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Abstract 

Many papers have been published concerning the 
analysis of visual texture and yet, very few ap- 
plication domains use texture for image classifica- 
tion. A possible reason for this low transfer of the 
technology is the lack of experience and testing i n  
real-world imagery. In this paper, we assess the 
performance of texture-based classification methods 
on a number of real-world images relevant to au- 
tonomous navigation on cross-country terrain and 
to autonomous geology. Texture analysis will form 
part of the closed loop that allows a robotic system to 
navigate autonomously. W e  have implemented two 
diflerent classifiers on  features extracted by Gabor 
filter banks. The first classifier models feature dis- 
tributions for each texture class using a mixture of 
Gaussians. Classification is performed using Max- 
imum Likelihood. The second classifier represents 
local statistics using marginal histograms of the fea- 
tures over a region centered on the pixel to be clas- 
sified. W e  measure system performance by compar- 
ison to ground truth image labels. 

1 Introduction 

The use of visual features from imaging sensors for 
the control of autonomous robots is well established. 
Vision algorithms (most notably, stereo matching) 
are often deployed for inferring geometric informa- 

tion, such as the presence and the location of ob- 
stacles and the relative position of the robots in the 
environment. While the geometric representation 
of the world is extremely important for autonomous 
navigation, in several instances one is interested in 
a richer description of the surfaces in the scene. For 
example, two ongoing projects at the Jet Propulsion 
Laboratory (JPL) have among their goals the devel- 
opment of algorithms for classifying visible surfaces 
into a selected set of materials, based on the sur- 
face's appearance. 

The first of such projects will enable a terrestrial 
military vehicle to drive safely and efficiently cross- 
country by day and night. In this environment, the 
notion of "obstacle" based on pure geometric con- 
siderations is not sufficient. For example, a small 
bush or a patch of tall grass may be considered "ob- 
stacles" from a purely geometric standpoint, yet the 
vehicle could drive safely over them. Therefore, for 
the robot to be able to drive in vegetated environ- 
ments, the geometric scene description should be 
enriched with information about the terrain cover. 
Color analysis has been used for terrain typing, for 
example in the DEMO I11 project [I], where the 
surfaces in the scene are classified into a small num- 
ber of classes (green vegetation, dry vegetation, soil, 
rock). However, color (or, in general, multispec- 
tral analysis in the reflective spectrum) has a num- 
ber of shortcomings. First, it cannot be used at 
night. Second, it won't allow robust separation of 



dry vegetation or tree bark from certain kinds of 
soil. This is a well-known problem in remote sens- 
ing data analysis [19]. Third, the perceived color is 
a function of both the reflectivity properties of the 
surface and of the spectrum of the illuminant, which 
makes color classification a rather hard problem in 
certain circumstances (for example, with changing 
weather conditions or when parts of the scene are 
in the shade). Therefore, we are currently study- 
ing the use of other visual features (as well as of 
other sensors, such as spectrometers in the thermal 
infrared domain or laser rangefinders) to comple- 
ment color analysis for a more robust terrain cover 
classification. 
The second project deals with the processing of vi- 
sual information for rovers on Mars. Due to the long 
communication delays between Earth and Mars, as 
well as the scarce up-link opportunities, it is desir- 
able that Mars rovers have a high degree of auton- 
omy. Since the foremost goal of Mars exploration 
is the collection of surface science data, it is im- 
portant that the amount of "interesting" data col- 
lected during a mission be maximized. Therefore, 
a rover should be able to autonmousIy select geo- 
logical targets within its field of view, and to make 
motion planning decisions which maximize the sci- 
ence value of the targets that will be approached 
and sampled. For example, one may seek features 
that indicate the former presence of water and thus 
locations with higher than average opportunities for 
finding signs of life, if any exist. Examples of such 
indicators include layered sedimentary deposits and 
carbonate rocks, each of which has distinctive ge- 
olocal surfaces characteristics. Thus, the "impor- 
tance" of a rock surface as a science target is a func- 
tion of its visual appearance (the shape of the rock 
as well as the characteristics of its surface). Tar- 
gets deemed interesting based on visual inspection 
may then be tested with a spectrometer to detect 
the actual rock composition. If "interesting" areas 
are selected in an image, a strategy of prioritized 
compression, buffering and transmission can also be 
used to best exploit the scarce onboard memory and 
communication bandwidth resources [I 51. 
An important image feature that we plan to use for 
both projects, which is the object of this work, is vi- 
sual texture. A quick look at the data sets in Tables 
8-16 should convince an observer that texture is in- 

