
Achieving Operability via the Mission System Paradigm
Fred J. Hammer and Joseph R. Kahr

Jet Propulsion Lab
4800 Oak Grove Drive
Pasadena, CA 91 109

fred.j .hammer@jpl.nasa.gov, jkahr@sirtfweb.jpl.nasa.gov
310-393-7769,310-354-6880

Abstract"-Based on a combined 40 years of experience
developing mission operations systems at JPL, the authors
have concluded that special attention to "operability" via
integrated flight-ground development, can significantly
reduce lifecycle cost and mission risk.

In the past, flight and ground systems have been developed
largely-independently, with the flight system taking the lead,
and dominating the development process. Operability issues
have been addressed poorly in planning, requirements,
design, I&T and system-contracting activities. In many
cases, as documented in lessons-learned, this has resulted in
significant avoidable increases in cost and risk.

With complex missions and systems, operability is being
recognized as an important end-to-end design issue. Never-
the-less, lessons-learned and operability concepts remain, in
many cases, poorly understood and sporadically applied.

A key to effective application of operability concepts is
adopting a "Mission System" paradigm. In this paradigm,
flight and ground systems are treated, from an engineering
and management perspective, as inter-related elements of a
larger mission system. The mission system consists of flight
hardware, flight software, telecom services, ground data
system, testbeds, flight teams, science teams, flight
operations processes, procedures and facilities. The system
is designed in hctional layers, which span flight and
ground. It is designed in response to project-level
requirements, mission design and an operations concept, and
is developed incrementally, with early and frequent
integration of flight and ground components.

Processes and tools used successfidly at JPL include:
* Operations Concepts and Design Reference Missions, . Mission System Implementation (and V&V) Plans,
= End-to-end data management and accountability,
= Integrated Flight-Ground schedules & deliveries
9 Integrated, controlled dictionaries and databases,
9 Hierarchical Flight-Ground interface requirements,
= Flight Ops - Science Ops interface requirements,

Operations-development testbeds,
9 "Test as you fly I fly as you test",
= Objective-oriented test planning,
* Multi-mission standards, tools and services.

0-7803-9546-8/06/$20.000 2006 IEEE
IEEEAC paper #1483, Version 1, Updated Oct, 28 2005

TABLE OF CONTENTS

1. Introduction .. 1

3. Recommended Practices .. 3

5. Conclusions ... 9
References......... .. 10

2. The Mission System Paradigm 2

4. Effective Application of Resources 9

Biographies ... 10

1. INTRODUCTION

JPL specializes in robotic space missions. Since 1971 over
25 missions have been executed or are in operations.
Mission developments often overlap, with multiple missions
concurrently in various stages of formulation, system
development and operations. 14 JPL missions are currently
in the development phase and 18 are in operations.

During the past 10 years JPL has executed an unusually
large number of diverse missions and via lessons-learned,
identified a number of techniques for reducing cost and risk,
which fit into the general category of "operability
development".

Operability is an attribute of a flight-ground system which
makes the system easier (and therefore less costly and risky)
to develop and operate, via special attention to operations
considerations during integrated flight-ground development.

Operability is very important for JPL missions, which often
involve communications over long distances with large
light-time delays, multi-spacecraft and multi-project data
relay, significant planned communications outages, long-
duration complex navigation, aerobraking, precision entry-
descent-and landing, complex robotic surface operations,
flight-system autonomy, and special issues with fault-
protection and recovery.

The concepts of flight-ground operability and integrated
flight-ground development began to take hold at JPL with
the Mars PathFinder (MPF) and Mars Global Surveyor
(MGS) developments in the mid 1990's. MPF and MGS
were the first missions to embrace the concept of "Test as
you Fly, Fly as you test", now a JPL Design Principle[']. One
of the keys to satisfying this principle, was the integration of

1

flight and ground components into high-fidelity testbeds,
and heavy/early use of testbeds for ground system
development, and flight-ground softwarehystem testing, as
well as for flight system development.

A previous mission, Mars Observer (MO) did not embrace
this approach. MO had a "spacecraft checkout station", used
almost exclusively for flight system development, with no
integration of ground system components. By contrast, MGS
had no ''spacecraft checkout station", but instead, an
integrated high-fidelity flight-ground testbed. Flight system
developers had no means of generating commands,
processing telemetry, and interfacing with the high-fidelity
testbed, except via use of ground system components. MGS
managers (JPL and contractors) took a lot of heat, for
proposing this approach, since it made flight system
development critically-dependent on ground system
development. It was viewed as risky, and was closely
watched. In retrospect this approach has paid off in spades.
MGS, launched in 1996, is still orbiting mars and producing
excellent science (see http://mars.jpl.nasa.gov/mgs/). The
integrated flight-ground testbed is still performing a key role
in keeping MGS healthy and happy. JPL missions are now
required to use this approach.

