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Abstract"-Based on a combined 40 years of experience 
developing mission operations systems at JPL, the authors 
have concluded that special attention to "operability" via 
integrated flight-ground development, can significantly 
reduce lifecycle cost and mission risk. 

In the past, flight and ground systems have been developed 
largely-independently, with the flight system taking the lead, 
and dominating the development process. Operability issues 
have been addressed poorly in planning, requirements, 
design, I&T and system-contracting activities. In many 
cases, as documented in lessons-learned, this has resulted in 
significant avoidable increases in cost and risk. 

With complex missions and systems, operability is being 
recognized as an important end-to-end design issue. Never- 
the-less, lessons-learned and operability concepts remain, in 
many cases, poorly understood and sporadically applied. 

A key to effective application of operability concepts is 
adopting a "Mission System" paradigm. In this paradigm, 
flight and ground systems are treated, from an engineering 
and management perspective, as inter-related elements of a 
larger mission system. The mission system consists of flight 
hardware, flight software, telecom services, ground data 
system, testbeds, flight teams, science teams, flight 
operations processes, procedures and facilities. The system 
is designed in hctional layers, which span flight and 
ground. It is designed in response to project-level 
requirements, mission design and an operations concept, and 
is developed incrementally, with early and frequent 
integration of flight and ground components. 

Processes and tools used successfidly at JPL include: 
* Operations Concepts and Design Reference Missions, . Mission System Implementation (and V&V) Plans, 
= End-to-end data management and accountability, 
= Integrated Flight-Ground schedules & deliveries 
9 Integrated, controlled dictionaries and databases, 
9 Hierarchical Flight-Ground interface requirements, 
= Flight Ops - Science Ops interface requirements, 

Operations-development testbeds, 
9 "Test as you fly I fly as you test", 
= Objective-oriented test planning, 
* Multi-mission standards, tools and services. 
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1. INTRODUCTION 

JPL specializes in robotic space missions. Since 1971 over 
25 missions have been executed or are in operations. 
Mission developments often overlap, with multiple missions 
concurrently in various stages of formulation, system 
development and operations. 14 JPL missions are currently 
in the development phase and 18 are in operations. 

During the past 10 years JPL has executed an unusually 
large number of diverse missions and via lessons-learned, 
identified a number of techniques for reducing cost and risk, 
which fit into the general category of "operability 
development". 

Operability is an attribute of a flight-ground system which 
makes the system easier (and therefore less costly and risky) 
to develop and operate, via special attention to operations 
considerations during integrated flight-ground development. 

Operability is very important for JPL missions, which often 
involve communications over long distances with large 
light-time delays, multi-spacecraft and multi-project data 
relay, significant planned communications outages, long- 
duration complex navigation, aerobraking, precision entry- 
descent-and landing, complex robotic surface operations, 
flight-system autonomy, and special issues with fault- 
protection and recovery. 

The concepts of flight-ground operability and integrated 
flight-ground development began to take hold at JPL with 
the Mars PathFinder (MPF) and Mars Global Surveyor 
(MGS) developments in the mid 1990's. MPF and MGS 
were the first missions to embrace the concept of "Test as 
you Fly, Fly as you test", now a JPL Design Principle[']. One 
of the keys to satisfying this principle, was the integration of 
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flight and ground components into high-fidelity testbeds, 
and heavy/early use of testbeds for ground system 
development, and flight-ground softwarehystem testing, as 
well as for flight system development. 

A previous mission, Mars Observer (MO) did not embrace 
this approach. MO had a "spacecraft checkout station", used 
almost exclusively for flight system development, with no 
integration of ground system components. By contrast, MGS 
had no ''spacecraft checkout station", but instead, an 
integrated high-fidelity flight-ground testbed. Flight system 
developers had no means of generating commands, 
processing telemetry, and interfacing with the high-fidelity 
testbed, except via use of ground system components. MGS 
managers (JPL and contractors) took a lot of heat, for 
proposing this approach, since it made flight system 
development critically-dependent on ground system 
development. It was viewed as risky, and was closely 
watched. In retrospect this approach has paid off in spades. 
MGS, launched in 1996, is still orbiting mars and producing 
excellent science (see http://mars.jpl.nasa.gov/mgs/). The 
integrated flight-ground testbed is still performing a key role 
in keeping MGS healthy and happy. JPL missions are now 
required to use this approach. 

Integrated high-fidelity flight-ground testbeds are one 
example of a successful technique for reducing cost and risk, 
via special attention to operations and operability. The 
authors have compiled a number of recommendations, which 
are the subject of this paper. They are a bit of a hodge- 
podge, based on our combined experiences at JPL. 
However, they all fall under the category of "Operability". 

