Space Computing Systems Validation Challenges

ITI Workshop
Coordinated Science Laboratory
University of Illinois

Raphael R. Some
New Millennium Program Technologist
Jet Propulsion Laboratory
California Institute of Technology
Introduction

• Challenges of Spaceborne Computing Systems
 – The Good, The Bad, The Ugly

• Validation Approaches
 – Past, Present, Future

• Some Thoughts
1958
First U.S. satellite

Explorer 1

The Good: Small, Simple, Robust – It Worked!
Over 50 NASA Missions Currently Flying

- **Spitzer** studying stars and galaxies in the infrared
- **GALEX** surveying galaxies in the ultraviolet
- **Ulysses** studying the sun
- **Aqua** studying Earth’s oceans
- **Aura** studying Earth’s atmosphere
- **Cassini** studying Saturn
- **CALIPSO** studying Earth’s climate
- **Two Voyagers** on an interstellar mission
- **Chandra** studying the x-ray universe
- **Hubble** studying the universe
- **Mars Odyssey**, rovers “Spirit” and “Opportunity” studying Mars
- **MESSENGER** on its way to Mercury
- **New Horizons** on its way to Pluto
- **QuikScat**, Jason-1, CloudSat, and **GRACE** (plus ASTER, MISR, AIRS, MLS and TES instruments) monitoring Earth.

The Bad: Complex Expensive Systems, Severe Environments, Remote Locations, No Second Chances – Sometimes They Work,… Sometimes Not So Good
The Ugly
(Significantly more severe than Earth orbit)

• High Radiation
 – Mrads and GeV

• Extreme Temperatures
 – -270 deg F on Europa to >900 deg F on Venus,
 – >1000 cycles of 100 deg on MER (Mars)

• Vibration
 – Launch, Planetary Entry, Descent, Landing, Roving, Quakes, Impacts, Turbulence

• Power
 – <100W (typically <50W) available for computing

• Mass
 – < 10kg available for computing

• Low Error Tolerance
 – Navigation, Automated Operations, Communication, Deployments
More Ugliness

• One-Off Systems in a Cost/Schedule Constrained Environment
 • Hardware:
 – Theory: Legacy, Rad Hard, Fully Qualified, Thoroughly Characterized, Tested and Validated
 – Reality: Complex COTS and Custom Parts, Minimal Characterization and Test Possible (Current DRAMs have upwards of 60 modes of operation)
 • Software:
 – Theory: Software Fixes All Ills
• Often Can’t Test Final System Until It’s Flown
 – Realistic Space/Mission Environment Unavailable On The Ground
 – Software Not Available Until After Launch
• Next Gen Systems Need COTS Multicore Machines, Low Power, High Performance Parallel Processing: Science Data Processing (not just compression) and Autonomy (not just automation)
Flight and Ground Software Anomalies
(It’s Not Getting Any Better!)

Chart Courtesy of: Martin Feather, Al Nikora
Some Examples

• **Software:**
 – Mars Climate Orbiter (Mars ’98) – km vs miles
 – MER – buffer overflow
 – Arianne V – 64b->16b conversion register overflow
 – Cassini – command sequencer buffer size and command concatenation/reconstitution

• **Hardware:**
 – Galileo Antenna Deployment
 – Cassini Memory
 – ST5 Memory
 – MER FPGAs
The REALY Ugly

- Ground Based COTS Systems Are Not Immune
 - Neutron Induced SEU’s reported at 250nm node
 - Alpha Induced SEUs reported at 65nm node
 - COTS Supercomputers in benign lab environments require fault tolerance due to MTTF of SOTA COTS components
 - Hardware Companies are Incorporating Fault Tolerance Into Their Processors and Support Chips To Reduce But Not Eliminate The Problem
 - Some Hardware Companies are Starting To Look At Hardness By Design Techniques (radiation, noise, thermal, mfg defects,…)
 - The Issue Is No Longer “will it upset?”, But “what upset rate won’t be noticed”
 - COTS Software – Unreliable and Opaque
 - Current Software Schedules/Budgets/Failure Rates are Unacceptable
 - System Failures are Endemic
 - Accepted As Normal and Unavoidable
Validation Approaches
Past

- Gross level radiation testing of critical components
- Standard Shake & Bake of Subsystems & Systems
- Unit and Build Testing of Software
 - Simple RTOS used as a ground commanded sequencer
 - Extensive testing on ground based simulator
 - Success oriented testing of normal ops
- Extensive code walk through, and testing on simulators of operational sequences
 - Success oriented testing (does it work in expected scenarios)
- Extensive operator and engineer participation in every aspect of operation, close monitoring of sequence execution, quick human reaction to problems
- Bottom line:
 - Simplify system, test spec’d scenarios, count on human ingenuity and hope for the best
Validation Approaches Present

• Similar to Past With Some Additions:
 – Occasional Board Level Hardware Rad Test Using Custom Test Software
 – Occasional Software/System Model Based Validation (eg. Spin)
 – Occasional Software/System Formal Methods Based Validation

BUT

 – Model and Formal Methods Based Validation Difficult With Large Complex Systems
 – Still Require Significant Engineer Involvement in Operations
 – Still Find Errors in System and Application Codes, and Unanticipated Hardware Faults during mission ops
Thoughts On Validation Approaches For Future Systems

• **Assertion:** The Validation Problem Can Not Be Solved in the V&V Domain
 – The Fundamental Issue is Minimization, Knowledge and Control of State Space
 – To Achieve System Validation, The State Space Must Be Constrained
 – Once Constraints Are Placed On State Space, Automated Methods Can Be Applied

• **Need a New Design/Test/V&V Paradigm (here’s one possibility)**
 – Understand The Problem:
 • Extensive characterization of detailed component fault set/rates
 • Fault/Error propagation model
 – Fault Tolerance built into all systems/hardware/software
 • Supported by models, tools and automation at the design level
 – Automated formal methods and model based validation of code segments and system operational modes to the extent possible.

 – **Sequencer Based Software Design/Implementation**
 • Standardized constructs and implementation rules
 • Standardized representations and abstractions
 – Software JTAG Bus
 – Automated Exhaustive Test Vector Generation and Test Execution
 • Fault Injection Testing Using Fault/Error Models

 – Board level system radiation (and other environmental stresses) testing with operational software and realistic worst case system operational scenarios
 – Random Unstructured System Test in realistic (simulated) system environment