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The invariant manifold structures of the collinear libration points for the spatial 
restricted three-body problem provide the framework for understanding complex 
dynamical phenomena from a geometric point of view. In particular, the stable 
and unstable invariant manifold "tubes" associated to libration point orbits are 
the phase space structures that provide a conduit for orbits between primary 
bodies for separate three-body systems. These invariant manifold tubes can be 
used to construct new spacecraft trajectories, such as a "Petit Grand Tour" of 
the moons of Jupiter. Previous work focused on the planar circular restricted 
three-body problem. The current work extends the results to the spatial case. 

INTRODUCTION 

New space missions are increasingly Inore complex. They require new and unusual kinds of orbits 
to meet their scientific goals, orbits which cannot be found by the traditional conic approach. The 
delicate heteroclinic dynamics employed by the Genesis Discovery Mission dramatically illustrates 
the need for a new paradigm: study of the three-body problem using dynamical systems theory.'p2l3 

Furthermore, it appears that the dynamical structures of the three-body problem (e.g., stable 
and unstable manifolds, bounding surfaces), reveal much about the morphology and transport of 
materials within the solar system. The cross-fertilization between the study of the natural dynamics 
in the solar system and applications to  engineering has produced a number of new techniques for 
constructing spacecraft trajectories with desired behaviors, such as rapid transition between the 
interior and exterior Hill's regions, temporary capture, and c~ l l i s i on .~  

The invariant manifold structures associated to the collinear libration poirits for the restricted 
three-body problem, which exist for a range of energies, provide a framework for understanding 
these dy~iamical phenomena from a geometric point of view. In particular, the stable and unstable 
invariant manifold tubes associated to libration point orbits are the phase space structures that 
provides a coriduit for material to arid from the smalker primary body (e.g., Jupiter in the Sun- 
Jupiter-cornet three-body system), and between primary bodies for separate three-body systems 
(e.g., Saturn and Jupiter in the Sun-Saturn-comet and the Sun-Jupiter-comet three-body sys t e rn~ ) .~  
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Figure 1: (a) Low energy transfer trajectory in the geocentric inertial frame. (c) Same trajectory in the Sun-Earth 

rotating frame. 
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Furthermore, these invariant manifold tubes can be used to produce new techniques for construct- 
ing spacecraft trajectories with interesting characteristics. These may include mission concepts such 
as a low energy transfer from the Earth to the Moon and a "Petit Grand Tour" of the moons of 
Jupiter. Using the invariant manifold structures of the 3-body systems, we were able to construct 
a transfer trajectory from the Earth which executes an unpropelled (i.e., ballistic) capture a t  the 
Moon."ee Figure 1. An Earth-to-Moon trajectory of this type, which utilizes the perturbation by 
the Sun, requires less fuel than the usual Hohmann transfer. 
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Figure 2: The "Petit Grand Tour" space mission concept for the Jovian moons. In our previous study, we showed 

an orbit coming into the Jupiter system and (a) performing one loop around Ganyrnede (shown in the Jupiter- 

Ganymede rotating frame), (b) transferring from Ganyn~ede to  Europa using a single impulsive maneuver (shown 

in the Jupiter-centered inertial frame), and (c) getting captured by Europa (shown in the Jupiter-Europa rotating 

frame). 

Moreover, by decoupling the Jovian moon n-body system into several three-body systems, we 
can design an orbit which follows a prescribed itinerary in its visit to Jupiter's many moons. In 
an earlier study of a transfer from Ganymede to E ~ r o ~ a , ~  we found our transfer AV to be half the 
Hohmann transfer value. As an example, we generated a tour of the Jovian moons: starting beyond 



Ganymede's orbit, the spacecraft is balliitically captured by Ganymede, orbits it once and escapes, 
and ends in a ballistic capture at Europa. See Figure 2. One advantage of this Petit Grand Tour 
as compared with the Voyager-type flybys is the "leapfroggingn strategy. In this new approach 
to space mission design, the spacecraft can circle a moon in a loose temporary capture orbit for 
a desired number of orbits, perform a transfer AV and become ballistically captured by another 
adjacent moon for some number of orbits, etc. Instead of flybys lasting only seconds, a scientific 
spacecraft can orbit several different moons for any desired duration. 

The design of the Petit Grand Tour in the planar case is guided by two main ideas. First, 
the Jupiter-GanymedeEuropa-spacecraft four-body system is approximated as two coupled planar 
three-body systems. Then, the invariant manifold tubes of the two planar threebody systems are 
used to construct an orbit with the desired behaviors. This initial solution is then refined to obtain 
a trajectory in a more accurate 4-body model. 

Figure 3: (a) Find an intersection between dynamical channel enclosed by Ganymede's LI periodic orbit unstable 
manifold and dynamical channel enclosed by Enmpa's L2 periodic orbit stable manifold (shown in 8cbematic). (b) 
Integrate forward and backward from patch point (with AV to take into account velocity discontinuity) to generate 
desired transfer between the moons (schematic). 

The coupled 3 - M u  model considers the two adjacent moons competing for control of the same 
spacecraft as two nested bbody systems (e.g., Jupiter-Ganymedespacecraft and Jupiter-Europa- 
spacecraft). When close to the orbit of one of the moons, the spacecraft's motion is dominated 
by the 3-body dynamics of the corresponding planet-moon system. Between the two moons, the 
spacecraft's motion is mostly planet-centered Keplerian, but is precariously poised between two 
competing 3-body dynamics. In this region, orbits connecting unstable libration point orbits of the 
two different t body  systems may exist, leading to complicated transfer dynamics between the two 
adjacent moons. We seek intersections between invariant manifold tubes which connect the capture 
regions around each moon. See Figure 3. In the planar case, these tubes separate transit orbits 
(inside the tube) from non-transit orbits (outside the tube). They are the phase space structures 
that provide a conduit for orbits between regions within each three-body systems as well as between 
primary bodies for separate three-body systems.4 The extension of this planar result to the spatial 
case is the subject of the current paper. 