One of the motivations for writing this paper is that, 
although the recommendations may seem like motherhood to 
some, they are still sporadically and sometimes ineffectively 
applied, at JPL and within the aerospace industry. 
Contributing to this, somewhat understandably, are: 

. Increased contracting and subcontracting of operations, 
Heavy reliance on inheritance for cost reduction, 
The persistent view that operations is separate from 
flight system development, and that operations activities 
take place after launch. 

A key to being successful at operability development, is the 
"Mission System Paradigm". 

2. THE MISSION SYSTEM PARADIGM 

First, the "Flight System paradigm". As its name implies, 
this paradigm considers pre-launch development to be 
primarily a flight-system development activity. This seems 
appropriate (to the un-enlightened), since flight systems are 
extremely complex, varied and difficult to develop, integrate 
and test. 

With the Flight System paradigm, is important to determine, 
first of all: 
. What are the components, 
. 
Joe refers to this as a "hardware-centric" view. 

Practices often associated with the flight system paradigm 
include: 

Where do they reside (flight or ground subsystems). 

Flight system is designed to provide basic capabilities 
needed to support the mission. 
Ground system design responds to flight system design, 
Performance (by default) outweighs operability, 
maintainability and applicability to future missions, 
Late identification of flight-ground issues, 
High inheritance of flight and ground software assumed, 
Special purpose, stand-alone testbeds for flight system 
development, 
Assembly, test and launch operations (ATLO) is a flight 
system activity, with ground system involvement as 
needed, 
Flight-ground "compatibility" is validated during a few 
key tests prior to launch, 
Flight software provides low-level interfaces to basic 
spacecraft functions. Ground system develops higher- 
level operations interfaces. 
Many operations "kinks" are worked out post-launch. 

By contrast, in the mission system paradigm, flight and 
ground systems are treated, from an engineering and 
management perspective, as inter-related elements of a 
larger mission system. The mission system consists of flight 
hardware, flight software, telecom services, ground data 
system, testbeds, flight teams, science teams, flight 
operations processes, procedures and facilities. 

The mission system can be viewed as performing a set of 
somewhat-hierarchical flight-ground functions, as illustrated 
below. 

Mission System Functional Components 

Ground System Flight Systems 
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Joe refers to this as a "software-sawy" view. Within each 
functional layer, sub-functions can be allocated to flight 
system, ground system or operations teams. Once integrated, 
tested, and validated, the mission system is used to execute 
the mission plan. 

The mission system paradigm encourages project 
management and system engineering, to address operability, 
and the inter-relationships between flight and ground system 
design and development activities, early and systematically. 
In addition to producing more ''operable'' systems, it avoids 
confusion, late in the development cycle, regarding end-to- 
end integration and test objectives and responsibilities. 
Practices associated with the mission system paradigm 
include: 

Mission System design responds to project 
requirements, mission design and Ops Concept, 
Early operability design trades, 
Software inheritance is not automatically given priority 
over operability, 
Flight-Ground Testbeds, 
Incremental development with early and frequent 
integration of flight and ground components. 
Mission System Integration & Test is mission system 
activity which includes flight-ground I&T, operability 
validation, and operations transitions, 
Flight software provides interfaces to higher-level 
operations functions. Ground system develops highest- 
level operations interfaces. 
Fewer operations "kinks" are worked out post-launch. 

The remainder of this paper discusses some specific 
practices, which have proved effective in enhancing 
operability, and reducing lifecycle costs. 2. 

3. RECOMMENDED PRACTICES 

This section includes specific recommendations, regarding 
operability development within the mission system 
paradigm. 

3.1 Project Planning 

1. Project (Mission System) Implementation Plan 
During formulation phase, produce a project 
implementation plan (PIP) which recognizes the mission 
system, and defines associated activities, objectives, 
responsibilities and inter-relationships. 