Integrated high-fidelity flight-ground testbeds are one
example of a successful technique for reducing cost and risk,
via special attention to operations and operability. The
authors have compiled a number of recommendations, which
are the subject of this paper. They are a bit of a hodge-
podge, based on our combined experiences at JPL.
However, they all fall under the category of "Operability".

One of the motivations for writing this paper is that,
although the recommendations may seem like motherhood to
some, they are still sporadically and sometimes ineffectively
applied, at JPL and within the aerospace industry.
Contributing to this, somewhat understandably, are:

. Increased contracting and subcontracting of operations,
Heavy reliance on inheritance for cost reduction,
The persistent view that operations is separate from
flight system development, and that operations activities
take place after launch.

A key to being successful at operability development, is the
"Mission System Paradigm".

2. THE MISSION SYSTEM PARADIGM

First, the "Flight System paradigm". As its name implies,
this paradigm considers pre-launch development to be
primarily a flight-system development activity. This seems
appropriate (to the un-enlightened), since flight systems are
extremely complex, varied and difficult to develop, integrate
and test.

With the Flight System paradigm, is important to determine,
first of all:
. What are the components,
.
Joe refers to this as a "hardware-centric" view.

Practices often associated with the flight system paradigm
include:

Where do they reside (flight or ground subsystems).

Flight system is designed to provide basic capabilities
needed to support the mission.
Ground system design responds to flight system design,
Performance (by default) outweighs operability,
maintainability and applicability to future missions,
Late identification of flight-ground issues,
High inheritance of flight and ground software assumed,
Special purpose, stand-alone testbeds for flight system
development,
Assembly, test and launch operations (ATLO) is a flight
system activity, with ground system involvement as
needed,
Flight-ground "compatibility" is validated during a few
key tests prior to launch,
Flight software provides low-level interfaces to basic
spacecraft functions. Ground system develops higher-
level operations interfaces.
Many operations "kinks" are worked out post-launch.

By contrast, in the mission system paradigm, flight and
ground systems are treated, from an engineering and
management perspective, as inter-related elements of a
larger mission system. The mission system consists of flight
hardware, flight software, telecom services, ground data
system, testbeds, flight teams, science teams, flight
operations processes, procedures and facilities.

The mission system can be viewed as performing a set of
somewhat-hierarchical flight-ground functions, as illustrated
below.

Mission System Functional Components

Ground System Flight Systems

2

Joe refers to this as a "software-sawy" view. Within each
functional layer, sub-functions can be allocated to flight
system, ground system or operations teams. Once integrated,
tested, and validated, the mission system is used to execute
the mission plan.

The mission system paradigm encourages project
management and system engineering, to address operability,
and the inter-relationships between flight and ground system
design and development activities, early and systematically.
In addition to producing more ''operable'' systems, it avoids
confusion, late in the development cycle, regarding end-to-
end integration and test objectives and responsibilities.
Practices associated with the mission system paradigm
include:

Mission System design responds to project
requirements, mission design and Ops Concept,
Early operability design trades,
Software inheritance is not automatically given priority
over operability,
Flight-Ground Testbeds,
Incremental development with early and frequent
integration of flight and ground components.
Mission System Integration & Test is mission system
activity which includes flight-ground I&T, operability
validation, and operations transitions,
Flight software provides interfaces to higher-level
operations functions. Ground system develops highest-
level operations interfaces.
Fewer operations "kinks" are worked out post-launch.

The remainder of this paper discusses some specific
practices, which have proved effective in enhancing
operability, and reducing lifecycle costs. 2.

3. RECOMMENDED PRACTICES

This section includes specific recommendations, regarding
operability development within the mission system
paradigm.

3.1 Project Planning

1. Project (Mission System) Implementation Plan
During formulation phase, produce a project
implementation plan (PIP) which recognizes the mission
system, and defines associated activities, objectives,
responsibilities and inter-relationships.