deed be powerful cue for classifying different kinds 
of terrain cover and different kinds of rock surfaces. 
Visual texture analysis has been studied for over 
two decades, and a variety of algorithms and statis- 
tical methods have been proposed (see for example, 
131, 141, 161, [8], [12], [18]). Yet, surprisingly few 
application domains use texture to classify images. 
Among them, we may count biomedical inspection 
[lo], surface quality control [9], remote sensing [13], 
and content-based indexing of image databases 151, 
[ll], [16]. We conjecture that one possible reason 
for not using texture in other domains is the lack 
of practical experience in real-world imagery. The 
vast majority of papers in the vision literature con- 
sider very simple test images, namely the Brodatz 
set or the like. Brodatz-like texture are rather ho- 
mogeneous and suffer from very few of the problems 
of real-world images (e.g., foreshortening or illumi- 
nation changes). On the other end of the spectrum, 
some work in the image databases literature consid- 
ers completely unconstrained sets of image, albeit 
often concentrating on texture patches character- 
ized by polka-dot or striped patterns. The problem 
with this kind of imagery is that the assessment of 
the system performance is rather difficult, due to 
the large variability within unconstrained data sets 
and to the difficulty of objective scoring criteria. 
In this paper we assess the performance of a se- 
lected ensemble of texture-based classification algo- 
rithms on three data sets characteristic of the ap- 
plications of our projects: autonomous navigation 
on cross-country terrain and autonomous geology. 
The image sets are therefore rather constrained (in 
both cases, they have been acquired by cameras 
on a robot) yet infinitely more realistic than Bro- 
datz collages. The problem we are interested in is 
pixel-based supervised classification. This is quite 
a different task than unsupervised segmentation (or 
clustering) which is studied by most authors. We 
argue that in the vast majority of practical applica- 
tions, classification is a more important issue than 
clustering. It also offers a higher hope to be imple- 
mented in real time, since clustering often requires 
time-consuming iterative procedures. Finally, clas- 
sification allows for a more objective performance 
assessment, since the results of the classifier can 
be compared directly with the manual labeling per- 
formed by a human operator. 



The ideal outcome of our work is a set of indicative 
performance scores, which ultimately should help 
an individual to make decisions about using of tex- 
ture classification in a practical system. Given the 
large number of algorithms available in the litera- 
ture, we had to pre-select a small number of candi- 
date techniques for our experiments. We chose to 
implement two different classifiers operating on fea- 
tures extracted by multiscale-multioriented Gabor 
filter banks. Such feature operators have proven to 
be very effective and have become a standard choice 
in most of the recent algorithms in the literature. 
The first classifier we implemented models the prob- 
ability distribution function, (pdf) of texture fea- 
tures using mixtures of Gaussian, and performs 
a Maximum Likelihood (ML) classification. This 
technique is simple and general; the Expectation 
Maximization (EM) algorithm can be used for 
training, and classification is rather fast. The sec- 
ond classifier represents local statistics by marginal 
histograms over small image squares. This tech- 
nique has been proposed recently by several authors 
and is relatively simple to implement [20]. 

2 Texture Features 

2.1 Feature extraction 

Local texture features should condense informa- 
tion from a small neighborhood of a given pixel. 
A popular technique is based on the multiscale- 
multiorientation analysis by means of a Gabor filter 
bank. We used the implementation described by 
Manjunath and Ma in [16] with Nu = 3 scales and 
NT = 4 orientations between 0 and 180'. These val- 
ues represent a good compromise between compu- 
tational complexity and classification performance. 
The filters are realized using an FFT implementa- 
tion, and the magnitude of the complex Gabor out- 
put is used as local feature f,,,(x) for each pixel x, 
scale o and orientation T .  Note that this feature 
operator is non-linear. 

2.2 Logarithm Processing 

We implemented a simple pre-processing on the Ga- 
bor features to mitigate variations in image con- 
trast (note that variations in average image bright- 

ness are filtered out by the zero-DC behavior of 
the Gabor filters). This operation consisted of tak- 
ing the logarithm of the feature values, offset by 
one: log (f,,T (x) + 1). We observed that using loga- 
rithmic pre-processing consistently gave slightly im- 
proved classification results, and subsequently used 
it in all of our experiments. 