L A m Y t r s .  
madw L 3  L.2 L-4 

Project 

Mission System 

Flight System 

Ground System 

Ms 

Clearly define - 
. Activities (objectives, responsibilities, relationships) 
. Testbeds and simulators (purpose and utilization) 
. High-level activity schedule 
Rationale: Establishes the mission system concept early 
in the lifecycle. Avoids much confusion early in the 
development process, and real problems later, with 
respect to activity objectives, who does what, who needs 
what from whom and why, etc . Defines activities in 
terms of meeting hierarchical objectives, with mission 
success at the highest level. 
Relevant Experience: On a recent project, during the 
formulation phase, a toollactivity named "X-sim" was 
planned, but not well-dejned. Some elements of the 
project had developed plans to deliver things to X-sim, 
showed critical dependencies on X-sim, and were using 
X-sim to justify early staffing. The deputy project 
manager thought that X-sim would execute flight 
software, and eliminate the need for some development 
testbeds. 
As it turned out, X-sim was basically a mathematical 
model, to help validate the science mission concept, by 
demonstrating that, given the mission data output, the 
primary science product could be produced. Many of the 
assumed functions and inter-dependencies did not exist. 
The confusion was due, in part, to differences in 
terminology, background and focus, between the flight- 
system, ground-system and science communities. Much 
confusion could have been avoided by clearly defining 
and documenting X-sim as a mathematical model to help 
in validating the science mission concept. 

Project Verification & Validation Plan 
During formulation phase, generate, iterate, and widely 
distribute, a project-level V&V plan. The plan should 
address verification (testing to requirements) and 
validation (testing to intent) activities associated with 
flight and ground subsystems, systems, concepts, plans 
and products. It should clearly define the objectives, 
responsibilities and timeframe for each test activity (and 
associated major test tools), define the inter-relationships 
between activities, serve as a roadmap to producing a 
fblly-tested and validated mission system and mission 
plan, and demonstrating readiness for successful 
execution of key operational activities and phases. 

The plan should include test and simulation activities and 
tools associated with the following broad objectives: 
. Science or mission concept validation 
. Flight subsystem verification 
. Ground subsystem verification 
. End-to-end [flight-ground data system] verification 
. Flight and ground system verification 
. Mission System verification 
. MissiodScience activity plan validation 
. Command sequence validation 
. Operational readiness validation 
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3. 

One of the keys to a good project V&V plan, and 
successful testing in general, is to focus on "ownership 
of test objectives" as opposed to ''Ownership of tests (or 
test activities)". Both tests and objectives need 
ownership. However, sets of related test objectives (e.g 
Mission System Verification objectives), can be met 
(eventually), via specific parts of a variety of actual 
tests, which are planned from a practical point-of-view. 
It's important, up front, that the test objectives have clear 
ownership, and that the collective set of objectives, meet 
the V&V objectives of the project. The importance of 
this approach, is demonstrated below under relevant 
experience. 
Rationale: Clear up-front definition of test objectives, in 
terms of ownership, inter-relationshiplroadmap, and 
mapping to test activities, is important in reducing 
development costs (avoiding duplicatiodoverlap, making 
best-use of limited resources, etc) and reducing risk 
(insuring that the test program accomplishes its 
objectives). 

Relevant Experience: On a recent project, test 
objectives and ownership were not well-defined. Most 
system-level testing focused on ATLO (Assembly, Test 
and Launch Ops), which was viewed as a "flight System'' 
I&T activity. The ATLO test plan called for a few 
"fimctional" and "compatibility" tests. Late in pre-launch 
development, it became clear that everyone-and-his- 
brother were relying on these tests, to accomplish their 
broad objectives, without having negotiated the specifics, 
nor taking final responsibility for the objective (whether- 
or-not is was accomplished by the assumed ATLO test 
activity). 

The ATLO test activities were not sufficient to 
accomplish all the objectives and, had significant 
additional resources and schedule not been added late in 
the game, the mission system would not have been ready 
for launch and flight operations. Generation, iteration 
and wide distribution of a good project V&V plan, with 
attention to ownership of objectives, and preliminary 
mapping to test activities, during formulation phase, 
could have prevented this problem. 

Integrated (Flight-Ground) Schedules 
Integrate flight system and ground system development 
schedules, from the start (formulation phase). Focus on 
delivery of integrated flight-ground "Mission 
System" capabilities needed for key development and 
flight operations activities. Maintain the integrated 
schedule, at a manageable level, throughout the 
development phase. 

This is easier said than done, but well worth the effort. In 
addition to the schedule itself, some practical 
recommendations: 
. Don't include too much information, 

Include: 
Major project phases and activities 
Mission system capability deliveries 
Integrated testbeds 
Flight software 
Ground software 
Integrated dictionaries and databases 
For each milestone or activity: 
Activitylevent-name, date(s), owner, content 

In other words, include just enough mformation to 
show the key drivers to the integrated capabilities, 
and the key component dependencies, ownership and 
mission capability integration. 

