Jet Propulsion Laboratory
California Institute of Technology

Test and Evaluation/Science and Technology
Program

AMT-40

NST “Middleware Enhancements for a Netcentric Simulation
Architecture (MENSA)”

Philip Tsao, Michael Cheng, Clayton Okino
{ptsao,mkcheng,cokino}@jpl.nasa.gov
Jet Propulsion Laboratory
California Institute of Technology

December 18, 2008

Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

Outline = NAT

Jet Propulsion Laboratory
California Institute of Technology

 Introduction

* Source Coding
— Huffman Coding

— Lempel-Ziv
« Channel Coding

— LT Codes
« Source and Channel Coding
* Results

 Acknowledgements

Project Description =JIPL

Jet Propulsion Laboratory
California Institute of Technology

NST Gap Addressed Description
+ Minimize congestive failure in NST environments. - Improving network efficiency (i.e.

“blending” of the data)

* Overcome unreliable network environments in NST infrastructure.) L .
 Improving reliability (using redundancy)

- Dynamically optimize information delivery with graceful degradation * Improving utilization (through
in NST infrastructure. dynamically coding)

CURRENT STATE
Minimal responsiveness to data flows for the
synthetic battlespace that congest the link

Minimal responsiveness to data flows on
open range environment that use unreliable links

Minimal responsiveness to data flows to open range
environment that use varying bandwidth links

PROJECT END STATE (lab testing of:)

dﬂ
\s

Joint End-to-End Mission Threads

Swarm
based

simulation \

data used to
generate
TENA data

JPL N;

Jet Propulsion Laboratory
California Institute of Technology

In-lab Demo

Selected TENA
platform used to
run real-time
MENSA
compression &
decompression
algorithms

) . L]
serd() 2ao—>1?1 oy n-1 53?:13 o
send() 120-332 gain 1,22449 %
sendl) 280-2171 gaim 1,E3742 o
send() 120-388 gainl1,22443 ¢
resendl) 20-2171 cain 1,65743
stemrd() 120233 galr 1,22443 ¢
send() 2803171 gafn 163743 &
zend() 120398 gaim 1,22449 o
serd|) 230-2171 gafn 1,63743 .
zerd() 120-058 oaim 1,22443 o
tiserd() ZB0-2170 gatn 164706 0
ttamnd() 120233 galf) 1.22449 .
send() ZB0-3170 gain 1,BA70E o
send() 120->98 gain 1,22449 N
zend() 2B0-3170 gafn 1,B4706 o
send() 120-338 gaire 1,22443 ¢
sisend() 280-7170 gaih 164706 o
tisend() 120-735 galnel, 22443 o
send() Z80-+170 gain LB4TE |
zendl) 120338 gain 1,2241419 o
sendl) 2802170 gam'i B4706 0
send() 120-238 gain 15,22449 .
rsend() 280-7170 oain 1854706

A

s
™ (T (T

HE K BE AE SR EE EE T HE H OGS RS EE EE FE AE S8 £0 HE EE HE 34

oo

+
+
+
+
+
+
*
+
*
+
+
+
+
+
+
+
*
+
*
+
+
+
+
+
+
+
*
+
+
+
+
+
+
+
+
+
*
+

i.""."".'"

HH

Simulation shows real-time compression gains on outgoing packets

Source Coding algorithms JIPL NA'

Jet Propulsion Laboratory
California Institute of Technology

« Lossy compression
— Quantization

« Lossless compression

— Non-Uniform Distribution of Symbols -> Uniform Distribution of Fewer Symbols
— Non-Uniform Distribution of Sequences of Symbols -> Uniform Distribution of Sequences of Fewer Symbols

Huffman Coding JPL {

ASA

Jet Propulsion Laboratory
California Institute of Technology

Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.
2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the

code “0”.

3. Merge the two lowest probability symbols into one symbol with the combined probability of the

two symbols.

4. Go to step 1 unless there are two symbols left.

The codeword for each symbol is determined by concatenating the codes encountered
through traversing the resulting tree from the leaf node (symbol) to the root.

Symbol Probability Code
B 117 1
S 117 0
N 2/7
A 317

[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the I.R.E., September 1952, pp 1098-1102

Huffman Coding JPL {

ASA

Jet Propulsion Laboratory
California Institute of Technology

Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.
2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the

code “0”.

3. Merge the two lowest probability symbols into one symbol with the combined probability of the

two symbols.

4. Go to step 1 unless there are two symbols left.

The codeword for each symbol is determined by concatenating the codes encountered
through traversing the resulting tree from the leaf node (symbol) to the root.