2.3 Gaussian Smoothing 

While the features f,,,,(x) can be used directly for 
classification, we also implemented the option of lo- 
cally smoothing each component of the feature vec- 
tor with a Gaussian kernel. In this case, rather than 
the distribution of the features f,,,(x), we model 
the distribution of their variances1. A consequence 
of this procedure is that the image area represented 
by a local feature becomes larger. The standard 
deviation, aG of the Gaussian kernels was chosen 
to be proportional to the standard deviation of the 
envelope of the Gabor kernel (aG = 4a). 

2.4 Rotation Invariance 

The principal orientation of a texture patch cor- 
responding to a surface will change depending on 
the relative orientation between the surface and the 
camera. To deal with this variability, one may 
hope that the statistical model will account for 
the expected distribution of orientations, or use 
an operator which renders the texture features in- 
variant to rotation. We implemented this option 
using a rotation-invariant operator based on the 
Fourier transform in the space of the orientations 
[7]. In particular, if DFTT represents the Discrete 
Fourier Transform computed along the orientation 
axis 7, the new orientation-invariant feature vector 
is fU,&) = DFT,~ [IDFT, (fu,,(x)) I]. 

2.5 Histogram Features 

Another feature vector that can be used for clas- 
sification is formed by the normalized histograms 
of the components of fu,T(x) within a square win- 
dow centered on x. By normalized we mean that 
the histogram is divided by the number of points in 

 ore precisely, we model the variance of the square root 
of the features f,,,(z). 



the selected window. We experimented with win- Maximization (EM) algorithm on a data set of la- 
dow sizes, W, of 23 and 33 pixels, and with differ- beled points. The selection of the model order 
ent numbers, Nb, of bins (8, 15 and 30). To deter- Ni is obviously important. In our experiments, 
mine the boundaries of the segments over which to we selected such values (typically, equal to 3 or 
compute the histograms, we looked at the rninlmax 4) according to preliminary testing; we are plan- 
values of f,,,(x) over the training sets. Histograms ning to use more theoretically founded methods 
have a larger dimensionality than fu,,(x) (equal to such as cross-validation in the future. Initial val- 
NbNuN,) and provide a rich statistical characteri- ues of pjr, for the EM iterations are computed by 
zation of the local image behavior. an initial k-means clustering. This is a customary 

bootstrap technique that usually reduces the con- 

3 Statistical Texture Models vergence time of EM. We experimented with both 
full and diagonal covariance matrices uik. Note that 

The heart of a classifier is in the way it represents a classification using the full covariance matrix may 

the variability of the features within each class. We be computationally quite expensive, since for each 

have selected two algorithms that use two different pixel one must compute (Nu N,)~ xyzl Nj multipli- 

descriptions of the class statistics, one based on a (as ~ 2 1  Nj in the 

parametric model and one based on histograms. case of diagonal covariance matrices.) In order to 
enforce spatial coherence, we implemented the op- 

3.1 Models Based on Mixture of Gaus- 
sians 

Maximum Likelihood (ML) classification relies on 
the knowledge of the class-conditional likelihood 
pj (  f )  = p( f 1 j), and assigns a feature f to the class j 
that maximizes pj ( f )  . If the class priors Pj = P ( j )  
are uniform, ML and Bayesian classification coin- 
cide. Uniform priors is often a safe assumption, 
and is the only option when no further informa- 
tion is available. Alternatively, the prior for a given 
class may be chosen as the relative frequency this 
class appears in the training data set. However, 
note that, since Bayesian classification minimizes 
the expected Bayesian risk, classes with small prior 
probabilities are penalized. This can be a drawback 
in certain cases: for example, when it is important 
not to miss events with little probability of appear- 
ing. A solution, in this case, is to set different mis- 
classification costs in the computation risk (which 
is equivalent to setting different prior probabilities). 
To compute the class-likelihoods pj ( f ) ,  we used a 
mixture-of-Gaussians model: 

where G(f, pjk, ajk) is a Gaussian density with 
mean vector pjk and covariance matrix ajk. The 
parameters are estimated using the Expectation 

tion of post-processing the classification results (ex- 
pressed in terms of posterior probabilities, assuming 
uniform priors Pj) using a "soft" version of Besag's 
Iterated Conditional Modes [2]. The relation of this 
technique to mean field theory is discussed in [21]. 

