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Abstruc?- This paper addresses the issue of calculating the 
gain and power distribution of DSN antennas in the Fresnel 
(middle zone) and Fraunhofer (far zone) as a fimction of the 
distance from the DSN antenna and the off-boresight angle. 
Calculating the near and mid fields of DSN antennas are of 
interest in the receive mode where the transmitting signals 
from nearby flying objects such as helicopters and airplanes 
transmitting in the DSN frequency range, interfere with the 
operation of sensitive RF receiving system of the DSN 
antennas, and in the transmit mode where fields from high- 
powered DSN antennas interfere with receivers on nearby 
flying objects such as helicopters or other systems. 
Computing the exact fields of a large DSN antenna is, in 
general, a very complicated and arduous task. Even far-field 
calculations, which are less complicated compared to near 
and mid zone fields, take considerable computer time. These 
calculations become even more involved and time- 
consuming in very near field and back field regions. We 
provide two approaches for addressing the radio frequency 
interference (RFI) issue. In this paper actual fields in mid 
and far zones are calculated using a relatively simple 
formulation that is accurate enough for the purposes of RFI 
analysis. In a future paper we will study and develop simple 
reference models that provide upper limit bounds or 
envelopes of the far field patterns as a function of the 
antenna diameter and frequency, which can be used for 
obtaining the field at any given point in space. 
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1. INTRODUCTION 

Calculating the mid and near field of DSN antennas are of 
interest in two general situations: 

1- 

2- 

Receive mode: When the transmitting signals from 
nearby flying objects such as helicopters and airplanes 
or other systems which transmit in the DSN frequency 
range, interfere with the operation of the DSN antenna 
systems in a the receiving mode. 

Transmit mode: When the transmitted fields fiom high- 
powered DSN antennas interfere with sensitive RF 
receiving systems on nearby flying objects such as 
helicopters and airplanes or other systems with critical 
radio frequency requirements. 

Table 1 summarizes the various DSN antennas of interest 
with the applicable frequencies and transmitted power 
capabilities. But computing the exact fields of a large DSN 
antenna is, in general, a very complicated and arduous task. 
Even far-field calculations which are relatively easier 
compared to the near and middle zone region, take from 
minutes to hours on a CRAY computer depending on the 
frequency of interest. These calculations become even more 
involved and time-consuming in the near field and back field 
regions. 

Furthermore, there are many factors that cannot be 
completely taken care of in an easy manner, such as surface 
errors, mis-alignments, and wind and gravity effects. And 
many of these parameters change in time and for various 
azimuth and elevation angles. 

Two complementary methods are pursued in addressing the 
radio frequency interference (RFI) issue. 

1- In this paper actual fields in mid and far zones are 

' 0-7803-8 155-6/04/$17.00@3 2004 IEEE 
IEEEAC paper # I  546, Final Version, Updated December 15,2003 

1 



calculated using a relatively simple formulation that 
is accurate enough for the purposes of RFI analysis. 

11- In a future paper we provide simple reference 
models for the upper limit or envelope of the near 
and far field patterns as hc t ions  of the antenna 
diameter and frequency which can be used for 
obtaining the field at any given point in space 

2. FORMULATION OF THE PROBLEM 

Geometry of the problem 

As shown in Figure 1, the orientation of the DSN antenna 
towards a spacecraft is specified by two parameters: the 
azimuth angle, +s , and the elevation angle, ys , of the 
boresight direction. 

The position of the observation point, namely the location of 
the interfering object is given by its azimuth, +, its vertical 
height from the ground, h, and its distance from the base of 
the DSN antenna, 1. These parameters are used to calculate 
the elevation angle of the observation point, y, and the 
distance from the ground antenna to the observation points, 
r, as given below. 

p=- I 
R 

1 cos( p) - - 
1+* 

W P )  
tan( y)  = - 

COS(Y> 

1+* 
sin( a) = - (3) 

(4) 
h si@) sin(p) 
R cos(y) sin(@ 

r = R(1+ -)-- = R - 

Once the azimuth and elevation angles of the boresight 
direction and the observation point directions are known, the 
angle, 0, between these two directions is obtained such that 

Field region definition 

Based on the characteristics of the radiated field from the 
aperture antennas, their dependence on various parameters 
and the level of difficulty in their calculations, three regions 
or zones of radiation are customarily distinguished: 

Near field region This region is also referred to as the 
induction field region, where the field has a very 
complicated behavior, and its calculation requires the 
calculation of the radiation integral in its most general form. 
Any reasonable computation would require substantial 
amount of computer time, and even so it is highly dependent 
on various irregularities and deformities of the antenna 
structure. If needed and possible, the measurement is 
perhaps the best way of obtaining meaningful results. 
Depending on the size of the “effective” aperture of the 
antenna, D, the boundaries of this region in terms of the 
distance from the aperture, d, varies. 