Extending Results from Planar Model to Spatial Model Previous work based on the pla- 
nar circular restricted three-body problem (PCR3BP) revealed the basic structures controlling the 



d y n a ~ n i c s . ~ ~ ~ * ~ ~ '  But future missions will require threedimensional capabilities, such as control of 
the latitude and longitude of a spacecraft's escape from and entry into a planet or moon. For ex- 
ample, the proposed Europa Orbiter mission desires a capture into a high inclination polar orbit 
around Europa. Three-dimensional capability is also required when decomposing an n-body system 
into three-body systems that are not co-planar, such as the Earth-Sun-spacecraft and Earth-Moon- 
spacecraft systems. These demands necessitate the extension of earlier results to the spatial model 
(CR3BP). 

Figure 4: The three dimensional Petit Grand Tour space mission concept for the Jovian moons. (a) We show a 
spacecraft trajectory coming into the Jupiter system and transferring from Ganymede to Europa using a single impui- 
sive maneuver, shown in a Jupiter-centered inertial frame. (h) The spacecraft performs one loop around Ganymede, 
using no propulsion at all, as shown here in the Jnpiter-Ganymede rotating frame. (c) The spacecraft arrives in 
Europa's vicinity at the end of its journey and performs a final propulsion maneuver to get into a high inclination 
circular orbit around Europa, as shown here in the Jupiter-Europa rotating frame. 

In our current work on the spatial threebody problem, we are able to show that the invariant 
manifold structures of the collinear lihration points still act as the separatrices for two types of mo- 
tion, those inside the invariant manifold "tubes" are transit orbits and those outside the "tubes" are 
non-transit orbits. We have also designed an algorithm for constructing orbits with any prescribed 
itinerary and obtained some initial results on the basic itinerary. Furthermore, we have applied the 



techniques developed in this paper to the construction of a three dimensional Petit Grand Tour of the 
Jovian moon system. By approximating the dynamics of the Jupiter-Europa-Ganymede-spacecraft 
4-body problem as two 3-body subproblems, we seek intersections between the channels of tran- 
sit orbits enclosed by the stable and unstable manifold tubes of different moons. In our example, 
we have designed a low energy transfer trajectory from Ganymede to Europa that ends in a high 
inclination orbit around Europa. See Figure 4. 

CIRCULAR RESTRICTED THREE-BODY PROBLEM 
The orbital planes of Ganymede and Europa are within 0.3" of each other, and their orbital eccen- 
tricities are 0.0006 and 0.0101, respectively. Furthermore, since the masses of both moons are small, 
and they are on rather distant orbits, the coupled spatial CR3BP is an excellent starting model for 
illuminating the transfer dynamics between these moons. We assume the orbits of Ganymede and 
Europa are co-planar, but the spacecraft is not restricted to their common orbital plane. 

The Spatial Circular Restricted Three Body Problem. We begin by recalling the equations 
for the circular restricted three-body problem (CRSBP). The two main bodies, which we call 
generically Jupiter and the moon, have a total mass that is normalized to one. Their masses are 
denoted by r n ~  = 1 - p  and mM = p respectively (see Figure 5(a)). These bodies rotate in the plane 
counterclockwise about their common center of mass and with the angular velocity normalized to 
one. The third body, which we call the spacecraft, is free to move in the three-dimensional space 
and its motion is assumed to not affect the primaries. Note that the Inass parameters for the 
Jupiter-Ganymede and Jupiter-Europa systerris are p~ = 7.802 x lop5 and p~ = 2.523 x 
respectively. 

Choose a rotating coordinate system so that the origin is a t  the center of mass and Jupiter (J) 
and the moon (M) are fixed on the x-axis a t  ( - p ,  0,O) and (1 - p,  0,O) respectively (see Figure 
5(a)).  Let (x, y, 2) be the position of the spacecraft in the rotating frame. 

Equations of Motion. There are several ways to derive the equations of motion for this system A 
efficient technique is to use covariance of the Lagrangian formulation and use the Lagrangian directly 
in a moving frame.g This method gives the equations in Lagrangian form. Then the equations of 
motion of the spacecraft can be written in second order form as 

where 

where R,,  RV,  and R, are the partial derivatives of R with respect to the variables x, y, and z .  Also, 
7-1 = J ( x  + p)2  + g2 + z2, r2 = ,/(x - 1 + p)2 + y2 + 22.  This form of the equations of motion has 
been studied in detail'' and are called the equations of the CR3BP. 

After applying the Legendre transformation to the Lagrangian formulation, one finds that the 
Hamiltonian function is given by 



Figure 5: (a) Equilibrium points of the CR3BP as viewed, not in any inertial frame, but in the rotating frame, 
where Jupiter and a Jovian moon are at fixed positions along the z-axis. (b) Projection of the three-dimensional 

Hill's region on the (s,y)-plane (schematic, the region in white), which contains a "neck" about LI and L2. (c) The 
flow in the region near Lz projected on the (s,y)-plane, showing a bounded orbit around Lz, an asymptotic orbit 

winding onto the bounded orbit, two transit orbits and two non-transit orbits (schematic). A similar figure holds for 
the region amund LI. 

Therefore, Hamilton's equations are given by: 

Jacobi Integral. The system (1) have a first integral called the Jawbi integral, which is given 
by 

C(x, y ,z , i ,& i) = -(i2 + o2 + i2) + 2R(z,g,z) = -2E(z,y, z ,k , i ,  i). 