- Activities which do not drive capability deliveries 
- Lower-level component deliveries 

. Choose a simple tool (Fred likes Excel), 

. Don't try to electronically-integrate everythmg 
- Allow lower-level, more detailed schedules 
- Require consistency, not electronic integration 

Exclude: 

. Start early and adapt the tool and process. 
Rationale: Integrated mission-system capability 
schedules (of this sort) reinforce and facilitate the 
mission system concept, get everyone on the same page, 
establish ownership and buy-in by key participants. 

Relevant Experience: Project Prometheus, with an 
unusually-high number of industrial, academic and 
government partners, developed an integrated capability- 
driven schedule during formulation phase. All 
organizations actively participated. 

The schedule was critical in establishing the concept of 
integrated (incremental) flight-ground capability 
development. During the review, the schedule was 
repeatedly referenced by representatives of various 
participating organizations. At the formulation-to- 
implementation-phase transition review, a major finding 
of the review board was: "The Project is to be 
commended for successful integration of many 
institutions and organizations into one seamless 
organization.". 

3.2 Mission System Design 

1. Ops Concept and Design Reference Mission 

Develop and iterate a good Operations Concept during 
formulation phase. Recognize the functional flight- 
ground layers of the mission system. Address preliminary 
subdivision of functional responsibility, between flight 
and ground. Validate the overall "operability" of the 
flight-ground system, and it's ability to execute the 
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mission (and to produce the primary products), via 
application of the OpsCon to a Design Reference 
Mission (DRM). Note: the OpsCon is not a product of 
ground system engineering, and is not intended to 
describe how the ground system works. It is a product of 
project system engineering, and brings together 
operability aspects of both flight and ground components 
of the mission system. The OpsCon will drive, and 
provide critical context for, the requirements & design of 
the mission system. The DRM can be an addendum to 
the OpsCon, or a separate document. 

Rationale: A validated OpsCon keeps everyone on the 
same page, at a high-level and provides a critical context 
for subsequent requirementddesign activities. It is well 
worth the effort to develop early and maintain. 
Relevant Experience: PL’s Space Interferometry 
Mission, which has very complex operations scenarios, 
and multiple industrial partners, developed a good 
OpsCon and DRM early in formulation phase. This was 
instrumental in providing a foundation for subsequent 
activities, and facilitating communications between 
organizations. 
JPL projects are required to develop an OpsCon. 
However, in the past, some have reverted to the flight- 
system paradigm, and have used the OpsCon to describe, 
generically, “how the ground system works”. Fred refers 
to this as “The commands go up, the telemetry comes 
down, and the wheels on the bus go round-and-round.” 

2. End-to-End Information System (EEIS) - Standards 

Avoid unnecessary invention of mission-specific data 
system solutions, especially in the area of end-to-end 
information system design. Deviate from existing data 
communications standards only when mission 
requirements can be met in no other way. The default 
condition should be a standards-compliant design, with 
exceptions granted after carel l  trade studies. This may 
sound obvious, but is not easy to enforce. Even within 
the mission system paradigm the unification of flight and 
ground often is done with a strong bias toward highly 
(over) optimized data protocols, at the insistence of 
efficiency-minded flight software designers. 

There are many layers to a well-designed data 
communications protocol suite. As part of the mission 
system design one must choose the point at which the 
break between the standard layers and the non-standard 
layers will be made. Choosing that breakpoint should be 
done with consideration of many factors, including (but 
not limited to) bandwidth efficiency. The apparent 
inefficiency of a few “extra” bytes may be offset in the 
long run by simplifications in testing, operations, and 
troubleshooting. See the big picture and avoid premature 
optimizations that are too narrowly focused on bit-level 
details at the expense of operability. 

3. 

Rationale: Adherence to a standard data communication 
protocol stack is a critical enabler for interoperability. 
The degree of interoperability is a function of the degree 
of compliance to a common standard-a standard that is 
shared among missions, among parts of a single mission, 
and between a mission and the underlying multi-mission 
infrastructure. Reinventing or redefining data formats, 
even “just a little”, is closing the door on cooperation 
(literally, there is less co-“operation”). Aligning to a 
standard specification is necessary (but not sufficient) to 
achieving interoperability, and is usually worth the effort 
even if it requires some compromise. 

Relevant Experience: Mars rover missions are 
generally bandwidth limited. Much more data can be 
acquired and stored onboard the rover than can be sent to 
earth via direct or relayed return links. Even the volume 
of commanding via a direct forward llnk can be 
bandwidth limited. Furthermore, the special 
requirements of telemetry during entry, descent, and 
landing put severe constraints on data formats and 
protocols. 