Symbol

Probability

Code

B

117

1

17

0

217

S
N
A

317

2nd |tr

{B,S}

217

N

217

A

317

{B,S} N A

VRN
B S

[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the I.R.E., September 1952, pp 1098-1102

Huffman Coding JPL {

ASA

Jet Propulsion Laboratory
California Institute of Technology

Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.
2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the

code “0”.

3. Merge the two lowest probability symbols into one symbol with the combined probability of the

two symbols.

4. Go to step 1 unless there are two symbols left.

The codeword for each symbol is determined by concatenating the codes encountered
through traversing the resulting tree from the leaf node (symbol) to the root.

Symbol

Probability

Code

B

117

1

17

0

217

S
N
A

317

2nd |tr

{B,S}

217

N

217

A

317

3rd Itr

A

317

{{B,S},N}

477

A {{B,S} N}
/\
1 N0
// x
{B,S} N
YN
B S

[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the I.R.E., September 1952, pp 1098-1102

ASA

Huffman Coding JPL {

Jet Propulsion Laboratory
California Institute of Technology

 Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.

2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the
code “0”.

3. Merge the two lowest probability symbols into one symbol with the combined probability of the
two symbols.

4. Go to step 1 unless there are two symbols left.

— The codeword for each symbol is determined by concatenating the codes encountered
through traversing the resulting tree from the leaf node (symbol) to the root.

Symbol Probability Code
<
B 17 1 root>
S 17 0 /\
1.7 0
N 2/7 /
A 37 A {{B,S}, N}
F i
2nd tr 1 /" /\}
{B,S} 2/7 1
N 2/7 0 { B r S } N
A 3/7 /
1.7 0
o N
3rd Itr B S
A 3/7 1) o
[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
{{B,S},N} 47 0 Proceedings of the I.R.E., September 1952, pp 1098-1102
9

ASA

Huffman Coding JPL {

Jet Propulsion Laboratory
California Institute of Technology

 Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.

2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the
code “0”.

3. Merge the two lowest probability symbols into one symbol with the combined probability of the
two symbols.

4. Go to step 1 unless there are two symbols left.

— The codeword for each symbol is determined by concatenating the codes encountered
through traversing the resulting tree from the leaf node (symbol) to the root.

Symbol Probability Code
B 117 1 <root>
s 117 0]) B 110
]
N 2/7
A 317 A {{B,S},N}
2nd It 1 / w
{B,S} 2/7 1
N 217 0 {B,S} N
A 317 _ f,/ \
1 - N0
p N
d
3 Itr B S
A 3/7 1) o
[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
{{B,S},N} 47 0 Proceedings of the I.R.E., September 1952, pp 1098-1102
10

ASA

Huffman Coding JPL {

Jet Propulsion Laboratory
California Institute of Technology

 Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.

2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the
code “0”.

3. Merge the two lowest probability symbols into one symbol with the combined probability of the
two symbols.

4. Go to step 1 unless there are two symbols left.

— The codeword for each symbol is determined by concatenating the codes encountered
through traversing the resulting tree from the leaf node (symbol) to the root.

Symbol Probability Code
B 117 1 <root->
s 117 0 /\\ B 110
N 27 l/ X S 010
A 317 A {{B,S},N}
2nd It 1 ff/\}
{B,S} 2/7 1 /
N 2/7 0 { B/’\S } N
A 317 lf/ 0
P 4 N
3 itr B g
A 37 ! [HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
{{B,S},N} 47 0 Proceedings of the I.R.E., September 1952, pp 1098-1102 »

ASA

Huffman Coding JPL {

Jet Propulsion Laboratory
California Institute of Technology

 Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.

2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the
code “0”.

3. Merge the two lowest probability symbols into one symbol with the combined probability of the
two symbols.

4. Go to step 1 unless there are two symbols left.

— The codeword for each symbol is determined by concatenating the codes encountered
through traversing the resulting tree from the leaf node (symbol) to the root.

N 217 0

A 37 }/ /\\E

Symbol Probability Code
B 17 1 <root>
/\ B 110
S 17 0 1 / 0
N 27)z L S 010
A 37 A {{B,S} N} N 00
/™\
2nd |tr 1 / \‘Q
{B,S} 217 1 \
{B,S} N

-~
3rd Itr B S
A 3/7 1) o
[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
{{B,S},N} 47 0 Proceedings of the I.R.E., September 1952, pp 1098-1102

12

ASA

Huffman Coding JPL {

Jet Propulsion Laboratory
California Institute of Technology

 Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.