We shall use E when we regard the Hamiltonian as a function of the positions and velocities and H 
when we regard it as a function of the position and mementa. 



Equilibrium Points and Hill's Regions. The system (1) has five equilibrium points in the (x,  y) 
plane, 3 collinear ones on the x-axis, called L l ,  L2, L3 (see Figure 5ja)) and two equilateral points 
called L4andL5. These equilibrium points are critical points of the (effective potential) function R. 
The value of the Jacobi integral at the point Li will be denoted by Ci. 

The level surfaces of the Jacobi constant, which are also enewy surfaces, are invariant 5- 
dimensional manifolds. Let M be that energy surface, i.e., 

M ( p ,  C)  = {(x, y, z ,  x, y ,  2 )  1 C(x, y ,  z ,  x, y ,  i) = constant} 

The projection of this surface onto position space is called a Hill 's  region 

M(1.13 C )  = t (z ,y,z)  I Q(x,  Y, 2) 2 C/2). 

The boundary of M ( p ,  C) is the zero velocity curve. The spacecraft can move only within this 
region. Our main concern here is the behavior of the orbits of equations (1) whose Jacobi constant 
is just below that of L2; that is, C < C2. For this case, the three-dimensional Hill's region contains 
a "neck" about L1 and L2, as shown in Figure 5(b). Thus, orbits with a Jacobi constant just 
below that of L2 are energetically permitted to make a transit through the two neck regions from 
the interior region (inside the moon's orbit) to the exterior region (outside the moon's orbit) 
passing through the moon (capture) region. 

INVARIANT MANIFOLD AS SEPARATRIX 
Studying the linearization of the dynamics near the equilibria is of course an essential ingredient for 
understanding the more complete nonlinear dynamics.4~11,12~13 

Linearization near the Collinear Equilibria. We will denote by (k, O,O,O, k ,  0) the coordinates 
of any of the collinear Lagrange point. To find the linearized equations it, we need the quadratic 
terms of the Hamiltonian H in equation (2)  as expanded about (k,  0 ,0,0,  k ,  0). After making a 
coordinate change with (k, 0 ,0,0,  k ,  0) as the origin, these quadratic terms form the Hamiltonian 
function for the linearized equations, which we shall call HI 

1 
Hi = ,{OD, + y)2 + (py - x)* +pi - ax' + by2 + cz2), 

where, a ,  b and c are defined by a = 2p + 1, b = p - 1, and c = p and where 

= ~ l k  - 1 + ,4-3 + (1 - P ) I ~  +Pl-3.  
A short computation gives the linearized equations in the form 

It is straightforward to  show that the eigenvalues of this linear system have the forrn *A, rtiu and 
f iw,  where A,  v and w are positive constants and v # w .  

To better understand the orbit structure on the phase space, we make a linear change of coordi- 
nates with the eigenvectors as the axes of the new system. Using the corresponding new coordinates 
41, PI ,  qz , p2,q3, p3 the differential equations assume the simple form 



and the Hamiltonian function becomes 

Solutions of the equations (3) can be conveniently written as 

where the constants qy,py, qi +ipg, and q! -tip! are the initial conditions. These linearized equations 
admit integrals in addition to the Hamiltonian function; namely, the functions qlpi ,  q; + p; and 
q i  + pi are constant along solutions. 

T h e  Linearized P h a s e  Space. For positive h and c, the region R, which is determined by 

Hl = h,  and Ipl - qll 5 c, 

is homeomorphic to the product of a $-sphere and an interval I, S4 x I; namely, for each fixed value 
of pl - ql between -c and c, we see that the equation HI = h determines a 4-sphere 

The bounding Csphere of R for which pl - ql = -c will be called n l ,  and that where pl - ql = c, 
n2 (see Figure 6). We shall call the set of points on each bounding Csphere where ql + pl = 0 
the equator ,  and the sets where ql + pl > 0 or ql + pl < 0 will be called the n o r t h  and s o u t h  
hemispheres, respectively. 

T h e  Linear Flow in  R. To analyze the flow in R, one considers the projections on the (ql ,PI)- 
plane and ( ~ 2 ~ ~ 2 )  x (q3,p3)-space) respectively. In the first case we see the standard picture of 
an unstable critical point, and in the second, of a center consisting of two uncoupled harmonic 
oscillators. Figure 6 schematically illustrates the flow. The coordinate axes of the (ql,pl)-plane 
have been tilted by 45" and labeled (pl,  ql) instead in order to correspond to the direction of the 
flow in later figures which adopt the NASA convention that the larger primary is to the left of the 
small prirnary. With regard to the first projection we see that R itself projects to a set bounded on 
two sides by the hyperbola qlpl = h/X (corresponding to q; + p: = q$ + pg = 0, see (4)) and on two 
other sides by the line segments pl - ql = f c, which correspond to the bounding 4-spheres. 

Since q l p l  is an integral of the equations in R, the projectio~ls of orbits in the (ql,pl)-plane 
move on the branches of the corresponding hyperbolas qlpl = constant, except in the case qlpl = 0, 
where ql = 0 or pl = 0. If qlpl > 0, the branches connect the bounding line segments pl - ql = f c 
and if qlpl < 0, they have both end points on the same segment. A check of equation (5) shows 
that the orbits move as indicated by the arrows in Figure 6. 

To interpret Figure 6 as a flow in R, notice that each point in the (ql ,PI)-plane projection 
corresponds to a 3-sphere S3 in R given by 

Of course, for points on the bounding hyperbolic segrnents (qlpl = h/X), the 3-sphere collapses to 
a point. Thus, the segments of the lines pl - ql = f c in the projection correspo~ld to the 4-spheres 
bounding R. This is because each corresponds to a 3-sphere crossed with an interval where the two 
end 3-spheres are pinched to a point. 