L A m Y t r s .
madw L 3 L.2 L-4

Project

Mission System

Flight System

Ground System

Ms

Clearly define -
. Activities (objectives, responsibilities, relationships)
. Testbeds and simulators (purpose and utilization)
. High-level activity schedule
Rationale: Establishes the mission system concept early
in the lifecycle. Avoids much confusion early in the
development process, and real problems later, with
respect to activity objectives, who does what, who needs
what from whom and why, etc . Defines activities in
terms of meeting hierarchical objectives, with mission
success at the highest level.
Relevant Experience: On a recent project, during the
formulation phase, a toollactivity named "X-sim" was
planned, but not well-dejned. Some elements of the
project had developed plans to deliver things to X-sim,
showed critical dependencies on X-sim, and were using
X-sim to justify early staffing. The deputy project
manager thought that X-sim would execute flight
software, and eliminate the need for some development
testbeds.
As it turned out, X-sim was basically a mathematical
model, to help validate the science mission concept, by
demonstrating that, given the mission data output, the
primary science product could be produced. Many of the
assumed functions and inter-dependencies did not exist.
The confusion was due, in part, to differences in
terminology, background and focus, between the flight-
system, ground-system and science communities. Much
confusion could have been avoided by clearly defining
and documenting X-sim as a mathematical model to help
in validating the science mission concept.

Project Verification & Validation Plan
During formulation phase, generate, iterate, and widely
distribute, a project-level V&V plan. The plan should
address verification (testing to requirements) and
validation (testing to intent) activities associated with
flight and ground subsystems, systems, concepts, plans
and products. It should clearly define the objectives,
responsibilities and timeframe for each test activity (and
associated major test tools), define the inter-relationships
between activities, serve as a roadmap to producing a
fblly-tested and validated mission system and mission
plan, and demonstrating readiness for successful
execution of key operational activities and phases.

The plan should include test and simulation activities and
tools associated with the following broad objectives:
. Science or mission concept validation
. Flight subsystem verification
. Ground subsystem verification
. End-to-end [flight-ground data system] verification
. Flight and ground system verification
. Mission System verification
. MissiodScience activity plan validation
. Command sequence validation
. Operational readiness validation

3

3.

One of the keys to a good project V&V plan, and
successful testing in general, is to focus on "ownership
of test objectives" as opposed to ''Ownership of tests (or
test activities)". Both tests and objectives need
ownership. However, sets of related test objectives (e.g
Mission System Verification objectives), can be met
(eventually), via specific parts of a variety of actual
tests, which are planned from a practical point-of-view.
It's important, up front, that the test objectives have clear
ownership, and that the collective set of objectives, meet
the V&V objectives of the project. The importance of
this approach, is demonstrated below under relevant
experience.
Rationale: Clear up-front definition of test objectives, in
terms of ownership, inter-relationshiplroadmap, and
mapping to test activities, is important in reducing
development costs (avoiding duplicatiodoverlap, making
best-use of limited resources, etc) and reducing risk
(insuring that the test program accomplishes its
objectives).

Relevant Experience: On a recent project, test
objectives and ownership were not well-defined. Most
system-level testing focused on ATLO (Assembly, Test
and Launch Ops), which was viewed as a "flight System''
I&T activity. The ATLO test plan called for a few
"fimctional" and "compatibility" tests. Late in pre-launch
development, it became clear that everyone-and-his-
brother were relying on these tests, to accomplish their
broad objectives, without having negotiated the specifics,
nor taking final responsibility for the objective (whether-
or-not is was accomplished by the assumed ATLO test
activity).

The ATLO test activities were not sufficient to
accomplish all the objectives and, had significant
additional resources and schedule not been added late in
the game, the mission system would not have been ready
for launch and flight operations. Generation, iteration
and wide distribution of a good project V&V plan, with
attention to ownership of objectives, and preliminary
mapping to test activities, during formulation phase,
could have prevented this problem.

Integrated (Flight-Ground) Schedules
Integrate flight system and ground system development
schedules, from the start (formulation phase). Focus on
delivery of integrated flight-ground "Mission
System" capabilities needed for key development and
flight operations activities. Maintain the integrated
schedule, at a manageable level, throughout the
development phase.

This is easier said than done, but well worth the effort. In
addition to the schedule itself, some practical
recommendations:
. Don't include too much information,

Include:
Major project phases and activities
Mission system capability deliveries
Integrated testbeds
Flight software
Ground software
Integrated dictionaries and databases
For each milestone or activity:
Activitylevent-name, date(s), owner, content

In other words, include just enough mformation to
show the key drivers to the integrated capabilities,
and the key component dependencies, ownership and
mission capability integration.