For these reasons it is typical for a Mars rover mission to 
choose to pare down the number of bytes in protocol data 
units, sometimes to the point of redefining the primary 
header of the underlying CCSDS packet. These 
specialized protocols become one-off designs, not 
inherited from one mission to the next. Operability 
suffers due to the lack of tools and to the complex 
interfaces - amplified by the multiple missions involved 
in performing data communications via relay orbiters. 

EEIS - Data Mgt, Transport and Accountability 

Match the level and degree of data accountability to the 
needs of the mission. Plan for automated data 
communication protocols combined with manual data 
validation procedures to achieve an appropriate balance 
between too little and too much overhead. At each level 
(bits, frames, packets, products) there should be enough 
ancillary information to account for missing data, and to 
map among corresponding data units at different levels. 
Remember that troubleshooting is part of operations and 
is more dependent on accountability information than is 
normal processing. Doing this well is critical to 
achieving mission system operability. 

There are many factors to consider when designing end- 
to-end data transport, data management, and data 
accountability. They include: 
. Available storage (at end points and intermediate 

nodes) 
. Available bandwidth (of each link) 
. Scheduling of resources (nodes and links) 
. Nature of bottlenecks (bursty vs. continuous, CPU vs. 

UO, storage-limited vs. bandwidth-limited) 
. Criticality of data (each bit is precious vs. lots of data 

redundancy) 
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Environmental influences (light-time, solar 
interference, weather, terrain map for rovers) 
Comm network topology (direct vs. relay, multi- 
agency support) 
User expectations (end users insist on making data 
quality decisions vs. don’t want to be bothered) 
Non-technical factors (politics, comfort-levels, etc.) 

Balancing all these factors can be difficult, but a few 
guiding principles are helpfhl in finding a solution that 
enhances operability. One principle is to invent less, 
reuse more. This not only keeps development costs 
down, but also leverages off operations familiarity with 
existing tools and procedures. Another principle is to 
push toward more, not less, data accountability. This 
means more data-about-data, to capture the state of data 
processing, storage, and transport (see Rationale for a 
parable about this). One more principle is to keep the 
customer happy. This means keeping them in the 
decision loop about data quality (retransmissions etc.), 
but only if they what to be in the loop. It also means 
don’t surprise them - the consumers of your data should 
not be the first to discover problems. 
Rationale: Over the years “data accountability” has 
undergone continuous evolution - well, more like 
punctuated equilibrium - due to random selection (not 
intelligent design!). 

In the beginning accountability was formless and empty; 
data flowed in darkness. Then there was light when a 
few began to account for data, and saw it was good. At 
first this data accountability was strictly a manual 
process done by specialists (prophets alone in the 
wilderness). Then they banded together into teams -- 
Data Management Teams -- who eventually built tools to 
automate some of their tasks. Soon more software was 
written, sometimes even flight software working in a 
coordinated way with ground software, to enhance what 
was known about the data. Even payload instruments 
joined in by turning around request IDS to track data 
throughout the whole round trip. 

The trend continues with current ground system 
architectures unified around a message bus that offers 
enhanced accountability features. The curious thing is 
that at every step along this progression it seemed at the 
time that accountability had reached an adequate level; it 
was good enough. Yet it was only good enough until the 
next step was taken, and suddenly what had preceded 
became unacceptable. The benefit of adding another 
increment of data accountability almost always 
outweighs the cost, and is a sure win for operability. 
Moral: sometimes “good enough” is the enemy of 
“better”. 

Relevant Experience: Chasing data is a time-honored 
tradition for JPL missions. We have seen it all: data 
outages with no apparent reason and no way to trace 
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back to the cause, data retransmitted from the spacecraft 
to fill gaps that could be filled from caches already on 
the ground, data products built by hand-crafting metadata 
or hand-editing errors, labor-intensive pre-planning and 
post-analysis of data paths via multiple relay orbiters, 
etc. Many lessons have been learned the hard way. 

The Spitzer Space Telescope mission is one success 
story in which accountability was designed in from the 
beginning. To ensure proper end-to-end accountability 
each data handoff includes a request identifier that 
unambiguously identifies the data as belonging to a 
specific product. The request ID originates when the 
request for data originates, even before the request has 
been approved for execution. The ID is a parameter 
within the data-taking command that is sent to the 
spacecraft and eventually to the science instrument. The 
ID is returned from the instrument with the data, and is 
included in each data packet that is returned to the 
ground. Finally, the data product reconstructed on the 
ground is labeled with the ID, and the product is matched 
to the original request, completing the round-trip cycle. 
Careful design of the data interfaces throughout the 
round-trip path has enabled full automation of the entire 
data processing pipeline. 

