JPL Robotics Technology
Applicable to Agriculture

From
Mobility and Robotics Systems Section
NASA - Jet Propulsion Laboratory,
California Institute of Technology

To
Jeff Steiner
USDA Agricultural Research Service
Human Detection for Safe Operation of Autonomous Vehicles

- The ability to detect humans is the most important capability for safe operation of autonomous vehicles.
- Stereo vision-based detection combines geometry and appearance methods for improved detection rates and range.
- Algorithms run in real-time onboard vehicles navigating outdoor, unstructured environments.
- POC: Andrew.Howard@jpl.nasa.gov
Real-time Human Detection Movie Screenshot

(see http://www-robotics.jpl.nasa.gov for full movie)
Automated Plant Micro-Propagation

Point of Contact:
Hari Nayar
Ph: (818) 393-2505
e-mail: hari@jpl.nasa.gov

Objectives:
• Develop vision-guided robotic techniques for shoot selection, separation and transfer to growth media
• Reduce cost and improve efficiency over manual micro-propagation procedures

Next Steps:
• Integrate machine vision to select, separate, and transfer shoots in the multiplication phase of plant-micro-propagation
• Demonstrate economical feasibility of an automated system

Product:
• Robotic work cell utilizing commercial off-the-shelf (COTS) hardware
• Custom software using JPL’s robotic vision and manipulation algorithms
• Turn key operation with simple operator interface
• Achieve faster operation than current manual techniques
• Demonstration in a commercial setting

Accomplishments to date:
• Developed a novel robotic prototype work cell for automated plant shoot preparation
• Established cost baseline for single work cell fabrication with COTS parts
• Demonstrated potential of use of robotics to increase efficiency over manual technique
• Set-up micro-propagation work cell and demonstrated two robotic manipulation techniques
• Evaluated multiple plant preparation techniques and experimentally evaluated their performance
Justification

- Current labor intensive techniques are economically viable primarily for high-value ornamental plants
- Economics of current techniques is driving this industry to other countries where labor is cheaper
- Automation would make micro-propagation more economically viable and widely used
- Maintaining sterile laboratory and clean-room conditions is easier with robotic systems
- Robotics systems can reduce repetitive motion injuries among technicians performing shoot selection, separation and transfer operations
- JPL is a world leader in research and development of robotic vision and manipulation technology
- JPL has prior experience and demonstrated success in addressing this technology area

Approach

- Collaborate with the industry and federal organizations to identify participants and target applications
- Design a robotic work-cell for automated micro-propagation using commercially available hardware
- Develop autonomous vision-guided manipulation techniques to selectively perform plant shoot separation and transfer to growth media
- Work with collaborators to demonstrate in an industrial setting

Accomplishments to date

- Cut-and-insert technique
- Cut-and-puff technique
Background

Micropropagation in commercial use for 30+ years
• Propagate plants from shoot tips (meristemic tissue)
• Use culture media and plant hormones to control growth (branching, rooting)
• Facilitates quick introduction of a plant into the market
• Rapid production of a large number of plants in a small amount of space
• Production in a laboratory is not limited by seasons
• For some plants it is the only method available for propagation
• Facilitates production of disease-free plants
• Very labor intensive, requires skilled technicians
• Currently commercially viable for high-value (ornamental foliage) plants

Micro-propagation Steps:
1. Cut shoot from stock plant and sterilize it
2. Place in growth jars with growth media; leads to multiplication of shoots
3. Separate shoots from each other
4. Repeat steps 2, and 3 for as many shoots as needed
5. Transfer shoots to rooting media to grow roots
6. Transfer rooted plants into liners and grow plants
7. Deliver to customers