
Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

ReSTful OSGi Web Applications Tutorial

Khawaja Shams & Jeff Norris
California Institute of Technology – Jet Propulsion Lab



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Ensemble



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

AGENDA

• Background and discussion on technology
• The architecture that works for us
• Brief Demo of Application
• Tutorial and Exercises
• Best Practices
• Conclusion



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Background

Frameworks, Technologies, and Protocol



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

HTTP
• Standard protocol for communication between a client and server
• URI

� addressability 
� Hypermedia links

• CRUD operations 
� PUT
� GET
� POST
� DELETE

• Stateless
• Cacheable 



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

ReST and ROA

• Applications divided into resources
• Communicate through exchanging representations of 

resources : Representational State Transfer
• Statelessness
• Uniform interface
• Addressability



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

OSGi

• Revolutionary level of modularity
• Dynamic extensibility
• Scoping of modules



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Technologies

• Restlet
• Equinox
• Jetty and Apache Tomcat



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Motivation

Why we went this route?



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Requirements
• Serve a diverse Set of consumers

� Standalone java, C, C++ applications
� RCP Applications
� Perl 
� Shell Scripts

• Collaborative development from three NASA centers (Ensemble)
• Rapid prototyping, development, and deployment of services and 

clients
• Decoupling Services (Untangling the Web)
• Security
• High performance



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Ensemble ReST leverages…
Eclipse and OSGi

• Eclipse
� Rapid development within Eclipse
� Eclipse Debugger
� Test application from within Eclipse
� Easy export process to production servers

• OSGi
� Modularity in code
� Runtime extensibility
� Changes can be limited to specific modules

� Rapid deployment of modifications
� Minimizes risks when redeploying



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Ensemble ReST leverages …
HTTP and ReST

• HTTP Protocol
� Widely supported 

� Programming Languages
� Web Browsers

� Resources are completely decoupled
� Fast performance, especially for binary transfers
� Standardized authentication and encryption schemes

• ReST
� Uniform interface to do operations on resources
� Hierarchical URIs makes writing and consuming sources 

more intuitive
� Addressability
� Statelessness is great for performance



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Tutorial



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Scenario

• Restbots
� Goal and Direction
� Charges

• Restbot Arena
• Server Application
• RCP Application
• Java Restbot installer



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Exercise 1 

• Goals:
� Learn how to :

� accept updates to a resource
� write a client that updates a resource

• Tasks:
� Modify ReSTlet code to accept updates in Restbot goals
� Modify RCP application to update Restbot goals on click



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

What happens to my request after launch?
• HTTP Status Codes
• Successful Codes (2XX):

� 200 OK
� 201 Created
� 202 Accepted
� 204 No Content

• Redirection Codes (3XX):
� 301 Moved Permanently
� 304 Not Modified

• Client Error (4xx)
� 400 Bad Request
� 401 Unauthorized 
� 403 Forbidden
� 404 Not Found
� 405 Method Not Allowed

• Server Errors (5xx)
� 500 Internal Server Error



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

What is a resource?

• Addressability
• CRUD
• Statelessness



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Exercise 2 : Your own resource

• Goals:
� Learn:

� How to create, register, and develop a new resource
� How to leverage ReSTlet API for operating on the resource
� How to leverage HTTP status codes

• Tasks:
� Create a new resource
� Register the resource through extension point
� Implement required methods
� Modify client to access the resource
� Add status codes to your resource
� Modify client to interpret and handle status codes



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Best Practices



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

HTTP Methods

• Safe Methods
� GET
� HEAD

• Idempotent methods
� GET
� HEAD
� PUT
� DELETE

• Unsafe and non-idempotent method:
� POST

• Why this is important?



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Apache HTTP Client Performance

• Use only one client for your entire application
• Application multithreaded? 

� Use MultiThreadedHttpConnectionManager

• Release a connection after you are done with the 
request; eg: get.releaseConnection()

• Request and Response Streaming



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Recipe for ReSTful Web Applications

• Identify Resources that you would like to expose
• Address addressability 
• Decide which operations should be allowed
• Develop the resources (make extensive use of the 

status codes)
• Test and Deploy



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Conclusion



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

Key Development Considerations

• How modular is your code base? (OSGI)
• How easy is it to access you application? (ReST)
• How hard is it to debug the application (Eclipse)
• What impact does adding a resource have on:

� Existing clients
� Existing applications

• How can you test your application? 
� JUnit
� Firefox Poster Plugin

• How to secure the application and still make it 
accessible? (HTTP, SSL)



Ensemble ReST |  ReSTful OSGi Web Applications Tutorial|  © 2008 by Khawaja Shams, Jeff Norris

For more information…

• ReSTful Web Services in Perl
� http://www.onlamp.com/pub/a/onl

amp/2008/02/19/developing-
restful-web-services-in-perl.html

• OSGi on the Server Side
� http://dev2dev.bea.com/pub/a/200

7/12/osgi-introduction.html

• RESTful Web Services