EEIS - Commanding & Sequencing 

Recognize the distinction between operations-centric 
commanding and sequencing versus data-centric 
telemetry processing; while merging the two views into 
one unified mission system. Treat sequence development 
as a process in which people are fundamentally 
important; tools facilitate this process without 
supplanting the people doing the development. Design 
the tools to work in a seamless integrated manner, 
minimizing the number of different user interfaces. Keep 
people in the loop for the creative functions, especially 
complex decision making; keep people out of doing 
repetitive or mundane tasks. 

Rationale: The Mission System paradigm not only 
melds flight and ground, but also unifies two distinct 
ways of seeing the ground system. Depending on what 
culture you grew up in, you either think of the Ground 
Data System (GDS) as 
a) The set of tools used by operations to control the 

b) The collection of data processing pipelines delivering 

The “GDS as Ops Tools” mindset historically comes 
from an uplink-centric culture, focused on using those 
tools to do planning and sequencing. It treats people as 
integral to the process of defining the behavior of the 
spacecraft, with no strong need for substituting autonomy 
for people-in-the-loop. This is because sequence 
development is akin to software development. Just as an 
integrated software development environment enables 

spacecraft, or 

products to users. 
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code production, an integrated sequence development 
environment greatly facilitates the generation of correct 
uplink products. 

The "GDS as Data Pipelines" mindset historically comes 
from a downlink-centric culture, focused on telemetry 
and data analysis. It treats people as extraneous to the 
process of moving products through successive levels of 
data reduction. People tend to slow down this process 
unnecessarily, so "lights out'' is the preferred mode of 
operations. People, as users of the data products, are 
outside the system. 

Recognizing these distinctions, and bridging the gap 
between them, is key to the mission system paradigm - 
leading to improved operability. 

Relevant Experience: Mars rover missions have 
brought a new dimension to planning and sequencing. 
The in-situ nature of these missions has shortened the 
timescale from downlinking data from one execution 
cycle to uplinking the sequence for the next cycle. 
Typically, this must be done within one eight-hour work 
shift. Efficient workflow in both the telemetry and 
sequencing areas is needed to accomplish this quick 
turnaround. Tighter integration between the two areas 
makes this possible. Even more important are the data 
and operations interfaces within the planning and 
sequencing elements. For the next rover mission, Mars 
Science Laboratory, the unification of all these tools 
under one user interface is accomplished within Eclipse's 
Rich Client Platform environment. 

5. Flight - Ground Interface Requirements 
During formulation phase, develop a layered set of 
flight-ground interface requirements. Include 4 layers: 
. Telecom & Physical, 

(RF, physicaYvirtua1 channels, protocols, test i/f s) 
. Basic Command & Telemetry 

(low level command, telemetry hctionality) 
. Service, 

(data mgt & transport, sequencing, fault management) 
. Application. 

(Science & engineering applications) 
An interface requirements document (IRD) is not the 
same as an interface control document (ICD), which 
documents the final design details and operating 
characteristics of the interface. 

Rationale: Early development and iteration of an IRD 
forces early flight-ground design trades, within a mission 
system context. It recognizes that there are critical layers 
of hctionality. It enables different parties to focus on 
the layers-of-interest. 
Relevant Experience: JPL's Space Interferometry 
Mission (SIM) developed a layered Flight-Ground IRD 
early in formulation phase. Many early flight-ground 
trades were conducted (e.g. flight vs ground processing 
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of interferometer data vs data management & transport 
capacity vs science data processing flexibility). In 
addition, the flight-ground IRD facilitated a convenient 
science perspective, in which the bottom 3 % flight- 
ground layers, provided a flight-engineering service, and 
a stable platform for science & instrument operations. 
Working these trades, from various perspectives, was 
essential to SIM's successful transition from formulation 
phase to implementation phase. 

Ground System Architecture 

Use a layered approach to the architecture of the Ground 
System, with each layer having well-defined technical 
and organizational boundaries. Specify interfaces 
carefully, especially those between the mission parts and 
the multi-mission service providers. Match the ground 
system layers to their mirror-image counterparts in the 
flight system. Do not overlook the layering within the 
mission-specific part of the ground system, separating 
data infrastructure services from user-specific tools. Be 
prepared to compromise to fit within the larger "system 
of systems" that is the Interplanetary Network. 