3.2 Models Based on Histograms 

This classifier uses a different approach than ML. 
Rat her than maximizing the conditional likelihood 
of the feature f (x), one computes an estimate 
p(f (x)) of the density of f in a neighborhood of 
x. Then p(f (x)) is compared with the model condi- 
tional likelihood pj( f )  using a suitable metric, and 
f is assigned to the class that minimizes such dis- 
tance. In this case, both p(f (x)) and pj(f) are ex- 
pressed as marginal histograms (i.e,, as the set of 
histograms of the component of f ). Note that the 
model histogram representing pj (f ) is simply the 
average of the local histograms p( f (x)) for the pix- 
els labeled as j in the training set. Thus, any class j 
is actually represented by the mean of the histogram 
features of the points labeled as j, where the concept 
of histogram feature is defined in Section 2.4. The 
classifier simply minimizes the distance between a 
given histogram feature and such means. It is im- 
plicitly assumed that all points within the selected 
window centered around the evaluation point be- 
long to the same class. We have considered four 
different histogram distances [17]: 



where hl ,h2 are histogram features (hi,kk(i) repre- 
sents the value in the i-th bin of the histogram of 
the b-th component of f ). 
Computing the nearest class involves determining 
bin membership for each marginal histogram at ev- 
ery pixel. Since each class has different histogram 
bin boundaries, bin membership must be calcu- 
lated for each class independently. The cost of 
computing all the histograms at each pixel over 
Na with a window of size R is on the order of 
W 2 / l ~ g 2 ~ b .  Thus, the classification cost is on the 
order of Nc N, N, ( W log2 Nb + Nb) . TO reduce com- 
putational time, classification was performed on the 
set of pixels obtained by subsampling both rows and 
columns by 5. This procedure is justified because 
the windows surrounding nearby pixels are over- 
lapping (given that W > 23, resulting in a large 
number of points contributing to different local his- 
tograms. Of course, the larger the window size, the 
more similar the histograms for neighboring pixels 
will be. The histogram method thus intrinsically 
leads to smooth of the classification maps. 

4 Performance Evaluation 

We have selected three image sets for our experi- 
ments. The first two sets have been collected at Fort 
Knox with cameras mounted on the DEMO 111 Ex- 
perimental Unmanned Vehicle (XUV) [I]. One set 
contains 18 images collected by a camera in the vis- 
ible spectrum, while for the other set (25 images) 
an infrared (FLIR) camera has been used. Tex- 
ture analysis on infrared images may enable terrain 
cover classification at night. The images in the two 
sets contain a number of different situations typ- 
ically encountered while driving on vegetated ter- 
rain. We selected the images so as to obtain a 
training/testing ensemble as diversified as possible. 

Sometimes (e.g., images 2 and 3 in the FLIR data 
set, Table 11) the images look very similar, but with 
different orientation. In other instances (e.g., image 
10 and 11 in the FLIR data set, Table 12) the same 
scene is imaged from two different distances, result- 
ing in similar appearance but at two different scales. 
The third data set consists of 13 images taken in the 
JPL "Mars Yard". These images contain a variety 
of different rocks and soil types, and are considered 
representative of scenes encountered by a rover ex- 
ploring the surface of Mars. 

4.2 Class Selection and Labeling 

Selecting the set of classes is a very important and 
delicate operation. On the one hand, one's deci- 
sion should be driven by the application, selecting 
as many classes as deemed appropriate for the task 
to be carried out. On the other hand, a large taxon- 
omy may simply not make sense, if the classifier is 
unable to discriminate among such variety of classes 
within the selected feature space. Even the optimal 
Bayesian classifier will perform poorly if the class- 
conditional likelihoods overlap heavily. In practi- 
cal terms, this corresponds to situations where a 
human would label two regions having exactly the 
same texture feature f with different class labels, 
based on contextual information. 
For our experiments, we have identified four classes 
of interest in the first two data sets: soil (dirt), 
trees, busheslgrass, and sky. Discriminating soil 
from grass and bushes is important for autonomous 
navigation, and cannot be achieved by range analy- 
sis. Detecting tree lines has tactical value (although 
isolated trees can be detected robustly by range sen- 
sors). For the Mars Yard data set (Tables 15,16), 
six classes have been identified: sand, small peb- 
bles, smooth surfaced rocks, glassy volcanic (lay- 
ered) rocks, dimpled volcanic rocks, and billowy, 
medium-grained rocks. This class taxonomy reflects 
the desiderata of autonomous geology at Mars. 
Critical to evaluating algorithms is the ground truth 
for comparison. All images in the data set have 
been hand-labeled; however, not all points in an 
image have been labeled. This is because there are 
situations not well represented by any of the chosen 
classes; further, as the filters have a spatial extent, 
the feature vectors near a region boundary repre- 



sent textures from more than one class, and there- 
fore should not be used for training. The second 
column in each table of results represents the hand- 
labeled regions where each class has a unique color 
throughout the data set. Points in the labeled re- 
gions are used for training as well as for testing, as 
described in the next section. 