- Activities which do not drive capability deliveries
- Lower-level component deliveries

. Choose a simple tool (Fred likes Excel),

. Don't try to electronically-integrate everythmg
- Allow lower-level, more detailed schedules
- Require consistency, not electronic integration

Exclude:

. Start early and adapt the tool and process.
Rationale: Integrated mission-system capability
schedules (of this sort) reinforce and facilitate the
mission system concept, get everyone on the same page,
establish ownership and buy-in by key participants.

Relevant Experience: Project Prometheus, with an
unusually-high number of industrial, academic and
government partners, developed an integrated capability-
driven schedule during formulation phase. All
organizations actively participated.

The schedule was critical in establishing the concept of
integrated (incremental) flight-ground capability
development. During the review, the schedule was
repeatedly referenced by representatives of various
participating organizations. At the formulation-to-
implementation-phase transition review, a major finding
of the review board was: "The Project is to be
commended for successful integration of many
institutions and organizations into one seamless
organization.".

3.2 Mission System Design

1. Ops Concept and Design Reference Mission

Develop and iterate a good Operations Concept during
formulation phase. Recognize the functional flight-
ground layers of the mission system. Address preliminary
subdivision of functional responsibility, between flight
and ground. Validate the overall "operability" of the
flight-ground system, and it's ability to execute the

4

mission (and to produce the primary products), via
application of the OpsCon to a Design Reference
Mission (DRM). Note: the OpsCon is not a product of
ground system engineering, and is not intended to
describe how the ground system works. It is a product of
project system engineering, and brings together
operability aspects of both flight and ground components
of the mission system. The OpsCon will drive, and
provide critical context for, the requirements & design of
the mission system. The DRM can be an addendum to
the OpsCon, or a separate document.

Rationale: A validated OpsCon keeps everyone on the
same page, at a high-level and provides a critical context
for subsequent requirementddesign activities. It is well
worth the effort to develop early and maintain.
Relevant Experience: PL’s Space Interferometry
Mission, which has very complex operations scenarios,
and multiple industrial partners, developed a good
OpsCon and DRM early in formulation phase. This was
instrumental in providing a foundation for subsequent
activities, and facilitating communications between
organizations.
JPL projects are required to develop an OpsCon.
However, in the past, some have reverted to the flight-
system paradigm, and have used the OpsCon to describe,
generically, “how the ground system works”. Fred refers
to this as “The commands go up, the telemetry comes
down, and the wheels on the bus go round-and-round.”

2. End-to-End Information System (EEIS) - Standards

Avoid unnecessary invention of mission-specific data
system solutions, especially in the area of end-to-end
information system design. Deviate from existing data
communications standards only when mission
requirements can be met in no other way. The default
condition should be a standards-compliant design, with
exceptions granted after carel l trade studies. This may
sound obvious, but is not easy to enforce. Even within
the mission system paradigm the unification of flight and
ground often is done with a strong bias toward highly
(over) optimized data protocols, at the insistence of
efficiency-minded flight software designers.

There are many layers to a well-designed data
communications protocol suite. As part of the mission
system design one must choose the point at which the
break between the standard layers and the non-standard
layers will be made. Choosing that breakpoint should be
done with consideration of many factors, including (but
not limited to) bandwidth efficiency. The apparent
inefficiency of a few “extra” bytes may be offset in the
long run by simplifications in testing, operations, and
troubleshooting. See the big picture and avoid premature
optimizations that are too narrowly focused on bit-level
details at the expense of operability.

3.

Rationale: Adherence to a standard data communication
protocol stack is a critical enabler for interoperability.
The degree of interoperability is a function of the degree
of compliance to a common standard-a standard that is
shared among missions, among parts of a single mission,
and between a mission and the underlying multi-mission
infrastructure. Reinventing or redefining data formats,
even “just a little”, is closing the door on cooperation
(literally, there is less co-“operation”). Aligning to a
standard specification is necessary (but not sufficient) to
achieving interoperability, and is usually worth the effort
even if it requires some compromise.

Relevant Experience: Mars rover missions are
generally bandwidth limited. Much more data can be
acquired and stored onboard the rover than can be sent to
earth via direct or relayed return links. Even the volume
of commanding via a direct forward llnk can be
bandwidth limited. Furthermore, the special
requirements of telemetry during entry, descent, and
landing put severe constraints on data formats and
protocols.

For these reasons it is typical for a Mars rover mission to
choose to pare down the number of bytes in protocol data
units, sometimes to the point of redefining the primary
header of the underlying CCSDS packet. These
specialized protocols become one-off designs, not
inherited from one mission to the next. Operability
suffers due to the lack of tools and to the complex
interfaces - amplified by the multiple missions involved
in performing data communications via relay orbiters.