We distinguish nine classes of orbits grouped into the following four categories: 



planar oscillations 
projection 

vertical oscillations 
projection 

saddle projection 

Figure 6: The How in the equilibrium region has the form saddle x center x center. On the left is shown the 
projection onto the  (pl,ql)-plane (note, axes tilted 45'). Shown are t h e  bounded orbits (black dot at the center), the 
asymptotic orbits (green), two transit orbits (red) and two non-transit orbits (blue). 

1. The point ql = pl = 0 corresponds to an invariant 3-sphere S i  of bounded orbits (periodic 
and quasi-periodic) in R. This 3-sphere is given by 

It is an example of a n o m a l l y  hyperbolic invaviant manifold (NHIM).14 Roughly, this 
means that the stretching and contraction rates under the linearized dynamics transverse to 
the 3-sphere dominate those tangent to the 3-sphere. Tliis is clear for this example since the 
dynamics normal to the 3-sphere are described by the exponential contraction and expansion 
of the saddle point dynamics. Here the 3-sphere acts as a "big saddle point". See the black 
dot at center the (ql ,PI)-plane on the left side of Figure 6. 

2. The four half open segments on the axes, g l p l  = 0, correspond to four cylinders of orbits 
asymptotic to this invariant 3-sphere S i  either as time increases (p, = 0) or as time decreases 
( q l  = 0). These are called asymptotic orbits and they form the stable and the unstable 
manifolds of Si. The stable manifolds, WY (Si), are given by 

The unstable rnariifolds, W S ( S i ) ,  are given by 

Topologically, both invariant manifolds look like 4-dimensional "tubes" (S3 x IR). See the four 
green orbits of Figure 6. 

3. The hyperbolic segments determined by qlyl  = constant > 0 correspond to two cylinders 
of orbits which cross R from orie bounding 4-sphere to the other, meeting both in the same 
hemisphere; the northern hemisphere if they go from pl - q l  = +c to pl - ql = -c, and the 
southern hemisphere in the other case. Since these orbits transit frorri one region to another, 
we call them transit orbits. See the two red orbits of Figure 6. 



4. Finally the hyperbolic segments determined by qlpl = constant < 0 correspond to two cylin- 
ders of orbits in R each of which runs from one hemisphere to the other hemisphere on the 
same bounding 4sphere. Thus if ql > 0, the 4sphere is nl (pl - ql = -c) and orbits run 
from the southern hemisphere (ql + pl < 0) to the northern hemisphere (ql + pl > 0) while 
the converse holds if 91 < 0, where the 4-sphere is n ~ .  Since these orbits return to the same 
region, we call them non-tmneit orbits. See the two blue orbits of Figure 6. 

Figure 7: (a) The cross-seetion of the flow in the R. region of the energy surface. (b) The McGehee representation 
of the flow in the region R. 

McGehee Representation. As noted above, R is a bdimensional manifold that is homeomorphic 
to S4 x I. It can be represented by a spherical annulus bounded by two 4-spheres nl,nl, as shown 
in Figure 7(b). Figure 7(a) is a cross-section of R. Notice that this cross-section is qualitatively 
the same as the illustration in Figure 6. The following classifications of orbits correspond to the 
previous four categories: 

1. There is an invariant 3-sphere S i  of bounded orbits in the region R corresponding to the point 
I .  Notice that this 3-sphere is the equator of the central 4-sphere given by pl - ql = 0. 

2. Again let nl,nl be the bounding 4spheres of region R, and let n denote either nl or na. We 
can divide n into two hemispheres: n+, where the flow enters R, and n-, where the flow leaves 
R. There are four cylinders of orbits asymptotic to the invariant 3-sphere Si. They form the 
stable and unstable manifolds to the invariant 3-sphere Si. Let a+ and a- (where ql = 0 and 
pl = 0 respectively) be the intersections with n of the stable and unstable manifolds. Then 
a+ appears as a 3-sphere in n+, and a- appears as a 3-sphere in n-. 



3. Consider the two spherical caps on each bounding 4sphere given by 

If we let @ be the spherical cap in n: bounded by a:, then the transit orbits entering R on 
@ exit on d; of the other bounding sphere. Similarly, letting d; be the spherical cap in n; 
bounded by a;, the transit orbits leaving on d; have come from d: on the other bounding 
sphere. 

4. Note that the intersection b (where ql +pl = 0) of n f  and n- is a 3-sphere of tangency points. 
Orbits tangent at this 3-sphere "bounce off," i.e., do not enter R locally. Moreover, if we let 
r+ be a spherical zone which is bounded by a+ and b, then non-transit orbits entering R on 
r+ exit on the same bounding 4-sphere through r- which is bounded by a- and b. 

Invariant Manifolds as Separatrices. The key observation here is that the asymptotic orbits 
form 4-dimensional stable and unstable manifold "tubes" (S3 x R) to the invariant 3-sphere S i  in 
a bdimensional energy surface and they separate two distinct types of motion: transit orbits and 
non-transit orbits. The transit orbits, passing from one region to another, are those inside the 4- 
dimensional manifold tube. The non-transit orbits, which bounce back to their region of origin, are 
those outside the tube. 

In fact, it can be shown that for a value of Jacobi constant just below that of L1 (Lz), the 
nonlinear dynamics in the equilibrium region R l  (Rz) is qualitatively the same as the linearized 
picture that we have shown a b o ~ e . ' ~ ~ ~ ~ . ~ ~  This geometric insight will be used below to guide our 
numerical explorations in constructing orbits with prescribed itineraries. 

Construction of Orbits with Prescribed Itineraries 
in the Planar Case 

Figure 8: Location of Lagrange point orbit invariant manifold tubes in position spxe .  Stable manifolds are green, 
unstable manifolds are red. The location of thi Poincar6 sections (UI, (12, Us, and U4) are also shown. 