Layered Ground System Architecture 
(and Flight System Counterparts) 

' I  Operations Services 
Activity Planning & Integration. Project Data Management I '  (C&DH SW, Sequencing Engine, Onboard Data Management) 

Project 
Services 

Hardware Nets OS WebGDS 

(s/C Bus Cmpbters WS) 

Infrastructure 

[ T e k m .  Dara TraranspOIl) 

Rationale: Ground Systems are typically built from an 
eclectic collection of tools and services. Some are new, 
some are adapted from pre-existing versions, and some 
are reused as is. Tools range from large-scale software 
systems on the high end to ad hoc single-user utilities on 
the low end. Services could be provided by large multi- 
national, multi-hnctional institutions (e.g. the DSN), or 
by small, specialized teams within the mission's 
operations organization (e.g. a Data Operations Team). 
Parts of the overall system may undergo modifications at 
different times, for reasons not directly related to any one 
mission. 

The best way to keep everyone and everything in 
harmony is to have an architecture that respects 
territorial boundaries. Good fences make good 
neighbors. That way every hand-off is clean throughout 
the entire work-flow process: long-range strategic 



planning to tactical activity planning to command 
sequencing to uplink radiation to downlink data 
acquisition to data product generation to analysis and 
back to planning. 

Achieving a single unified architecture across disparate 
missions is not easy. It becomes impossible without some 
degree of compromise. Striving for “correctness” is 
usually not practical; settling for “consistency” is often 
the pragmatic answer. Of course, as R. W. Emerson 
cautions, consistency should be done without being 
“foolish”. 

Relevant Experience: Consider a mission that relies on 
other missions to provide services, such as when a rover 
mission depends on relay orbiter missions for 
telecommunications. Each individual mission has its own 
parochial interests, yet they must all fiid ways to 
cooperate. Inter-mission MOUs are needed in such cases, 
in addition to the usual intra-mission OIAs and SISs. 
Operations Planning is done jointly in the manner of a 
“cooperative”. Everyone knowing their role is key to 
smooth operation of this process. 

Data communications in both the uplink and downlink 
directions is via multiple hand-offs, among systems built 
at different times with different architectures. Operability 
depends greatly on how efliciently the data and 
operations interfaces function in practice, and how 
invariant the interfaces are. Layering has been a valuable 
technique for finding optimum points of interaction 
among ground system elements. Inevitably the layers in 
the ground system align with flight system layers, due to 
the peer-to-peer nature of most data communications 
throughout the mission system. 

1. 

7. System Contracting 
When system-contracting spacecraft operations along 
with spacecraft development (a good idea), be sure to 
clearly specify, in the RFP and contract, what is meant 
by “spacecraft operations”. Include an ‘Operability” sub- 
section in the spacecrafi flight-sofware section. Address 
data management, data transport, sequencing, data 
standards, layered software architecture, mission system 
paradigm, etc. Be wary of assuming too much contractor- 
inheritance in these areas. 

Rationale: Many ‘hew to deep-space ops” potential 
bidders and contractors have a flight-system, hardware- 
centric view of space missions, and do not fully- 
appreciate the scope and complexities of deep-space 
operations. 

Relevant Experience: Serveral JPL missions have had 
problems with system contractors understanding the 
scope of deep-space operations and the importance of 
flight system operability, data standards and modern 
architectures. This has resulted in late-development cost 
increase and, in some cases, significant late re- 
negotiation of contracts. 

2. 

3.3 Mission System Development 

Integrated Deliveries, Dictionaries and Databases 
Require that flight and ground subsystems deliver to a 
schedule of ”integrated mission system capability 
deliveries”, which result in integration, deployment and 
use of a resultant version of the mission system, in 
support of various development and operations activities. 

In addition to the integrated schedule, maintain a 
mission system delivery plan, specifying the functional 
and physical content of each delivery. Include integrated 
dictionaries and parameters with each delivery. Store 
parameters and dictionaries electronically, in a central 
place and, per the mission system paradigm, integrate the 
flight and ground systems by using the same command 
and telemetry definitions in both flight and ground 
software, during development and operations. 
Institute a moderate level of configuration management 
and control, with the initial integrated delivery. Be pro- 
active in including all functional components, in early 
deliveries, even though they may provide very limited 
functionality. 

Rationale: This approach stresses the mission system 
concept and forces developers to work towards flight- 
ground fimctional (and operational) capability sets. 
Instituting the process early and including all functional 
components as early as possible, establishes best 
practices early-on (as opposed to later, when establishing 
best-practices seems secondary to solving more 
immediate problems). The practices, themselves, benefit 
from a lower-pressure evolutionary period, but are well 
worth the effort. 
Relevant Experience: Mars Global Surveyor adopted 
the concept of integrated capability deliveries, 
maintained integrated schedules and a delivery plan, and 
deployed controlled, end-to-end capabilities to testbeds 
early in the implementation phase. Flight and ground 
systems were delivered per projected cost and schedule. 
A highly-successful mission continues. 