EEIS - Data Mgt, Transport and Accountability

Match the level and degree of data accountability to the
needs of the mission. Plan for automated data
communication protocols combined with manual data
validation procedures to achieve an appropriate balance
between too little and too much overhead. At each level
(bits, frames, packets, products) there should be enough
ancillary information to account for missing data, and to
map among corresponding data units at different levels.
Remember that troubleshooting is part of operations and
is more dependent on accountability information than is
normal processing. Doing this well is critical to
achieving mission system operability.

There are many factors to consider when designing end-
to-end data transport, data management, and data
accountability. They include:
. Available storage (at end points and intermediate

nodes)
. Available bandwidth (of each link)
. Scheduling of resources (nodes and links)
. Nature of bottlenecks (bursty vs. continuous, CPU vs.

UO, storage-limited vs. bandwidth-limited)
. Criticality of data (each bit is precious vs. lots of data

redundancy)

5

Environmental influences (light-time, solar
interference, weather, terrain map for rovers)
Comm network topology (direct vs. relay, multi-
agency support)
User expectations (end users insist on making data
quality decisions vs. don’t want to be bothered)
Non-technical factors (politics, comfort-levels, etc.)

Balancing all these factors can be difficult, but a few
guiding principles are helpfhl in finding a solution that
enhances operability. One principle is to invent less,
reuse more. This not only keeps development costs
down, but also leverages off operations familiarity with
existing tools and procedures. Another principle is to
push toward more, not less, data accountability. This
means more data-about-data, to capture the state of data
processing, storage, and transport (see Rationale for a
parable about this). One more principle is to keep the
customer happy. This means keeping them in the
decision loop about data quality (retransmissions etc.),
but only if they what to be in the loop. It also means
don’t surprise them - the consumers of your data should
not be the first to discover problems.
Rationale: Over the years “data accountability” has
undergone continuous evolution - well, more like
punctuated equilibrium - due to random selection (not
intelligent design!).

In the beginning accountability was formless and empty;
data flowed in darkness. Then there was light when a
few began to account for data, and saw it was good. At
first this data accountability was strictly a manual
process done by specialists (prophets alone in the
wilderness). Then they banded together into teams --
Data Management Teams -- who eventually built tools to
automate some of their tasks. Soon more software was
written, sometimes even flight software working in a
coordinated way with ground software, to enhance what
was known about the data. Even payload instruments
joined in by turning around request IDS to track data
throughout the whole round trip.

The trend continues with current ground system
architectures unified around a message bus that offers
enhanced accountability features. The curious thing is
that at every step along this progression it seemed at the
time that accountability had reached an adequate level; it
was good enough. Yet it was only good enough until the
next step was taken, and suddenly what had preceded
became unacceptable. The benefit of adding another
increment of data accountability almost always
outweighs the cost, and is a sure win for operability.
Moral: sometimes “good enough” is the enemy of
“better”.

Relevant Experience: Chasing data is a time-honored
tradition for JPL missions. We have seen it all: data
outages with no apparent reason and no way to trace

4.

back to the cause, data retransmitted from the spacecraft
to fill gaps that could be filled from caches already on
the ground, data products built by hand-crafting metadata
or hand-editing errors, labor-intensive pre-planning and
post-analysis of data paths via multiple relay orbiters,
etc. Many lessons have been learned the hard way.

The Spitzer Space Telescope mission is one success
story in which accountability was designed in from the
beginning. To ensure proper end-to-end accountability
each data handoff includes a request identifier that
unambiguously identifies the data as belonging to a
specific product. The request ID originates when the
request for data originates, even before the request has
been approved for execution. The ID is a parameter
within the data-taking command that is sent to the
spacecraft and eventually to the science instrument. The
ID is returned from the instrument with the data, and is
included in each data packet that is returned to the
ground. Finally, the data product reconstructed on the
ground is labeled with the ID, and the product is matched
to the original request, completing the round-trip cycle.
Careful design of the data interfaces throughout the
round-trip path has enabled full automation of the entire
data processing pipeline.

EEIS - Commanding & Sequencing

Recognize the distinction between operations-centric
commanding and sequencing versus data-centric
telemetry processing; while merging the two views into
one unified mission system. Treat sequence development
as a process in which people are fundamentally
important; tools facilitate this process without
supplanting the people doing the development. Design
the tools to work in a seamless integrated manner,
minimizing the number of different user interfaces. Keep
people in the loop for the creative functions, especially
complex decision making; keep people out of doing
repetitive or mundane tasks.