In previous work on the planar case: a numerical demonstration is given of a heteroclinic 
connection between pairs of equal Jacobi constant Lyapunov orbits, one around L1, the other 



Figure 9: (a) The projection of invariant manifolds w:,:,~, and w;;$,~, in the region M of the position space. 
(h) A dospup of the intersection region between the P o i n d  cuts of the invariant manifolds on the Us section 
( z  = 1 - p, y > 0). (c) Intersection between image of A x  and pre-image of A, labeled (M, X; M, I, M). (d) Example 
orbit passing through (M,X; M, I,M) region of (c). 

around LZ. This heteroclinic connection augments the homoclinic orbits associated with the L1 
and L* Lyapunov orbits, which were previously known.12 Linking these heteroclinic connections and 
homocliiic orbits leads to dynamical chains. 

We proved the existence of a large clasa of interesting orbits near a chain which a spacecraft 
can follow in its rapid transition between the inside and outside of a Jovian moon's orbit via a 
moon encounter. The global collection of these orbits is called a dynamical channel. We proved 
a theorem which gives the global orbit structure in the neighborhood of a chain. In simplified form, 
the theorem essentially says: 

For any admissible bi-infinite sequence (. . . , u-1; uo, ul ,  u l ,  . . . ) of symbols { I ,  M ,  X )  where 
I ,  M ,  and X stand for the interior, moon, and ezterior regions respectively, there w m -  
sponds an orbit near the chain whose post and future whereabouts with respect to these three 
regions match those of the given sequence. 

For example, consider the Jupiter-Ganymedespmecraft %body system. Given the bi-infinite 
sequence (. . . ,I; M, X ,  M, . . . ), there exists an orbit starting in the Ganymede region which came 
from the interior region and is going to the exterior region and returning to the Ganymede region. 



Moreover, we not only proved the existence of orbits with prescribed itineraries, but develop 
a systematic procedure for their numerical construction. We will illustrate below the numerical 
construction of orbits with prescribed finite (but arbitrarily large) itineraries in the three-body 
planet-moon-spacecraft problem. As our example, chosen for simplicity of exposition, we construct 
a spacecraft orbit with the central block (M, X; M, I, M).  

Example Itinerary: (M, X; M, I, M).  For the present numerical construction, we adopt the 
following convention. The Ul and U4 Poincark sections will be (y = 0, x < 0,e  < 0) in the interior 
region, and (y  = 0,x < - 1 , G  > 0) in the exterior region, respectively. The U2 and U3 sections 
will be (x = 1 - p , p  < 0,x > 0) and (x - 1 - p , y  > 0 , x  < 0) in the moon region, respectively. 
See Figure 8 for the location of the Poincark sections relative to the tubes. A key observation for 
the planar case is a result which has shown that the invariant manifold tubes separate two types of 
motion. See Figures 9(a) and 9(b). The orbits inside the tube transit from one region to another; 
those outside the tubes bounce back to their original region. 

Since the upper curve in Figure 9(b) is the Poincark cut of the stable manifold of the periodic 
orbit around L1 in the U3 plane, a point inside that curve is an orbit that goes from the rnoon 
region to the interior region, so this region can be described by the label (; M, I). Similarly, a point 
inside the lower curve of Figure 9(b) came from the exterior region into the tnoon region, and so 
has the label (X; M). A point inside the intersection AM of both curves is an (X; M, I )  orbit, SO it 
makes a transition from the exterior regiorl to the interior region, passing through the moon region. 
Similarly, by choosing Poincar6 sections in the interior and the exterior region, i.e., in the U1 and 
U4 plane, we find the intersection region AT consisting of (M;  I ,  M )  orbits, and Ax, which consists 
of (M;  X, M )  orbits. 

Flowing the intersection Ax forward to the moon region, it stretches into the strips in Figure 
9(c). These strips are the image of Ax (i.e., P (Ax) )  under the Poincarb map P, and thus get the 
label (M, X; M) .  Similarly, flowing the intersection Ar backward to the moon region, it stretches 
into the strips P- ' (Az) in Figure 9(c), and thus have the label (; M, I, M). The intersection of these 
two types of strips (i.e., AM n P(Ax)  n P- ' (Az) )  consist of the desired (M, X; M, I ,  M) orbits. 
If we take any point inside these intersections and integrate it forward and backward, we find the 
desired orbits. See Figure 9(d). 

Extension of Results in Planar Model to Spatial Model 
Since the key step in the planar case is to find the intersection region inside the two Poincark cuts, 
a key difficulty is to  determine how to extend this technique to the spatial case. Take as an example 
the construction of a transit orbit with the itinerary (X; M, I) that goes from the exterior region 
to the interior region of the Jupiter-moon system. Recall that in the spatial case, the unstable 
manifold "tube" of the NHIM around L2 which separates the transit and non-transit orbits is 
topologically S" R. For a transversal cut a t  x = 1 - p (a hyperplane through the moon), the 
Poincare cut is a topological 3-sphere S3 (in I@). It is not obvious how to find the intersection 
region inside these two Poincarg cuts (S3) since both its projections on the (y, y)-plane and the 
( 2 ,  i)-plane are (2-dimensional) disks D2. (One easy way to visualize this is to  look a t  the equation: 
t2 + i2 + q2 + i2 = T~ = T: + T:. that describes a 3-sphere in R4, Clearly, its projectioris on the 

(<, ()-plane and the (q, 4)-plane are 2-disks as rc and r,, vary from 0 to r and from T to 0 respectively.) 
However, in constructing an orbit which transitions from the outside to  the inside of a moon's 

orbit, suppose that we might also want it to have other characteristics above and beyond this gross 
behavior. We may want to have an orbit which has a particular z-amplitude when it is near the moon. 
If we set t = c,  i = 0 where c is the desired z-amplitude, the problem of finding the intersection 
region inside two Poincar6 cuts suddenly beco~nes tractable. Now, the projection of the Poincark 
cut of the above unstable manifold tube on the (y, y)-plane will be a closed curve and any point 
inside this curve is a (X; M) orbit which has transited from the exterior region to the moon region 
passing through the Lg equilibrium region. See Figure 10. 



