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JPL Vacuum Gauge Applications £

Vacuum-Packaged Structures

« \VVacuum electronics: MMW and THz
vacuum electronics (e.g. amplifiers,
oscillators, traveling wave tubes)

« Microgyroscopes: e.g. as resonators
« RF MEMS: e.g. switches, filters

Sparks, Ansari, Najafi,
IEEE Trans. Adv. Packaging, vol. 26, 2003

Vacuum Micro-cavities

 Device performance within micro-cavity
usually affected by quality of vacuum

« Small-volumes - large pressure changes
from thermal excursions and gas desorption
« Miniature vacuum gauges integrated with
micro-cavities can non-invasively monitor
local pressures to characterize device
performance over product lifetime

Vacuum Micro-cavity

Cap

Micromachined
giructura

Vacuum
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ey Conventional Pressure Sensors
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Thermal Conductivity Gauges

« Examples: Pirani, ion gauges
 Sensitivity good at UHV conditions
 Large volume, high power: invasive

» Difficult to integrate with micro-cavities
MEMS-based pressure sensors

* Mechanisms: ,
piezoresistive,

, resonance
frequency shift, ,
radio-isotope based pressure sensors
* Low power, small volumes

» Wide-dynamic range challenging

Proposing: Carbon nanotube based
thermal conductivity vacuum gauge
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Examples: diaphragm-based for
capacitive, piezoresistive sensing

polysilicon electrade

el B

diaphragm
<100 Si A=A

Mastrangelo, Zhang, Tang, J. MEMS,
vol. 5, 1996

Recently: Radio-isotope
charged cantilever for sensing

Cantilever
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Secondary electrons — T\
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Charged particles emitted |. (| |
]y

Radipisolope —[
A. Lal et al. J. Appl. Phys. vol. 92, 2002.
H. Li and A. Lal, Proc. of the 12th Int. Conf.
on Solid State Sensors, Actuators
and Microsystems, vol. 1, 2003.
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Piezoresistive Mechanism
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C. Stampfer, C. Hierold, et al. Nano Lett.,
vol. 6, 2006.
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Piezoresistive Mechanism
» Metallic SWNTs on ALD-
deposited membranes of Al,O,4

* Pressure differential causes
membrane to bulge, inducing
strain in overlying SWNT

This Work: Thermal

Conductivity Mechanism

» Heat transferred to gas function
of pressure for sensor held at
fixed bias

+ F +E

radlatlon gas

E;, =E

otal — Lsubstrate

« Small dimension of CNT and
large TCR values enables greater
pressure sensitivity

* Non-intrusive: low power, small-
size, promising for micro-cavities



JPL  Device Fabrication Facilities
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JPL’s Microdevices Laboratory: 12,000 square feet class 10 cleanroom

ICP etchers: high density,

Conventional

RIE etchers (CF,/BCl,) low p.ressure plas:ma
(chlorine and fluorine

chemistries)

JEOL E-beam aér
Canon Excimer Laser DUV Stepper

Other key equipment:

-dc magnetron sputtering system

-CVD furnace (CNT growth)

-Fe e-beam evaporator (catalyst layer)
-PECVD dielectric deposition

-AFM, SEM (CNT imaging, characterization)

Dektak profilometer

1/16/2008 E-beam evaporator (Pt, Ti, Au electrodes) 7



JPL Formation Process
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Polyimide tape

Allgnment
marks

Fe-catalyst

Thermal SIO, 8l <100>

CVD grown SWNT

Cr (5 nm) Au (250 nm)
Final release in
10:1 BOE (with Cr
electrodes instead
of Ti) and Critical
Point drying
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aPL Catalytic CVD Growth of CNTs
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High solubility of Fe (or Ni, Co, etc.)
C in catalyst at Hydrocarbons (C H, ) =—————) C(s)+ H,
high temperatures 600-800 C

nm-sized Fe-catalytic metal

C.H,_ CNTs

N /S

——

SWNT Synthesis Conditions

CVD Tube Furnace CH, 1500 sccm & H, 50 scem @ 850 °C

L/ i 2” Quartz Tube

~ 1 nm thick Fe-catalyst film
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Pl Fabricated Devices

California Institute of Technology

Cr (3 nm)

~ Suspended SWNT

s8I0,
Au (230 nm)

Au/Ti (35 nm/ 2 nm)
thin film meander

fabricated for
comparison /

10

1/16/2008



.JPL  Measurement Set-up
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Computer interface to parameter
analyzer using ICS data acquisition
software; current sampled at 1 sec
intervals at fixed bias voltage

- |

coaxial
cables

Devices wire-bonded on
chip-carrier

Electrical feed through for
2-terminal measurements

- » Wheatstone bridge not required, sensitivity
HP 4156C ~10 pA on analyzer
Parameter Analyzer * Mechanical pump (7§O Torr — 35 mTorr);
pressure measured with convectron gauge
« Ultimate pressure ~ 10~ Torr (cryo pump);

pressure measured using ion gauge
1/16/2008 "
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JPL  Static Pressure Response

* Reduced conductance
5.0E-06 - at low pressures
Dashed lines: 1- /< Change in | detected
4.0E-06 1 \ 4 from 760 Torr — 107 Torr