Rationale: The Mission System paradigm not only
melds flight and ground, but also unifies two distinct
ways of seeing the ground system. Depending on what
culture you grew up in, you either think of the Ground
Data System (GDS) as
a) The set of tools used by operations to control the

b) The collection of data processing pipelines delivering

The “GDS as Ops Tools” mindset historically comes
from an uplink-centric culture, focused on using those
tools to do planning and sequencing. It treats people as
integral to the process of defining the behavior of the
spacecraft, with no strong need for substituting autonomy
for people-in-the-loop. This is because sequence
development is akin to software development. Just as an
integrated software development environment enables

spacecraft, or

products to users.

6

code production, an integrated sequence development
environment greatly facilitates the generation of correct
uplink products.

The "GDS as Data Pipelines" mindset historically comes
from a downlink-centric culture, focused on telemetry
and data analysis. It treats people as extraneous to the
process of moving products through successive levels of
data reduction. People tend to slow down this process
unnecessarily, so "lights out'' is the preferred mode of
operations. People, as users of the data products, are
outside the system.

Recognizing these distinctions, and bridging the gap
between them, is key to the mission system paradigm -
leading to improved operability.

Relevant Experience: Mars rover missions have
brought a new dimension to planning and sequencing.
The in-situ nature of these missions has shortened the
timescale from downlinking data from one execution
cycle to uplinking the sequence for the next cycle.
Typically, this must be done within one eight-hour work
shift. Efficient workflow in both the telemetry and
sequencing areas is needed to accomplish this quick
turnaround. Tighter integration between the two areas
makes this possible. Even more important are the data
and operations interfaces within the planning and
sequencing elements. For the next rover mission, Mars
Science Laboratory, the unification of all these tools
under one user interface is accomplished within Eclipse's
Rich Client Platform environment.

5. Flight - Ground Interface Requirements
During formulation phase, develop a layered set of
flight-ground interface requirements. Include 4 layers:
. Telecom & Physical,

(RF, physicaYvirtua1 channels, protocols, test i/f s)
. Basic Command & Telemetry

(low level command, telemetry hctionality)
. Service,

(data mgt & transport, sequencing, fault management)
. Application.

(Science & engineering applications)
An interface requirements document (IRD) is not the
same as an interface control document (ICD), which
documents the final design details and operating
characteristics of the interface.

Rationale: Early development and iteration of an IRD
forces early flight-ground design trades, within a mission
system context. It recognizes that there are critical layers
of hctionality. It enables different parties to focus on
the layers-of-interest.
Relevant Experience: JPL's Space Interferometry
Mission (SIM) developed a layered Flight-Ground IRD
early in formulation phase. Many early flight-ground
trades were conducted (e.g. flight vs ground processing

7

of interferometer data vs data management & transport
capacity vs science data processing flexibility). In
addition, the flight-ground IRD facilitated a convenient
science perspective, in which the bottom 3 % flight-
ground layers, provided a flight-engineering service, and
a stable platform for science & instrument operations.
Working these trades, from various perspectives, was
essential to SIM's successful transition from formulation
phase to implementation phase.

Ground System Architecture

Use a layered approach to the architecture of the Ground
System, with each layer having well-defined technical
and organizational boundaries. Specify interfaces
carefully, especially those between the mission parts and
the multi-mission service providers. Match the ground
system layers to their mirror-image counterparts in the
flight system. Do not overlook the layering within the
mission-specific part of the ground system, separating
data infrastructure services from user-specific tools. Be
prepared to compromise to fit within the larger "system
of systems" that is the Interplanetary Network.

Layered Ground System Architecture
(and Flight System Counterparts)

' I Operations Services
Activity Planning & Integration. Project Data Management I ' (C&DH SW, Sequencing Engine, Onboard Data Management)

Project
Services

Hardware Nets OS WebGDS

(s/C Bus Cmpbters WS)

Infrastructure

[T e k m . Dara TraranspOIl)

Rationale: Ground Systems are typically built from an
eclectic collection of tools and services. Some are new,
some are adapted from pre-existing versions, and some
are reused as is. Tools range from large-scale software
systems on the high end to ad hoc single-user utilities on
the low end. Services could be provided by large multi-
national, multi-hnctional institutions (e.g. the DSN), or
by small, specialized teams within the mission's
operations organization (e.g. a Data Operations Team).
Parts of the overall system may undergo modifications at
different times, for reasons not directly related to any one
mission.