Figure 10: Shown in black are the y+ (left) and r i  (right) projections of the 3-dimensional object cP2, the 

intersection of W ; ( M i )  with the Poincarh section I = 1-p. The net of points in the y+ projection which approximate 

a curve, 7 r # i 9 ,  all have (2 ,  i )  values within the small box shown in the z i  projection (which appears as a thin strip), 
centered on (z1, i ' ) .  This example is computed in the Jupiter-Eumpa system for C = 3.0028. 

Similarly, we can apply the same techniques to the Poincar6 cut of the stable manifold tube to 
the NHIM around L1 and find all (M, I) orbits inside a closed curve in the (y,Q)-plane. Hence, 
by using x and i as the additional parameters, we can apply the similar techniques that we have 
developed for the planar case in constructing spatial trajectories with desired itineraries. See Figures 
11 and 12. What follows is a more detailed description. 

Figure 11: The yu (left) and z i  (right) projections of the 3-dimensional objects c;'Y2 and c?'. This example is 
computed in the Jupiter-Europa system for C = 3.0028. 

Finding the PoincarC Cuts. We begin with the 15th order normal form expansion near L1 and 
Lz.18v18320 The behavior of orbits in the coordinate system of that normal form, (ql,pl, ql ,pz,q~,m),  
are qualitatively similar to the behavior of orbits in the linear approximation. This makes the proce- 
dure for choosing initial conditions in the L1 and Lz equilibrium regions rather simple. In particular, 
based on our knowledge of the structure for the linear system, we can pick initial conditions which 
produce a close L'shadow" of the stable and unstable manifold "tubes" (S3 x R) associated to the 
normally hyperbolic invariant manifold (NHIM), also called central or neutrally stable manifold, in 
both the L1 and Lz equilibrium regions. As we restrict to an energy surface with energy h, there is 
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Figure 12: On the (y,L.)-plane are shown the points that approximate 7:,*, and 7:,+,, the boundaries of int(7Zri,) 
and int(-r:,?,), respectively, where ( z1 , i ' )  = (0.0035,O). Note the lemon shaped region of intersection, int(-/:,*,) n 
int(72, +,), in which all orbits have the itinerary (X; M, I). The appearance is similar to Figure 9(b). The point shown 
within int(q:,*,) r l  int(~:,*,) is the initial condition for the orbit shown in Figure 13. 

only one NHIM per energy surface, denoted M h ( 2  S3). 
The initial conditions in (ql,pl, q z , ~ ~ ,  q3,p3) are picked with the qualitative picture of the linear 

system in mind. The coordinates (ql,pl) correspond to the saddle projection, (qz,pl) correspond 
to oscillations within the (2, y) plane, and (93,~) correspond to oscillations within the z direction. 
Also note that 93 = m = 0 ( z  = i = 0) corresponds to an invariant manifold of the system, i.e., the 
planar system is an invariant manifold of the three degree of freedom system. 

The initial conditions to approximate the stable and unstable manifolds (Wg(Mh), W$(Mh)) 
are picked via the following procedure. Note that we can be assured that we are obtaining a roughly 
complete approximation of points along a slice of Wi(Mh) and W$(Mh) since such a slice is 
compact, having the structure S3. Also, we know roughly the picture from the linear case. 

1. We fix ql = pl = f e, where e is small. This ensures that almost all of the initial conditions 
will be for orbits which are transit orbits from one side of the equilibrium region to the other. 
Specifically + corresponds to right-to-left transit orbits and - corresponds to left-bright 
transit orbits. We choose e small so that the initial conditions are near the NHIM Mh (at 
ql = pl = 0) and will therefore integrate forward and backward to be near the unstable and 
stable manifold of M h ,  respectively. We choose e to not be too small, or the integrated orbits 
will take too long to leave the vicinity of Mh. 

2. Beginning with r,  = 0, and increasing incrementally to some maximum r,  = rrax, we look 
for initial conditions with q: + p: = r:, i.e. along circles in the x oscillation canonical plane. 
It is reasonable to look along circles centered on the origin (93,~) = (0,O) on this canonical 
plane since the motion is simple harmonic in the linear case and the origin corresponds to an 
invariant manifold. 

3. For each point along the circle, we look for the point on the energy surface in the (qz,pa) plane, 
i.e., the (2, y) oscillation canonical plane. Note, our procedure can tell us if such a point exists 
and clearly if no point exists, it will not used as an initial condition. 

After picking the initial conditions in (ql,pl,q~,pa, q3,ps) coordinates, we transform to the con- 
ventional CR3BP coordinates (2, y,z,z,u, i )  and integrate under the full equations of motion. The 



integration proceeds until some Poincarh section stopping condition is reached, for example x = 1 -p. 
We can then use further analyses on the PoincarC section, described below. 

Example Itinerary: ( X ;  M ,  I ) .  As an example, suppose we want a transition orbit going from 
outside to inside the moon's orbit in the Jupiter-moon system. We therefore want right-to-left 
transit orbits in both the L1 and L2 equilibrium regions. Consider the L2 side. The set of right- 
to-left transit orbits has the structure D4 x R (where D4 is a 4-dimensional disk), with boundary 
S3 x IW. The boundary is made up of W:(Mi) and W:(Mi), where the + means right-to-left, 
M i  is the NHIM around L2 with energy h, and 2 denotes L2. We pick the initial conditions to 
approximate W J ( M i )  and W:(Mi) as outlined above and then integrate those initial conditions 
forward in time until they intersect the PoincarC section a t  x = 1 - p, a hyperplane passing through 
the center of the moon. 