2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the
code “0”.

3. Merge the two lowest probability symbols into one symbol with the combined probability of the
two symbols.

4. Go to step 1 unless there are two symbols left.

— The codeword for each symbol is determined by concatenating the codes encountered
through traversing the resulting tree from the leaf node (symbol) to the root.

Symbol Probability Code
B 117 1 <root>
s 117 0 o~) B 110
1
N 21) / \ S 010
A 37 A {{B,S}, N} N 00
Al
2nd |r 1 //\ \\D
{B,S} 217 1 /
N 2/7 0 { B 4 S } N
”
A 3/7
-~ 0
7~
3rd Itr B g
A 3/7 1) o
[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
{{B,S},N} 47 0 Proceedings of the I.R.E., September 1952, pp 1098-1102
13

Huffman Coding JPL {

Jet Propulsion Laboratory
California Institute of Technology

Huffman encoding [HUFF] a given message by:
1. Sort the symbols of the message from lowest to highest frequency.
2. Assign the lowest probability symbol the code “1” and the next lowest probability symbol the

code “0”.

3. Merge the two lowest probability symbols into one symbol with the combined probability of the

two symbols.

4. Go to step 1 unless there are two symbols left.

The codeword for each symbol is determined by concatenating the codes encountered
through traversing the resulting tree from the leaf node (symbol) to the root.

Symbol

Probability

Code

B

117

1

17

0

217

S
N
A

317

2nd |tr

{B,S}

217

N

217

A

317

3 Itr

A

317

{{B,S},N}

477

<root>
;//x”\\\\ B 110
P2 . S 010
A {{B,S},N} N 00

H
c::n>
M
—

{B,S} N BANANAS

,}f/ff\\\ﬁ 1101001001010

[HUFF] D.A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes",
Proceedings of the I.R.E., September 1952, pp 1098-1102

ASA

14

Jet Propulsion Laboratory
California Institute of Technology

Lempel-Ziv [LZ] is a popular example of a dictionary coding algorithm
in which references to a history buffer are transmitted in lieu of the
uncompressed data.

— Symbols that are not found in the dictionary are represented explicitly. For
example, the string BANANAS might be transmitted as “BAN(2,3)S”. The pair
(2,3) denotes the string that begins with the 2nd to last symbol in the dictionary (in
this case, “A”) that is 3 symbols long (ANA). Note that the third symbol of the
string is not (yet) in the dictionary until the first symbol of the string is appended to
the end of the dictionary.

History [Encoded Decoded
B B

E

[LZ] Jacob Ziv and Abraham Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory, 23(3), pp.337-343, May
1977.

Lempel-Zip Coding algorlthmeL NA'

15

Lempel-Zip Coding algorlthmeL NA'

Jet Propulsion Laboratory
California Institute of Technology

 Lempel-Ziv [LZ] is a popular example of a dictionary coding algorithm
in which references to a history buffer are transmitted in lieu of the
uncompressed data.

— Symbols that are not found in the dictionary are represented explicitly. For
example, the string BANANAS might be transmitted as “BAN(2,3)S”. The pair
(2,3) denotes the string that begins with the 2nd to last symbol in the dictionary (in
this case, “A”) that is 3 symbols long (ANA). Note that the third symbol of the
string is not (yet) in the dictionary until the first symbol of the string is appended to
the end of the dictionary.

History [Encoded Decoded

B B
BA BA

B
BA

[LZ] Jacob Ziv and Abraham Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory, 23(3), pp.337-343, May
1977.

16

Jet Propulsion Laboratory
California Institute of Technology

Lempel-Ziv [LZ] is a popular example of a dictionary coding algorithm
in which references to a history buffer are transmitted in lieu of the
uncompressed data.

— Symbols that are not found in the dictionary are represented explicitly. For
example, the string BANANAS might be transmitted as “BAN(2,3)S”. The pair
(2,3) denotes the string that begins with the 2nd to last symbol in the dictionary (in
this case, “A”) that is 3 symbols long (ANA). Note that the third symbol of the
string is not (yet) in the dictionary until the first symbol of the string is appended to
the end of the dictionary.

History [Encoded Decoded
B B

B BA BA

BA BAN BAN

[BAN

[LZ] Jacob Ziv and Abraham Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory, 23(3), pp.337-343, May
1977.