The best way to keep everyone and everything in
harmony is to have an architecture that respects
territorial boundaries. Good fences make good
neighbors. That way every hand-off is clean throughout
the entire work-flow process: long-range strategic

planning to tactical activity planning to command
sequencing to uplink radiation to downlink data
acquisition to data product generation to analysis and
back to planning.

Achieving a single unified architecture across disparate
missions is not easy. It becomes impossible without some
degree of compromise. Striving for “correctness” is
usually not practical; settling for “consistency” is often
the pragmatic answer. Of course, as R. W. Emerson
cautions, consistency should be done without being
“foolish”.

Relevant Experience: Consider a mission that relies on
other missions to provide services, such as when a rover
mission depends on relay orbiter missions for
telecommunications. Each individual mission has its own
parochial interests, yet they must all fiid ways to
cooperate. Inter-mission MOUs are needed in such cases,
in addition to the usual intra-mission OIAs and SISs.
Operations Planning is done jointly in the manner of a
“cooperative”. Everyone knowing their role is key to
smooth operation of this process.

Data communications in both the uplink and downlink
directions is via multiple hand-offs, among systems built
at different times with different architectures. Operability
depends greatly on how efliciently the data and
operations interfaces function in practice, and how
invariant the interfaces are. Layering has been a valuable
technique for finding optimum points of interaction
among ground system elements. Inevitably the layers in
the ground system align with flight system layers, due to
the peer-to-peer nature of most data communications
throughout the mission system.

1.

7. System Contracting
When system-contracting spacecraft operations along
with spacecraft development (a good idea), be sure to
clearly specify, in the RFP and contract, what is meant
by “spacecraft operations”. Include an ‘Operability” sub-
section in the spacecrafi flight-sofware section. Address
data management, data transport, sequencing, data
standards, layered software architecture, mission system
paradigm, etc. Be wary of assuming too much contractor-
inheritance in these areas.

Rationale: Many ‘hew to deep-space ops” potential
bidders and contractors have a flight-system, hardware-
centric view of space missions, and do not fully-
appreciate the scope and complexities of deep-space
operations.

Relevant Experience: Serveral JPL missions have had
problems with system contractors understanding the
scope of deep-space operations and the importance of
flight system operability, data standards and modern
architectures. This has resulted in late-development cost
increase and, in some cases, significant late re-
negotiation of contracts.

2.

3.3 Mission System Development

Integrated Deliveries, Dictionaries and Databases
Require that flight and ground subsystems deliver to a
schedule of ”integrated mission system capability
deliveries”, which result in integration, deployment and
use of a resultant version of the mission system, in
support of various development and operations activities.

In addition to the integrated schedule, maintain a
mission system delivery plan, specifying the functional
and physical content of each delivery. Include integrated
dictionaries and parameters with each delivery. Store
parameters and dictionaries electronically, in a central
place and, per the mission system paradigm, integrate the
flight and ground systems by using the same command
and telemetry definitions in both flight and ground
software, during development and operations.
Institute a moderate level of configuration management
and control, with the initial integrated delivery. Be pro-
active in including all functional components, in early
deliveries, even though they may provide very limited
functionality.

Rationale: This approach stresses the mission system
concept and forces developers to work towards flight-
ground fimctional (and operational) capability sets.
Instituting the process early and including all functional
components as early as possible, establishes best
practices early-on (as opposed to later, when establishing
best-practices seems secondary to solving more
immediate problems). The practices, themselves, benefit
from a lower-pressure evolutionary period, but are well
worth the effort.
Relevant Experience: Mars Global Surveyor adopted
the concept of integrated capability deliveries,
maintained integrated schedules and a delivery plan, and
deployed controlled, end-to-end capabilities to testbeds
early in the implementation phase. Flight and ground
systems were delivered per projected cost and schedule.
A highly-successful mission continues.

Integrated Testbeds and Testing
Integrate flight and ground components early and often
via testbeds, with special attention to making the testbed
operations interface, as flight-like as possible, as early as
possible. Use integrated testbeds for:
. Flight Software Development,
. Ground Software Development,
. Block (command-macro) and Sequence Development,
. Flight System Integration & Test,
. Mission System Integration, Test and Training,
. In-flight Uplink Validation,
. In-flight Anomaly Investigation.
Conservatively ensure that testbed resources are
adequate to fulfill all these needs (assuming some
problems late in the development phase).

8

Rationale: Adequate testbed resources and integrated
flight-ground testbeds avoid significant late-development
problems and are essential for in-flight risk-reduction
and fault diagnosis and recovery.
Relevant Experience: Section 1, above, contains a good
example of penalties paid, late in development, due to
inadequate testbed resources.
The following diagram depicts a typical JPL testbed
configuration. The TTACS (Test, Telemetry and
Command), and CDIF (Command & Data Interface)
replace some of the low-level telecom services layers, in
a test environment.