Mid field or Fresnel region This is the region from near 
zone to the far zone or field region starting at 2 D2/h. This is 
basically a transition region between the near field and the 
far field region. The criterion used to establish the boundary 
between near and Fresnel zone is that the difference in 
parameter (l/r) expu2m/h) does not exceed d8 radians in 
phase (equivalent to U16 in path length), and U16 in 
amplitude, at any point in space from any two points over 
the aperture (r being the distance between the point in space 
and the point on the aperture)[ 11. 

Farfield or Fraunhofer region This is the region from 2 
D2/h to infinity, where the antenna field has a l /r 
dependency on distance from the antenna center and a very 
nearly spherical phase front. The boundary between the far 
or Fraunhofer field and the middle or Fresnel field is taken 
to be such that their be no greater phase difference than 
(d8) radians (or U16 path length difference) at a point in 
space from any two points in the aperture [ 11. This condition 
results in the 2D2/h criterion and leads to certain 
simplifications in the radiation integral. 

These boundaries are calculated and summarized below as: 
cos(@ = sin(y,)sin(y)+ cos(y~)cos(y)cos(~) ( 5 )  

i- forD/h< I ,  

d/D < I/(D/h) 
The polar angle 0 and the distance r in the antenna 
coordinate system are the only parameters needed to obtain 

field pattern is circularly symmetric, which is an acceptable 
assumption for the purpose of this study. 

near field 
the field information at any given point, assuming that the or d/h< 1 (6) 

far field: d/h > I/(D/h) 
or d/h> 1 (7) 

An approximate field for the antenna at any observation 
point, with two parameters of distance and angle from 
boresight, is obtained using a relatively simple scalar 
formulation, which can be used for obtaining the mid-field 
and far-field with a reasonable degree of accuracy. But first 
we define the various field regions. 

ii- for l<D/h<lO, 

near field: d/D < O.S/tan(d8)=1.2 
or d/h < 1.2 (D/h) 
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mid field: 
or 

far field: 

iii- for D/h > 10, 

near field: 
or 

mid field: 
or 

far field: 
or 

1.2 < d/D < 2(D/h) 
1.2 (D/h)< d/h < 2(D/h)’ 

d/D >2(D/h) 
or d/h > 2(D/h)’ 

(9) 
central axis. This is equivalent to a phase difference less 
than (7d8) or (U16) at a point in space from any point in 
the aperture as discussed above [I]. 

Q.5(D/h)’l3 <d/D< 2/(D/h) 
0.S(D/h)4/3 < d/h< 2(D/h)’ (12) 

d/D >2(D/h) 
d/h >2(D/h)2 

(10) Based on these assumptions the fields can be obtained in the 
following forms. These forms are based on the formulations 
given in [2] and [3], but are in a slightly different 
presentation. Figure 3 shows a 2-D view of the antenna 
aperture and the various zones for calculation. 

First the following parameters are first defined: (1  1) 

For typical reflector antennas the diameter is more than 10 
wavelengths and therefore only the condition iii is of 
interest. Graphical plots of‘ the various regions are given in 
Figure 2. Table 2 provides the mid (Fresnel) and far 
(Fraunhofer) zone limits for the DSN antennas of interest at 
various operational frequencies. 

Field calculations 

Parameter Definitions 

h, wavelength 
D, aperture diameter 
R = D/2, aperture radius 
r, distance from observation point to the origin at the center 
of aperture 
8, angle between observation direction and main axis 
d = r cos(8), normal distance to the aperture from an 
observation point 
p= r sin(8), normal distance from observation point to the 
main axis 
Rn = R/d(hd/lc), normalized R 
pn = p/d(Wz), normalized p 
Eo = constant (or average) electric field on the aperture 
E(r, e)  = electric field at the Observation point 
G = (4d) (E(r, 8)’) / (IKR’E;) = 4 (r/R)’ (E@, e)/EO)’ , 

GO = (scD/h)’ , maximum peak directivity 
Sinc[xl = sin[x1/x9 the SinC Or Sampling function 
An [XI‘ (n!) Jn 1x1 1 (d2)” 3 Lambda function or normalized 
Bessel function 

The following assumptions are made in obtaining the fields. 

1 - The pattern is circularly symmetric definition of directivity 

2- A scalar formulation for the field is used. The actual 
field is of a vectorial nature, but for simplicity of 
caIcuIations.we use a scalar formulation. 