Lempel-Zip Coding algorlthmeL NA'

17

Jet Propulsion Laboratory
California Institute of Technology

Lempel-Ziv [LZ] is a popular example of a dictionary coding algorithm
in which references to a history buffer are transmitted in lieu of the
uncompressed data.

— Symbols that are not found in the dictionary are represented explicitly. For
example, the string BANANAS might be transmitted as “BAN(2,3)S”. The pair
(2,3) denotes the string that begins with the 2nd to last symbol in the dictionary (in
this case, “A”) that is 3 symbols long (ANA). Note that the third symbol of the
string is not (yet) in the dictionary until the first symbol of the string is appended to
the end of the dictionary.

History [Encoded Decoded
B B

B BA BA

B2 BAN BAN

[BAN BAN (2,3) [BANANA

IBANANA

[LZ] Jacob Ziv and Abraham Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory, 23(3), pp.337-343, May
1977.

Lempel-Zip Coding algorlthmeL NA'

18

Jet Propulsion Laboratory
California Institute of Technology

Lempel-Ziv [LZ] is a popular example of a dictionary coding algorithm
in which references to a history buffer are transmitted in lieu of the
uncompressed data.

— Symbols that are not found in the dictionary are represented explicitly. For
example, the string BANANAS might be transmitted as “BAN(2,3)S”. The pair
(2,3) denotes the string that begins with the 2nd to last symbol in the dictionary (in
this case, “A”) that is 3 symbols long (ANA). Note that the third symbol of the
string is not (yet) in the dictionary until the first symbol of the string is appended to
the end of the dictionary.

History [Encoded Decoded
B B

B BA BA

B2 BAN BAN

[BAN BAN(2,3) |[BANANA

BANANA BAN(2,3)S [BANANAS

[LZ] Jacob Ziv and Abraham Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory, 23(3), pp.337-343, May
1977.

Lempel-Zip Coding algorlthmeL NA'

19

Compressibility of different length

strings from the Calgary Corpus using JPL NA
a Le m pe I -Ziv AI g o rith m ‘Cj)ztl|:>:ﬁf;ull:éztr:1t|;a;o'|[:(t:z:l‘glogy

085} 4

O
Qo
T
1

0.73¢ 4

o
|
T
|

065} 4

Ratio of Compressed to Origina Size
o
()]

o
)
o
I
|

05} 4

0.45 R T S
10’ 10° 10° 10
Message Size (octets)

10

[RFC] RFC2395 - IP Payload Compression Using LZS. 20

i ~ AN
Jet Propulsion Laboratory Ry
California Institute of Technology

Channel Coding JPL {

 Reducing redundancy (though source coding)
reduces reliability

 Channel Coding adds redundancy
— Automatic Repeat Request (ARQ)
— Forward Error Correction (FEC)

21

LT Codes = NAT

Jet Propulsion Laboratory
California Institute of Technology

« Randomly pick a set of packets from a fixed block of
message packets according to a probability
distribution and then linearly combine these selected
packets into code symbols

 Rinse and repeat as needed

 If probability distribution is Robust Soliton, average
excess transmission approaches zero as message
blocksize increases

[LT] M. Luby, “LT Codes,” in Proceedings of The 43rd Annual IEEE Symposium on Foundations of
Computer Science, 2002, pp. 271-282.

22

LT Codes

JoL &

Jet Propulsion Laboratory
California Institute of Technology

The average excess transmission required for error free
operation diminishes with increasing message length.

average percent of excess transmitted information symbols

40

35

30

29

20

15

10

Error-free transmission on the erasure channel for LT with ¢=0.06 and 6=0.5

N

N

N

10°
message length in symbols

23

Jet Propulsion Laboratory
California Institute of Technology

« Source Coding reduces reduces redundancy
— Good

« Source Coding reduces reliability
— Bad

« Channel Coding increases reliability
— Good

 Channel Coding increases redundancy
— Bad

« Why not do both?

Source and Channel Coding JIPL NA

24

Jet Propulsion Laboratory
California Institute of Technology

T L S S N | T N N I

n L Source Coding
18 I : . SR : : :.. ma-lnel Codlng

L —

o] I S L

Ratio of Encoded to Origind Size

06| i

05h _ LIS —

04 IR R
10 10° 10*
Message Length (octets)

25

Source and Channel Coding JIPL NA'

Jet Propulsion Laboratory
California Institute of Technology

* Not all forms of redundancy are equal

 Longer message lengths are better
— Source Coding efficiency increases
— Channel Coding excess transmission decreases

« Combination of Source and Channel Coding offers
additional design tradeoffs
— Processing overhead vs. compression
— Processing overhead vs. excess transmission
— Compression vs. excess transmission

26

MENSA beta code in an N
unofficial TENA library JPL NA

California Institute of Technology

MENSA code sent to Steve Bachinsky

at the end of November 2008. TENA

Middleware

Aug 2008 — IIOP compression
patch available for Linux rhel5,
fcb and fc6.