Since the Hamiltonian energy h (Jacobi constant) is fixed, the set of all values C = {(y, 6, z ,  i ) )  
obtained at the Poincare section, characterize the branch of the manifold of all Lagrange point 
orbits around the selected equilibrium point for the particular section. Let us denote the set as 
CTU', where + denotes the right-to-left branch of the s (stable) or 1~ (unstable) manifold of the L j ,  
j = 1 , 2  Lagrange point orbits at the i-th irlterscctio~i with x = 1 - / I .  We will look at the first 
intersection, so we have c:"~. 

The object CPU2 is 3-dimensional (.Y S3) in the 4-dimensional (y, y ,  z, i )  space. For the Jupiter- 
Europa system, we show ~lf""or Jacobi constant C = 3.0028 in Figure 10. 

Thus, we suspect that if we pick almost any point (t ', 4') in the z i  projection, it corresponds to 
a closed loop y ,~ i~  (ZY S1) in the yy projection (see Figure 10). Any initial condition (y', y', z', z'), 
where (y', y') E y,lij will be on W+"(ME), and will wind onto a Lagrange point orbit when integrated 
backwards in time. Thus, y,,i, defines the boundary of right-to-left transit orbits with (z, i) = 
(z', i'). If we choose (y', y') int(y,tij) where int(y,fil) is the region in the y e  projection enclosed 
by y,li~, then the initial condition (y', a', z', 2 ' )  will correspond to a right-to-left transit orbit, which 
will pass through the L2 equilibrium region, from the moon region to outside the moon's orbit, when 
integrated backward in time. 

Similarly, on the L1 side, we pick the initial conditions to approximate W $ ( M i )  and W+"(Mi)  
as outlined above and then integrate those initial conditions backward in time until they intersect 
the Poincare section a t  x = 1 - p ,  obtaining c:". We can do a similar construction regarding 
transit orbits, etc. To distinguish closed loops y,,i, from L1 or Lz, let us call a loop yi , i ,  if it is 
from L j , j  = 1 , 2 .  

To find initial conditions for transition orbits which go from outside the moon's orbit to inside 
the moon's orbit with respect to Jupiter, i.e. orbits which are right-to-left transit orbits in both 
the L1 and L2 equilibrium regions, we need to look at the intersections of the interiors of c:"' and 
C t s 1 .  See Figure 11. 

To find such initial conditions we first look fur intersections in the t i projection. Consider the 
projection ~ , i  : R4 $4 R2 given by (y, a ,  2, t) ++ ((z, i ) .  Consider a point (y', ? j l ,  z ' ,  i ' )  E .rrZi(~TU2) n 
7rIT,i(C:s1) # 0,  i.e. a point (yl,y', t ' ,  i') where ( z t , i - ' )  is in the intersection of the z i  projections of 
C,fU\nd c:" . Transit orbits from outside to inside the moon's orbit are such that (y', ? j l ,  z', i t )  E 

1 int(y,,;,) n int($,,). If int(yi,i,) n i n t ( ~ ; , ~ , )  = 0,  then no transition exists for that value of (z', 2 ' ) .  
But numerically we find that there are values of ( z ' ,  2 ' )  such that i n t ( ~ ; , ~ , )  n int(rt , t ,)  # 0.  See 
Figures 11 and 12. 

In essence we are doing a search for transit orbits by looking a t  a two parameter set of intersections 
of the interiors of closed curves, y:i: and y:i in the yy projection, where our two parameters are given 
by ( t ,  i). Furthermore, we can reduce this to a one parameter family of intersections by restricting 
to i = 0. This is a convenient choice since it implies that the orbit is a t  a critical point (often a 
maximum or minimum in z when it reaches the surface z =I 1 - p . )  

Technically, we are not able to look at curves y:i belonging to points (z,  i) in the zz projectio~~. 
Since we are approximating the 3-dime~lsional surface C by a scattering of points (about a million for 
the conlputations in this paper), we must look not a t  points (z, i), but a t  small boxes (z f 62, if 62) 



where 6.2 and 6.2 are small. Since our box in the z i  projection has a finite size, the points in the 
yG projection corresponding to the points in the box will not all fall on a close curve, but along a 
slightly broadened curve, a strip, as seen in Figure 12. For our purposes, we will still refer to the 
collection of such points as &. 

Figure 13: The ( X , M , I )  transit orbit corresponding to the initial condition in Figure 12. The orbit is shown in a 
3D view and in the three orthographic projections. Europa is shown to scale. The upper "ght plot includes the z = 0 
section of the zero velocity surface (compare with Figure 5(b)). 

Transfer from Ganymede to High Inclination Europa Orbit. 

Petit Grand Tour. We now apply the techniques we have developed to the construction of a fully 
three dimensional Petit Grand Tour of the Jovian moons, extending an earlier planar r e ~ u l t . ~  We 
here outline how one systematically constructs a spacecraft tour which begins beyond Ganymede in 
orbit around Jupiter, makes a close flyby of Ganymede, and finally reaches a high inclination orbit 
around Europa, consuming less fuel than is possible from standard two-body methods. 