3- The field on the aperture is assumed to be uniform in 
amplitude. This is approximately valid, since the 
reflector system is shaped to produce a uniform phase 
and a fairly uniform amplitude distribution on the 
aperture with drop-off at the edges to reduce diffraction. 
Assuming uniformity to the edge actually gives a more 
pessimistic result for the sidelobes, which is acceptable 
here. 

4- The field on the aperture is assumed to be uniform in 
phase. The reflector is designed to produce uniform 
phase on the aperture. However, the surface errors, mis- 
alignments, gravity and wind pressure effects will 
distort this uniform phase front. For the purpose of this 
study we ignore these effects. Although, they can be 
included at a later stage. 

Now, given the constant (or average) field distribution, Eo, 
on the aperture, the field E(r, 8) is first calculated. 
Subsequently the directivity G(r, 8) is obtained. The gain 
then would be obtained by simply multiplying the directivity 
by an efficiency factor q. However, here we use the symbol 
G to loosely describe both directivity and gain, but the 
meaning should be understood in context. Notice that with 
this definition, the gain is, in general, a fimction of both r 
and 8. Only in the far field where the E field has a I/r 
dependence, the gain becomes solely a function of polar 
angle 8. In summary, the gain functions in different regions 
defined in Figure 3 are given as follows. 

5- The Fresnel approximation is made to the exponential 
kernel in the radiation integral. Namely, the distance 
from the observation point to a point on the aperture, r, 
is approximated by a linear term of the normal distance 
to the aperture and a quadratic term of distance from the 
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1) In the vicinity of the main axis such that p <R, 

0 

sin2[Rn2 + pn2] - C(-l)" 

cos2[Rn2 

"* (2n+1)! ICD l+COS(8))2 1 1 
G(r, 8) = ( il 2COS(t)) (R"2)2 

11) In the region away from axis, p> R, 

111) In the far field region, K, <<I or d >> xR2/ h 

Notice that this last expression is a function of angle 8 only. 

IV) On the boresight axis of the antenna, 

m It D2 
R 8 dA 

G ( r )  = (-)2 sinc2(--),for p= 8= 0 

Notice that this last expression has zeros (minima) at 

It D2 It 
--= n ( y ) , n = 2 , 4 , 6  ,... 8 
8 dR 
or 

1 2D2 
d =-(-), n=2,4,6 ,... 

8n R 

and maxima at 

I tD2 It 

8 dR 2 
- n(-),n = 1,3,5 ,... 

# 8dA 8d nD2 
G(d)=(--)2(-)2 = (-)2,for d I - 

R m2 D 8a 
(20) 

As already mentioned, since the above formulas start from 
the aperture and do not include any losses prior to the 
aperture, they basically represent directivity. An efficiency 
number q must be included to account for feed spillover, 
polarization and other losses, in order to obtain the gain. 

Gain and power density relationships 

(17) A different but sometimes more useful parameter is the 
power density at each field point. Consider a transmitting 
antenna with a total transmitted power P, and an aperture 
area A=&/4 in which D is the diameter of the aperture. 
Furthermore assume that the field distribution on the 
aperture is uniform with an average value of 

P 4 4  p =I=- 
* A nD2 

The directive gain of this antenna, which is an indication of 
the angular variation of the power distribution, is defined by 

or (1 9) in which p(@ # is the angular power flux density (power per 
unit steradian) of the outgoing field. By definition, the gain 
depends only on angle and is independent of the radial 
distance. The definition of gain, however, can be extended 
to a radial-dependent 

1 2D2 d=-(-) 
8n R 

For decreasing values of d, the function has a linear 
envelope given by 

by defining 
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or finally, 
in which Pd (r, 6 0 is the power flux density per unit of area. 

where the outgoing field can still be assumed to be outgoing 
and the poynting vector is in the radial direction. For the 
very near field region, the poynting vector may not be radial 
and indeed it may not be outgoing at all, and all sorts of 
complications and polarization non-uniformities exist and 
the dependence on r is of a much higher order. However, in 
the far field distance from the antenna pd is related top  by 

This is a valid expression for the near and mid-field regions 1 
(4ar /A)' = e',', m x  1 Ls (3 1 ) <GtG,, 

in which loss is ckfined as 

L, = (4ar / A)' (32) 

This is the well-known Friis transmission formula used in 
1 standard link budget calculations. 
r Pd ('9 $9  @) = >-P(e,  @) (24) 

Namely, field dependence on the distance is of the form Z/r. 
in this the dependence drops out from the expression 
for gain and latter r-dependent expression for gain reduces 
to the former standard expression for the angular gain. 