Integrated Testbeds and Testing 
Integrate flight and ground components early and often 
via testbeds, with special attention to making the testbed 
operations interface, as flight-like as possible, as early as 
possible. Use integrated testbeds for: 
. Flight Software Development, 
. Ground Software Development, 
. Block (command-macro) and Sequence Development, 
. Flight System Integration & Test, 
. Mission System Integration, Test and Training, 
. In-flight Uplink Validation, 
. In-flight Anomaly Investigation. 
Conservatively ensure that testbed resources are 
adequate to fulfill all these needs (assuming some 
problems late in the development phase). 
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Rationale: Adequate testbed resources and integrated 
flight-ground testbeds avoid significant late-development 
problems and are essential for in-flight risk-reduction 
and fault diagnosis and recovery. 
Relevant Experience: Section 1, above, contains a good 
example of penalties paid, late in development, due to 
inadequate testbed resources. 
The following diagram depicts a typical JPL testbed 
configuration. The TTACS (Test, Telemetry and 
Command), and CDIF (Command & Data Interface) 
replace some of the low-level telecom services layers, in 
a test environment. 

4. EFFECTIVE APPLICATION OF RESOURCES 

"Adopting a Mission System paradigm", is not the same as 
"bringing lots of operations people on early". One of the 
claimed benefits of the mission system paradigm is 
development and operations cost reduction. 

This section contains some recommendations, to help insure 
that resources are effectively applied. 

1. Product-Orientation & Avoiding Process Overkill 
Keep a "product" focus. The most important products are 
the mission system, mission plan and mission product. 
Give top priority to processes which you believe 
effectively contribute to the product. Adhere to others, if 
required, as best you can, without jeopardizing the most 
important products. If you believe strict adherence to 
process is preventing delivery of the product, don't be 
afraid to voice your concern. Use common sense (in 
addition to the process). 

Rationale: Processes are important. However, some 
processes and process tools are more mature than others 
and they are sometimes ineffectively (or too arduously) 
applied. Some are elegant, yet practically-difficult. 

Relevant Experience: 
MRO was one of the first projects to use a new 
requirements tool and "flowdown" process. Early in the 
design phase, the project focused too much on the tool, 
and various upward and downward linkages, and not 
enough on the requirements themselves. Using the tool in 
a consistent and effective manner required a lot of 
overhead. The tool somewhat-facilitated the naYve view 
of the requirements process as a simple 
suballocatiodflowdown, without adequately recognizing 
the interrelationship between requirements and design, at 
each level. 

Having used the tool, and established all the linkages, the 
a project subsystem declared the subsystem requirements 
"complete and ready for peer review". The peer review 
team found major gaps in the requirements, and 
significant requirements sets entirely missing. Applying a 
little common sense, and some "bottoms-up" sanity 
checks (in addition to religious adherence to the new tool 
and process) would have helped a lot. 

5. CONCLUSIONS 

Many space missions experience cost growth and increased 
risk, during latter development or early operations phases. 
These are directly or indirectly related to promulgation of 
the hardware-centric flight system paradigm. Adopting the 
mission system paradigm can help reduce cost and risk. The 
above recommendations directly address this. 

Looking to the future - Modem system architectures stress 
the importance of a layered view of mission functions, 
spanning flight and ground. In fact, an important concept is 
that sub-functions, within a functional layer, can move (or 
easily migrate) between flight and ground. These are key 
architectural concepts of JPL's "Mission Data System" 
(MDS) and "Multi-Mission Spacecraft Architectural 
Platform" (MSAP). 

In future applications, functional layers will not only span 

Fliaht Svstem A 

. . 
Fwd 
Link 

. 
i 

Rln 
Link 

Ground System A 

flight and bound, 
within a project or 
mission, but will span 
projects and 
organizations. JPL's 
Interplanetary 
Network architecture 
allows elements of the 
"data management and 
transport" layers of 
individual projects, to 
work together in 
providing multiproject 
"relay-mode" data 
transport services, 
using multiple 
spacecraft, managed 
by multiple projects, 

in conjunction with multiple ground telecom networks, 
managed by different organizations. 

Treating Data Management and Transport, as a functional 
layer spanning flight and ground systems of a project, 
facilitates expansion of the concept to multiple projects. 
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