acknowledgements
	Back Up
	Wireshark tool