Our approach involves the following three key ideas: 

1. treat the Jupiter-Ganymede-Europa-spacecraft Cbody problem as two coupled circular re- 
stricted 3-body problems, the Jupiter-Ganymede-spacecraft and Jupiter-Europa-spacecraft 
systems; 

2. use the stable and unstable manifolds of the NHIMs about the Jupiter-Ganymede L1 and Lz 
to find an uncontrolled trajectory from a jovicentric orbit beyond Ganymede to a temporary 



capture around Ganymede, which subsequently leaves Ganymede's vicinity onto a jovicentric 
orbit interior to Ganymede's orbit; 

3. use the stable manifold of the NHIM around the Jupiter-Europa Lz to find an uncontrolled 
trajectory from a jovicentric orbit between Ganymede and Europa to a temporary capture 
around Europa. Once the spacecraft is temporarily captured around Europa, a propulsion 
maneuver can be performed when its trajectory is close to Europa (100 km altitude), taking 
it into a high inclination orbit about the moon. Furthermore, a propulsion maneuver will be 
needed when transferring from the Jupiter-Ganymede portion of the trajectory to the Jupiter- 
Europa portion, since the respective transport tubes exist at  different energies. 

Ganymede to Europa Transfer Mechanism. The construction begins with the patch point, 
where we connect the Jupiter-Ganymede and Jupiter-Europa portions, and works forward and back- 
ward in time toward each moon's vicinity. The construction is done mainly in the Jupiter-Europa 
rotating frame using a Poincarb section. After selecting appropriate energies in each 3-body sys- 
tem, respectively, the stable and unstable manifolds of each system's NHIMs are computed. Let 
G"W+U(M1) denote the unstable manifold of Ganymede's L1 NHIM and Eu'W$(M2) denote the 
stable manifold for Europa's. L2 NHIM. We look at the intersection of G"W+U(M1) and EUrW:(MZ) 
with a common Poincarb section, the surface Ul in the Jupiter-Europa rotating frame, defined ear- 
lier. See Figure 14. Note that we have the freedom to choose where the Poincarb section is with 
respect to Ganymede, which determines the relative phases of Europa and Ganymede at  the patch 
point. For simplicity, we select the Ul surface in the Jupiter-Ganymede rotating frame to coincide 
with the Ul surface in the Jupiter-Europa rotating frame at the patch point. Figure 14 shows the 
curves G"7iy:i and EU'7:i on the (z,k)-plane in the Jupiter-Europa rotating frame for all orbits in 
the Poincarb section with points ( z , i )  within (0.0160 f 0.0008, f 0.0008). The size of this range is 
about 1000 km in z position and 20 m/s in z velocity. 

1 
-1,s - 3 . 4  .,.a . I . *  -1. 1 

x (Jupiter-Europa rotating frame) 

Figure 14: The curves "L"7:j and EUr7:i are shown, the intersections of "'"W:(M1) and Eu'W:(MZ) with 
the P o i n d  section (Il in the Jupiter-Europa rotating frame, respectively. Note the small region of intersection, 
int(Gan&) n int(Eu'7:i), where the patch point is labeled. 

From Figure 14, an intersection region on the zk-projection is seen. We pick a point within this 
intersection region, but with two differing y velocities; one corresponding to Ga"WT(M1), the tube 
of transit orbits coming from Ganymede, and the other corresponding to EUrW$(M2), the orbits 
headmg toward Europa. The discrepancy between these two y velocities is the AV necessary for 



a propulsive maneuver to  transfer between the two tubes of transit orbits, which exist a t  different 
energies. 

Four-Body System Approximated by Coupled PCRSBP. In order to  determine the transfer 
AV,  we compute the transfer trajectory in the full 4-body system, taking into account the grav- 
itational attraction of all three massive bodies on the spacecraft. We use the dynamical channel 
intersection region in the coupled 3-body model as an initial guess which we adjust finely t o  obtain 
a true $-body bi-circular model trajectory. 

Figure 4 is the final end-to-end trajectory. A A V  of 1214 m/s is required at the location marked. 
We note that a traditional Hohmann (patched 2-body) transfer from Ganymede to Europa requires 
a AV of 2822 m/s. Our value is only 43% of the Hohmann value, which is a substantial savings of 
on-board fuel. The transfer flight time is about 25 days, well within conceivable mission constraints. 
This trajectory begins on a jovicentric orbit beyond Ganymede, performs one loop around Ganymede, 
achieving a close approach of 100 km above the moon's surface. After the transfer between the two 
moons, a final additional maneuver of 446 m/s is necessary to enter a high inclination (48.6") circular 
orbit around Europa at an altitude of 100 km. Thus, the total A V  for the trajectory is 1660 m/s, 
still substantially lower than the Hohmann transfer value. 

Conclusion and Future Work. 

In our current work on the spatial three-body problem, we have shown that the invariant manifold 
structures of the collinear libration points still act as the separatrices for two types of motion, those 
inside the invariant manifold "tubes" are transit orbits and those outside the "tubes" are non-transit 
orbits. We have also designed a numerical algorithm for constructing orbits with any prescribed finite 
itinerary in the spatial three-body planet-moon-spacecraft problem. As our example, we have shown 
how to construct a spacecraft orbit with the basic itinerary (X; M, I) and i t  is straightforward to  
extend these techniques t o  more complicated itineraries. 

Furthermore, we have applied the techniques developed in this paper towards the construction of 
a three dimensional Petit Grand Tour of the Jovian moon system. Fortunately, the delicate dynamics 
of the Jupiter-Europa-Ganymede-spacecraft 4-body problem are well approximated by considering 
it as two 3-body subproblems. One can seek intersections between the channels of transit orbits 
enclosed by the stable and unstable manifold tubes of the NHIM of different moons using the method 
of PoincarC sections. With maneuvers sizes (AV) much smaller than that necessary for Hohmann 
transfers, transfers between moons are possible. In addition, the three dimensional details of the 
encounter of each moon can be controlled. In our example, we designed a trajectory that ends in 
a high inclination orbit around Europa. In the future, we would like to explore the possibility of 
injecting into orbits of all inclinations. 
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