The peak gain is given by 

Normalization of the power density andgain 

In some cases it is convenient to use a normalized form of 
the power density and gain* The Power density can be 
normalized with respect to the average power density on the 
aperture as follows. 

and conversely 
Similarly, the gain can be normalized to peak gain as 

Gn =GIG,, (34) 

(26) The normalized power density is then related to the 
normalized gain as 

A, GnG- = -- A, 4a A,G,, = -G,, A,2 (35) 
In which q, as mentioned before, is the efficiency which 
accounts for feed spillover, polarization and other losses pdn =- 

or 
prior to the aperture. 4ar2 4ar2 A2 r2a' 

Using the radial-dependent form of the gain we can write the 
power density as 

\ / r: GI(., - E I W  -- 
4ar2 4ar2 (27) Let's define a normalized radial distance from the aperture Pd ('9 $3 $1 = 

as 
in which EIRP is the egective isotropically radiated power 
given as 4rA r 

0' r, 
-- rn =-- 

E I W  = 4 G, (r ,  e,@) (28) 

(37) 

0' The received power by an aperture antenna with an effective in which = - is a characteristic radius defining the 

location of the last peak of the power density along the 
aperture and the onset of the far field region (The far field is 
actually defined as starting at 8 r, . 
Then, the normalized power density and gain are related as 

aperture of A, is then given as 4 a  

(29) P, = PdAr 

or 
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4. NUMERICAL RESULTS 

All the above formulas have been programmed into a 
MATLAB to obtain the gain and power density at any (r, e) 
observation point. A few sample figures using the program 
are given below. 

Figure 4 shows the variation of gain along the main axis 
(boresight direction) of the antenna. Figure 5 presents a 
similar plot for the normalized power density. The positions 
of the minima (zeros) and maxima are clearly observed in 
both figures. As can be seen, starting from near the aperture 
the field is highly oscillatory going through a set of minima 
(zeros) and maxima with a simple linear envelope for the 
gain (in dB) and a constant envelope for the power density. 
In approaching the far field region the gain reaches a 
constant value while power density has a linear envelope. 

Figure 6 shows the gain on various spheres away from the 
aperture center as a function of tan(B)/(O.5D/h) which is an 
indication of the angle off boresight normalized to 
approximately half the 3-dH beamwidth. 

Figure 7 shows the gain and power density on various planes 
with fixed distances from aperture center, as a function of 
distance from the center axis. Figure 8 presents a similar 
plot for the power density. Notice that on the planes near the 
aperture, the field becomes nearly constant with minor 
oscillations in the aperture region and falls to half power (6 
dB) at the edge. Figure 9 provides a 3-D plot of the 
normalized power density, pn, versus the normalized 
distance from the boresight axis, x = p / R = 2 d tan@) / D, 
and the normalized distance from the aperture n = 4 d hflD2 , 
as coordinates. Figures 10 and 11 show color contour plots 
of the normalized power density with the same coordinates. 

5. SUMMARY AND CONCLUSIONS 

In this study we have formulated the RFI problem and 
presented formulas for approximately characterizing the 
fields of the DSN reflector antennas in the far (Fraunhofer) 
and mid (Fresnel) zones. More work is neededP Droduce 
simple closed-form theoretical pattern models for the middle 
as well a x n e a r  field regions. These consider the effects 
of surface tolerance and other irregularities of the antennas, 
and shall be addressed in a hture paper. 
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Figure 1. Geometry of the RFI problem 

Boundges of far (Fraunhofer), mid (Fresnel), and near field regions for circular aperture antennas 
10 

io-’ 
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Figure 2. Definitions of near, mid, and far zone for the fields of an antenna (vs distance/wavelength) 
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D=2R 

I 
Region I11 

Figure 3. Geometry for defining various computation regions 
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Normalized gain along the boresight axis of the circular aperture antenna 

Figure 4. Normalized gain along the center axis of the aperture antenna 

Normalized power density along the boresight a i s  of the circular aperture antenna 

Figure 5. Normalized power density along the center axis of the aperture antenna 
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Normalized gain vs angle on spheres with radius, d = n D2/(4 k) 
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Figure 6. Normalized gain on a sphere of radius d from the aperture, as h c t i o n  of normalized angle from the boresight 

Normalized gain on planes with distance from aperture, d = n D2/(4 X) 
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Figure 7. Nornialized gain on a plane with distance d from aperture, as h c t i o n  of distance from axis 
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Normalined power density on planes with distance from aperture, d = n D2/(4 h) 

Figure 8. Normalized power density on a plane with a distance d from aperture, as function of distance from axis 

Normalized power density 3-D plot 
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Figure 9. A 3-D plot of normalized power density (dB) of an aperture antenna 
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Normalized Dower densihr. color contour Dlot 
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Figure 10. Color contour plot of normalized power density (dB) of an aperture antenna 
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Figure 11. Color contour plot of normalized power density (a) of an aperture antenna (expanded scale) 
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