» Good repeatability

<  3.0E-06 -
= Ambient (760 Torr) » Stable over weeks,
£ 2.0E-06 1 pontactg do not ghange
O irreversibly despite high
=0 € «  resistances
' e Earlier Ti-contacted
0 R —— CNTs less stable with
1 0E-06 _ Va(':uum' (10" Torr') pressure cycling

4 3 2 4 0o 1 =2 3 4 (possiblydueto
propensity of Ti for
Volt V
S ) oxidation)
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JPL Dynamic Pressure Response
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» Conductance decreases rapidly initially (760 Torr - 1 Torr)

* Response less sensitive at lower pressures; molecular collision rates
higher at higher pressures - greater cooling, greater current change

» Cooling causes current to decrease as a result of —ve TCR

* As bias voltage increased, rate of current change increases in linear
regime (inset)
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JPL  Pressure Sensitivity with Power
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Sensitivity (Amps / Torr

* Sensitivity increases with power (temperature changes higher)
At powers as low as 20 nW, measurable sensitivity ~ 40 fA/Torr
* Increases up to ~ 1 nA/Torr at ~ 14 uW

» Earlier thermal conductivity gauges show similar behavior but
at > mW-levels of power

1/16/2008 1



JPL Comparison to Thin Film Meander &
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 Thin film resistor and CNT device biased at a few watts of power

* Thin film resistor < 1% change in current and has 3 regimes:
a) Current increases from 760 Torr to ~ 200 Torr, b) plateaus, and c)
decreases below about 20 Torr

* CNT device: current decreases down to ~ 40 mTorr with ~ 35% change

1/16/2008 "



JPL Temperature Coefficient of Resistivity
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1.0E+09 CNT Device B
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@ [ e I
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X
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Temperature (K)
« TCR of thin film resistor +ve: cooling during pumpdown > R | & |1
 TCR of CNT devices —ve: opposite pressure response, as observed
» CNT device has a higher surface area to volume ratio, more sensitive
» Magnitude of TCR also higher for CNT devices = enhanced sensitivity
* Prior work indicates large variation in TCR of CNTs (experimentally and
theoretically)
* Large TCR could be attributed to tunnel barriers at contacts, defects in tubgs
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High Vacuum Regime: Meander

Thin Film Meander
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100 200 300 400
Time (sec)

500

Pressure (Torr)

 Sensitivity
disappears after ~
90 sec or ~ 10 Torr
due to constant
background signal.
 These devices
operated at low
power (< 10’s uW)
» Radiative losses
dominant at higher
temperatures ( >
200 deg. C).
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JPL High Vacuum Regime: CNT Gauge
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CNT Vacuum Gauge
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L Effect of Power at High Vacuum
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« Effect of power on unreleased and released CNT devices, thin film
resistor gauge

 Net current change Al measured for pressure change from 5 x 10
Torr to 8 x 10°7 Torr

* Al insignificant for thin film meander in this high vacuum regime

* Released CNT device has the highest Al ~ 550 nA compared to ~ 150
nA for unreleased CNT device at ~ 6 uW

1/16/2008
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JPL  Summary and Future Work
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Summary

CNT vacuum gauges:

 have a broad range of pressure response from 760 - 10-° Torr
« Sensitivity ~ 100’s nA in high vacuum regime (10-° Torr) and
Increases with power and substrate removal

« have —ve and a large magnitude of TCR (up to 0.0038 K-1)

* can be operated at low power ("W — uW)

 have an active device region footprint of < 10 um?

 are non-intrusive due to small size and passive operation

* have compatible fabrication requirements for their integration
with micromachined structures for micro-cavity applications
Future Work

 Further work is necessary to fully characterize effect of tube
characteristics (chirality, length, transparency at the contacts) on
pressure response of devices

1/16/2008 20
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Backups
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JPL  CVD Synthesis of SWNTs
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Good Growth
Role of H,

* H, required to minimize
amorphous carbon, but too much H,
or hot annealing causes particle
fusion and inhibition of SWNT
growth

* Particle growth desirable for larger

MWNTs

Gas flow dynamics

* Stagnant zone in boats results in
variable gas mixing leading to
variable SWNT yield

* Flat top holders with laminar flow
give consistent results

Frequency

I\

Nanoparticle Size

Wong, E.W. et al., Chem. Mater., 17 (2005) 237-241
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- CNT schottky diodes for THz detectors o et °"dl;:"°:;

(H. Manohara, E. Wong et al.) ~—

- CNT field emitters for THz sources (H.
Au- contact pads

Manohara, M. Bronikowski) Slllcon con Oxide

O
J_Il ’targnmd molecule

- Nanowire-based chemical spectrometer \ o ouire
e /

fo r m O I e Cu | a r I D (B H u nt E WO n g ’ M . -'-““'-"'”"-r--r
Bronikowski, et al.) % . electrode
array £m-
bedded in AlOx

wobat NANDPOTES prbaz

- CNT mechanical resonators for RF - .
signal processing (B. Hunt, L. Epp et al.) I

Switch unactuated

- CNT switches (A. Kaul, E. Wong, etal.) —_j ﬁ
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