4.3 Performance Metrics 

To provide a quantitative assessment of the algo- 
rithms' performances, we collected the classification 
results on the labeled regions in suitable confusion 
matrices. The entry, CMj,k of such a matrix repre- 
sents the number of times a pixel labeled as j has 
been classified as k. We selected two scoring func- 
tions based on the confusion matrices. The first 
scoring function is the number of correctly classi- 
fied points over the total number of points in the 
complete training set: 

The second function provides an estimate of the 
probability of correct classification for each class: 

Note that PC actually represents the overall prob- 
ability of correct classification, assuming that the 
class prior probabilities are given by the relative 
frequencies of points for each class in the data set. 
Indeed, in such a case, we can write 

and 

PC = p(Cl j )p ( j )  
j 

One problem with the measure PC is that it is bi- 
ased toward the results of the class with the highest 
number of points in the testing set. We therefore 
also used another global measure, PC, which corre- 
sponds to the average of P(Ct j) . In other words, PC 
is the probability of correct classification assuming 
that the classes are equiprobable. 

5 Experimental Results 

We tested our classification algorithms varying a 
number of parameters described in Section 2. In 
particular, we tried with and without smoothing 
the Gabor filter outputs (see Section 2.3, Smooth = 
1-O), with and without rotation invariance operator 
(see Section 2.4, RotInu = 1-O), using diagonal or 
full covariance matrix for the Mixture Model algo- 
rithm (FullCov=l-0), and with and without spatial 
coherence enforcing (see Section 2.4, Spat Coh= l- 
0). We first trained the classifiers over the com- 
plete labeled data sets. This best-case scenario is 
important to understand the intrinsic limitations of 
our techniques. We also ran our experiments using 
only one half of the images for training, and the 
remaining half for testing. 
The performances varied considerably with differ- 
ent parameter selection. The numerical results cor- 
responding to the optimal parameter selection are 
shown in Tables 1-3. For the Mixture Model clas- 
sifier, the parameter vector that gave the best per- 
formances (in terms of PC) was consistently equal 
to Smooth=l, RotInu=O, FullCov=l, SpatCoh=l. 
Tables 4 and 5 show the classification results af- 
ter invididually varying each of the parameters with 
respect to the optimal combination for the Visible 
Spectrum Dataset. Note that in particular, enforc- 
ing rotation invariance consistently deteriorated the 
results. Using diagonal covariance matrices rather 
than full (which, as discussed above, would reduce 
the computational burden) does not seem to de- 
grade the results dramatically, at least when only 
half of the images are used for training. Smoothing 
the Gabor features and enforcing spatial coherence 
appear to be both very important operations to en- 
sure good classification results. 
For what concerns the Histogram method, there 
are two more variables to be considered (Nb and 
W), as well as the choice of the histogram dis- 
tance (see Section 3.2). The Chi-square distance 
consistently gave better classification results than 
the other three, and we decided to only show results 
with such a choice. Furthermore, given that the His- 
togram method has inherent low spatial resolution 
(because of the window size W), we decided not to 
use spatial coherence enforcement post-processing 
(SpatCoh=O). It turned out that there was no pa- 
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Figure 1: Confusion matrices for the results of Table 
1 using the Mixture Model algorithm. 

rameter vector that was optimal for all three data 
sets. Indeed, for the Visible Spectrum and the Rock 
Dataset, the optimal parameters where Smooth=l, 
Nb=15 and W=33 (as in the Mixture Model case, 
the rotation invariance operator always degraded 
the results, and we will assume RotInv=O in the 
following.) For the IR Dataset, however, the best 
results were attained with Smooth=O, W=33, and 
Nb=30 when all images were used for training, or 
Nb=15 when training was performed on only one 
half of the images. In the case of the Visible Spec- 
trum Dataset, if no smoothing is performed on 
the Gabor features (Smooth=O) , the performances 
lower to Pc=0.7532, Pc=0.7651 when training 
on full dataset, and Pc=0.6381, Pc=0.5727 when 
training on half dataset. The matrices in Table 5 
show the results for different choices of the param- 
eters Nb and W in the Visible Spectrum Dataset 
(assuming Smooth= 1). 
In Tables 8-16 we show in the third and the fourth 
columns the classification results obtained using 
the optimal parameters for the mixture-model and 
histogram-based classifiers respectively. These re- 
sults have been obtained with the classifiers trained 
over each whole data set. 