N\

TENA 5.2.2 distribution with
MENSA-modified libTAO

| libACE-rhel5-gcc41-d.so |

Libraries in TENA 5.2.2 distribution

libACE-rhel5-gcc41-d.so

Various build Unix
versions (e.g. rhel5-
gcc-41, rhel5-
gccd1-d, fc5-geccd,
fc5-gcc41-d, fc6-

libTAO-rhel5-gcc41-d.so
libTENA-Middleware-rhel5-gcc41-d.so

libTAO-rhel5-gcc41-d.so |

libTENA-Middleware-rhel5-gcc41-d.so |

gccdi) _ Delivered MENSA Beta versions to Pt. Mugu on August 29, 2008
B;f{%rﬁzt(‘f;';rz‘_sz for inclusion in NSTATIE laboratory. Eight versions were

versus 6.0) delivered. These are:

Highlighted in * xp-vc80 windows xp 32 bit

BLUE are the

versions planned to * Xp-vc80-d windows xp 32 bit debug
deliver under * rhel5-gccé1 red hat enterprise linux 5
MENSA. Other « rhel5-gcc41-d red hat enterprise linux 5 debug
variations will
require additional » fc5-gecdn fedora core 5
funded effort. - fc5-gcc41-d fedora core 5 debug

» fcb6-gccén fedora core 6

» fc6-gcc41-d fedora core 6 debug

27

Swarm
based

simulation \

data used to
generate
TENA data

In-lab Demo

Jet Propulsion Laboratory
California Institute of Technology

Selected TENA
platform used to
run real-time
MENSA
compression &
decompression
algorithms

) . L]
serd() 2ao—>1?1 oy n-1 53?:13 o
send() 120-332 gain 1,22449 %
sendl) 280-2171 gaim 1,E3742 o
send() 120-388 gainl1,22443 ¢
resendl) 20-2171 cain 1,65743
stemrd() 120233 galr 1,22443 ¢
send() 2803171 gafn 163743 &
zend() 120398 gaim 1,22449 o
serd|) 230-2171 gafn 1,63743 .
zerd() 120-058 oaim 1,22443 o
tiserd() ZB0-2170 gatn 164706 0
ttamnd() 120233 galf) 1.22449 .
send() ZB0-3170 gain 1,BA70E o
send() 120->98 gain 1,22449 N
zend() 2B0-3170 gafn 1,B4706 o
send() 120-338 gaire 1,22443 ¢
sisend() 280-7170 gaih 164706 o
tisend() 120-735 galnel, 22443 o
send() Z80-+170 gain LB4TE |
zendl) 120338 gain 1,2241419 o
sendl) 2802170 gam'i B4706 0
send() 120-238 gain 15,22449 .
rsend() 280-7170 oain 1854706

A

s
™ (T (T

HE K BE AE SR EE EE T HE H OGS RS EE EE FE AE S8 £0 HE EE HE 34

oo

+
+
+
+
+
+
*
+
*
+
+
+
+
+
+
+
*
+
*
+
+
+
+
+
+
+
*
+
+
+
+
+
+
+
+
+
*
+

i.""."".'"

HH

JPL N;

Simulation shows real-time compression gains on outgoing packets

28

ASA

Acknowledgements JPPL {

Jet Propulsion Laboratory
California Institute of Technology

Thanks to
JIM BAK
ELIZABETH BODINE
LOREN CLARE
SCOTT DARDEN
AARON KIELY
MATTHEW KLIMESH
SAMUEL NGUYEN
JEFFREY UNG
LIANG YU

29

Jet Propulsion Laboratory
California Institute of Technology

Test and Evaluation/Science and Technology
Program

Back Up

Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

Wireshark tool JPL Y

Jet Propulsion Laboratory
California Institute of Technology

« April 2008 — Wireshark patch written to provide mechanism to
evaluate MENSA algorithms on InterTEC platforms