4. EFFECTIVE APPLICATION OF RESOURCES

"Adopting a Mission System paradigm", is not the same as
"bringing lots of operations people on early". One of the
claimed benefits of the mission system paradigm is
development and operations cost reduction.

This section contains some recommendations, to help insure
that resources are effectively applied.

1. Product-Orientation & Avoiding Process Overkill
Keep a "product" focus. The most important products are
the mission system, mission plan and mission product.
Give top priority to processes which you believe
effectively contribute to the product. Adhere to others, if
required, as best you can, without jeopardizing the most
important products. If you believe strict adherence to
process is preventing delivery of the product, don't be
afraid to voice your concern. Use common sense (in
addition to the process).

Rationale: Processes are important. However, some
processes and process tools are more mature than others
and they are sometimes ineffectively (or too arduously)
applied. Some are elegant, yet practically-difficult.

Relevant Experience:
MRO was one of the first projects to use a new
requirements tool and "flowdown" process. Early in the
design phase, the project focused too much on the tool,
and various upward and downward linkages, and not
enough on the requirements themselves. Using the tool in
a consistent and effective manner required a lot of
overhead. The tool somewhat-facilitated the naYve view
of the requirements process as a simple
suballocatiodflowdown, without adequately recognizing
the interrelationship between requirements and design, at
each level.

Having used the tool, and established all the linkages, the
a project subsystem declared the subsystem requirements
"complete and ready for peer review". The peer review
team found major gaps in the requirements, and
significant requirements sets entirely missing. Applying a
little common sense, and some "bottoms-up" sanity
checks (in addition to religious adherence to the new tool
and process) would have helped a lot.

5. CONCLUSIONS

Many space missions experience cost growth and increased
risk, during latter development or early operations phases.
These are directly or indirectly related to promulgation of
the hardware-centric flight system paradigm. Adopting the
mission system paradigm can help reduce cost and risk. The
above recommendations directly address this.

Looking to the future - Modem system architectures stress
the importance of a layered view of mission functions,
spanning flight and ground. In fact, an important concept is
that sub-functions, within a functional layer, can move (or
easily migrate) between flight and ground. These are key
architectural concepts of JPL's "Mission Data System"
(MDS) and "Multi-Mission Spacecraft Architectural
Platform" (MSAP).

In future applications, functional layers will not only span

Fliaht Svstem A

. .
Fwd
Link

.
i

Rln
Link

Ground System A

flight and bound,
within a project or
mission, but will span
projects and
organizations. JPL's
Interplanetary
Network architecture
allows elements of the
"data management and
transport" layers of
individual projects, to
work together in
providing multiproject
"relay-mode" data
transport services,
using multiple
spacecraft, managed
by multiple projects,

in conjunction with multiple ground telecom networks,
managed by different organizations.

Treating Data Management and Transport, as a functional
layer spanning flight and ground systems of a project,
facilitates expansion of the concept to multiple projects.

9

* -

REFERENCES

[I] JPL Design Principles

[2] JPL Project Flight Practices

[3] Day1 G. Boden and Wiley J. Larson, "Cost Effective
Space Mission Operations", McGraw-Hill, 1996

BIOGRAPHIES

Fred Hammer is a manager in JPL'S Systems and Software
division. He has lead the development of
the Mars Global Surveyor Ground Data
System, the Mission Management Ofice
Multi-Project Operations System, the
Space Interferometry Mission
Operations System, and the Prometheus
Ground Data System. Fred began his
JPL career in 1971, and has

participated in various aspects of ground system
development, from assembly-language programming on the
IBM 360 mainframe to line and project ground system
management. He has a B.S. in mathematics from University
of Michigan and a M.S. in systems engineering from West
Coast University.

Joe Kahr is a Principal IS&CS Engineer in JPL's Systems
and Software division He is leading
the development of the Mars Science
Laboratory Ground Data System
(GDS). He has lead the development of
the Spitzer Space Telescope GDS,
several generations of multi-mission
GDSs including the Advanced Multi-
Mission Operations System, and the

SpaceFlight Operations Center. Joe began his JPL career
in 1974, initially as a member of the Mission Operations
Analysis Team and later as a software developer and
software systems engineer. He has a B.S. in physics from the
Illinois Institute of Technology and a masters in computer
science from the University of Southern California.

10