6 Conclusions 

We have assessed the performance of two repre- 
sentative texture-based classification methods on 
three sets of real-world images. The two classi- 
fication methods considered (Mixture Model and 
Histogram) yielded fairly consistent results in most 

(fill) (Half) 

Figure 2: Confusion matrices with rows normalized 
to 1 for the results of Table 1 using the Mixture 
Model algorithm. 

(fill> (Half) 

Figure 3: Confusion matrices for the results of Table 
2 using the Mixture Model algorithm. 

(fill) (Half) 

Figure 4: Confusion matrices with rows normalized 
to 1 for the results of Table 2 using the Mixture 
Model algorithm. 



Table 1: Classification performance on visible spectrum image data set. The performance measures are 
described in the text. Results for two different runs are shown: 1) train on entire data set, test on entire 
data set, 2) train on half data set, test on other half. 

Visible Spectrum Dataset 

Prob. Correct 

PC 
PC 
P(CI 1 )  (soil) 
P(C12) (trees) 
P(C13) (bushes,grass) 

P(C14) (sky) 

Table 2: Classification performance on infrared data set (see caption of Table 1). 

IR Dataset 

Full 
Mixture Hist 

0.8507 0.7561 
0.8649 0.7841 
0.9305 0.8159 
0.7418 0.7083 
0.7961 0.6639 
0.9909 0.9488 

Table 3: Classification performance on Mars Yard rocks data set (see caption of Table 1). 

Half 
Mixture Hist 

0.7014 0.6686 
0.6805 0.6258 
0.8463 0.8707 
0.5660 0.4936 
0.6223 0,5558 
0.6874 0.5830 

Half 
Mixture Hist 

0.8612 0.7868 
0.8211 0.7207 
0.9294 0.8911 
0.7169 0.4749 
0.6612 0.5886 
0.9769 0.9281 

Prob. Correct 

PC 
PC 
P(CI 1) (soil) 
P(C12) (trees) 
P(C13) (bushesgrass) 

. P(C14) (sky) 

Rock Dataset 

Full 
Mixture Hist 

0.9164 0.8564 
0,9019 0.7955 
0.9492 0.9260 
0.7761 0.6776 
0.8930 0.6816 
0.9893 0.8971 

Half 
Mixture Hist 

0.4071 0.4028 
0.3963 0.4227 
0.4267 0.3545 
0.2581 0.5274 
0.2769 0.2912 
0.3547 0.3584 
0.5350 0.6626 
0.5267 0.3420 

Prob. Correct 
PC 
PC 
P(CI 1) (sand) 
P(C12) (pebbles) 

P(Cl3)  
p(c14)  
P(C15) 
p(c16)  

Full 
Mixture Hist 

0.6321 0.4910 
0.6812 0.5167 
0.6307 0.5047 
0.8603 0.6960 
0.4734 0.3539 
0.5189 0.3556 
0.7963 0.6105 
0.8075 0.5794 
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Table 5: Probability of correct classification (PC) 
using the Mixture Model algorithm as a function of 

(fill) (Half) different parameters (see text.) 

Figure 5: Confusion matrices for the results of Table 
3 using the Mixture Model algorithm. 

Visible Spect rum Dataset  

I Visible Spect rum Dataset  I 

PC 
RotInv=l 
Smooth=O 
Fu1ECov=O 
SpatCoh=O 

(Half) 

Mixture 
Full Half 

0.7498 0.5908 
0.7999 0.6518 
0.8187 0.6877 
0.8136 0.6480 

, , 
I Visible Spect rum Dataset  I 

I I I 

W=33 I 0.6561 1 0.6686 1 0.6578 
(Half) 

Table 6: Probability of correct classification (PC) 
using the Histogram algorithm with different values . 

of the paraneters Nb and W with respect to the case 

Figure 6: Confusion matrices with rows normalized 
to 1 for the results of Table 3 using the Mixture 
Model algorithm. 