File Edit Miew Go Capture Analyze Statistics Help

S & 8 EERx®8 ResoFe [EHE Q -
Elfilner:h ﬂ%gxpression...‘hgear v}-‘_\pply‘

-
MNo. . | Time | Source | De stination | Protocol | Info —
1 0.000000 66.5L.20L.187 155.199.36. 26 TCF beos > https [ACK] Seqel Ackel Win=62264 Len=0 ' ||
3 4.999923 Zcom 66:3c: 20 Redbacled_00: 8d: 92 ARP who has 66.5L.20L.17 Tell 66.51.201.187
4 5.038897 Fedbackd_00:5d: 92 3com 66:3c: 20 ARF 66.51.20L.1 is at 00:10:67:00:3d:92
5 13.588055 66.5L.20L.187 88.208.203. TC P advant-lm > http [5¥H] Sege0 Win=5340 Len=0 pS:
6 14.161459 B8.208.203.85 66.5L.20L.187 TcF http > advant-lm [S¥M, ACK] Sege0 Ack-l Win=57!
7 l4.161722 66.5L.20L.187 88.208.203.85 TCF advant-1lm > http [ACK] Segel Ackel Win=5340 Lel
8 l4.182133 B6.51.20L.187 88.208.203.85 HTTF GET /tor/server/d/2CEDAA3ZES2154770611l010D3210:
9 14.341338 B8.208.203.85 66.5L.20L.187 TcF http > advant-lm [ACK] Sege=l Ack=21% Win=G3L2 :
L0 15.828823 88.208.203.85 66.51.201.187 HTTF HTTF/L.0 503 Directory busy, try again later
11 15.829629 B6.51.20L.187 88.208.203.85 TCF advant-lm > http [ACK] Seg=218 Ack=49 Win=5840
12 17.047484 88.208.203. 85 66.5L.20L.187 HTTF Continuation or non-HTTF traffic
L3 17.047855 66.5L.20L.L87 §8.208.203.85 TCF advant-lm > http [ACK] Seg=218 Ack=1497 Win=86i
14 17.055413 88.208.203. 85 66.51.201.187 HTTP Continuatisn or non-HTTP traffic
15 17.055553 66.5L.20L.187 88.208.203. 85 ™™F advant-lm > http [ACK] Sege=218 Ack=2945 Win=11!
LG L7.230849 §8.208.203.85 66.51.20L.187 HTTF Continuation or non-HTTF traffic
17 17.230801 B6.51.20L.187 88.208.203.35 TP advant-lm > http [ACK] Sege=213 Ack=4393 win-l14:
18 17.237840 88.208.203. 85 66.5L.20L.187 HTTF Continuation or non-HTTF traffic
Kl i
[Frame 5 (74 bytes on wire, T4 bytes captured) |
I Ethernet IL, Src: 3com 66:3c:20 (00:60:08:66:3c:20), Dst: Redbaclkd_00:5d:92 (00:10:67:00: 8d: 92)
[+ Internet Protocol, Src: 66.5L.201.187 (66.5L.201.187), Dst: 58.205.203.85 (58.208.203.85) L
[+ Transmission Control Protocol, Src Fort: advant-lm (2295), Dst Fort: http (80), Seqg: 0O, Len: O |
cooo 00 Lo 67 00 &d 92 00 60 0F 66 3c 20 03 00 45 00
00l 00 3o =2 ch 40 00 40 06 27 dc 42 33 <P bl 53 40
0020 Sk 55 03 £7 00 50 a0 05 23 97 00 00 00 00 aQ 02
06030 L& d0 54 32 00 00 02 G4 05 b4 04 02 GE Oa LO bO
0040 ca 5c 00 00 00 00 OL 03 03 00

sl

| File: "fUsers/ptsan/wire shark-0.99. §foocap” 0677 ... :l Packets: L5673 Displayed: 15673 Marked: 0 :l Profile: Default

* June 2008 — Wireshark tool predicts MENSA IIOP compression
patch can achieve gains of 2-3X on InterTEC data (Performed by
InterTEC network engineer)

31

	AMT-40
	Outline
	Slide Number 3
	In-lab Demo
	Source Coding algorithms
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Huffman Coding
	Lempel-Zip Coding algorithm
	Lempel-Zip Coding algorithm
	Lempel-Zip Coding algorithm
	Lempel-Zip Coding algorithm
	Lempel-Zip Coding algorithm
	Compressibility of different length strings from the Calgary Corpus using a Lempel-Ziv Algorithm
	Channel Coding
	LT Codes
	LT Codes
	Source and Channel Coding
	Source and Channel Coding
	Source and Channel Coding
	MENSA beta code in an �unofficial TENA library
	In-lab Demo
	Acknowledgements
	Back Up
	Wireshark tool