I Visible Spect rum Dataset  1 

1 Visible S ~ e c t r u m  Dataset  I 

Visible Spect rum Dataset  

(Half) 

PC 
RotInv=l 
Smooth=O 
Fu1ZCov=O 
SpatCoh=O 

Table 4: Probability of correct (pc) Table 7: Probability of correct classification (PC) 

using the Mixture Model algorithm as a function of using the Histogram algorithm with different values 

different parameters (see text.) of the paraneters Nb and W with respect to the case 
of Table 1. 

Mixture 
Full Half 

0.6975 0.5370 
0.7835 0.6869 
0.8007 0.7056 
0.7868 0.6522 



cases, although the Mixture Model algorithm was 
almost always slightly superior. The performances 
were rather satisfactory for two of the dataset con- 
sidered, with a simple set of terrain cover classes. 
The results on the geological data set, however, 
where a more ambitious ensemble of surface classes 
was targeted, were less impressive. One reason 
might be that  hand labeling was based on more cri- 
teria than mere visual texture. Nevertheless, even 
in the case of the geological database, the correct 
classification rate was much higher than the bound 
of random classification, which suggests that  the in- 
formation in its present form may be useful when 
used in conjunction with additional features other 
than texture, such as color and shape. 
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Table 8: Visible spectrum data set. (a) original gray scale image (b) hand labeled regions (c) results using 
mixture of Gaussians model (d) results using histogram model. The results shown were generated after 
training on the whole data set. Classes are sky (red), trees (cyanlblue), dirtlsoil (green), bushes/grass 

(purple). 



Table 9: Visible spectrum data set, cant. (a) original gray scale irnage (b) hand labeled regions (c) results 
using mixture of Gaussians model (d) results using histogram model. The results shown were generated 
after training on the whole data set. Classes are sky (red), trees (cyanlblue), dirtlsoil (green), busheslgrass 

(purple). 



Table 10: Visible spectrum data set, cout. (a) original gray scale image (b) hand labeled regions (c) results 
using mixture of Gaussians model (d) results using histogram model. The results shown were generated 
after training on the whole data set. Classes are sky (red), trees (cyanlblue), dirtlsoil (green), bushes/grass 

(purple). 



Table 11: Infrared data set. (a) original gray scale image (b) hand labeled regions (c) results using mixture 
of Gaussians model (d) results using histogram model. The results shown were generated after training on 
the whole data set. Classes are sky (red), trees (cyanlblue), dirtlsoil (green), busheslgrass (purple). 



Table 12: Infrared data set, cont. (a) original gray scale image (b) hand labeled regions (c) results using 
mixture of Gaussians model (d) results using histogram model. The results shown were generated after 
training on the whole data set. Classes are sky (red), trees (cyanlblue), dirt/soil (green), bushes/grass 
(purple). 



Table 13: Infrared data set, cant. (a) original gray scale image (b) hand labeled regions (c) results using 
mixture of Gaussians model (d) results using histogram model. The results shown were generated after 
training on the whole data set. Classes are sky (red), trees (cyan/blue), dirt/soil (green), busheslgrass 

(purple). 



Table 14: Infrared data set, cont. (a) original gray scale irrlage (b) hand labeled regions (c) results using 
mixture of Gaussians model (d) results using histogram model. The results shown were generated after 
training on the whole data set. Classes are sky (red), trees (cyanlblue), dirtlsoil (green), busheslgrass 

(purple). 



image (b) hand labeled regions (c) results using mixture 
model. The results shown were generated after training 
, small pebbles (green), smooth surfaced rocks (magenta), 
~cks  (red), medium-grained rocks (blue). 

Table 15: Mars yard rocks data set. (a) original 
of Gaussians model (d) results using histogram 
on the whole data set. Classes are sand (yellow) 
glassy volcanic rocks (cyan), dimpled volcanic rc 



kg.: I 

Table 16: Mars yard rocks data set, cont. (a) original image (b) hand labeled regions (c) results using 
mixture of Gaussians model (d) results using histogram model. The results shown were generated after 
training on the whole data set. Classes are sand (yellow), small pebbles (green), smooth surfaced rocks 
(magenta), glassy volcanic rocks (cyan), dimpled volcanic rocks (red), medium-grained rocks (blue). 




