
(iN4 V

teo? - (J1ft /
Studies in Software Cost Model Behavior:

Do We Really Understand Cost Model Performance?

Karen Lum
Jet Propulsion Laboratoryl

California Institute of
Technology

ktlum@jpl.nasa.gov

Jairus Hihn
Jet Propulsion Laboratoryl

California Institute of
Technology

jhihn@jpl.nasa.gov

Abstract1

Tim Menzies
Lane Department of
Computer Science

West Virginia University.
tim@menzies.us

While there exists extensive literature on software cost estimation techniques, industry practice continues
to rely upon standard regression-based algorithms. These software effort models are typically calibrated
or tuned to local conditions using local data. This paper cautions that current approaches to model
calibration often produce SUb-optimal models because of the large variance problem inherent in cost data
and by including far more effort multipliers than the data supports. Building optimal models requires that a
wider range of models be considered while correctly calibrating these models requires rejection rules that
prune variables and records and use multiple criteria for evaluating model performance. The main
contribution of this paper is to document a standard method that integrates formal model identification,
estimation, and validation. It also documents what we call the large variance problem that is a leading
cause of cost model brittleness or instability.

I. INTRODUCTION
In the 21 st century, software managers have access to many different estimation tools. So how does one
determine what is the right model to use over varying domains and organizations? This is a more serious
problem than generally recognized because of the underlying large variance problem that is typically
found in cost and effort data sets [1]. The variance problem causes model brittleness and makes it difficult
to distinguish performance across various models. This is a pressing problem since effort estimates are
often inaccurate. Early lifecycle effort estimates can be inaccurate by up to 400% [2, p310]. In 2001, the
Standish group reported that, 53% of U.S. software projects ran over 189% of the original estimate [3]. In
a study of NASA software development projects, the most frequently identified cause (71 %) of cost
overrun with the largest impact (35% contribution to observed cost growth) was basic failures in planning,
estimation & control [4]. So the question becomes, how can we stop project managers and sometimes
cost estimators from using the wrong (i.e. sometimes the worst) method just because it is convenient?

Clearly, better software estimation techniques are needed, as has been demonstrated by the various
estimation techniques that have been proposed including clustering [5], neural networks [6], and case
based reasoning [7]. In industry, the most commonly-used formal techniques are parametric model and
regression-based techniques such as those used in COCOMO 81 [2], COCOMO II [8], SEER-SEM [9],
PRICE-S [10], and SLIM [11].

Unfortunately, there are very few published studies that empirically compare this diverse set of
techniques. Those that have, such as Briand [12], Smith [13], Finnie [14], Gray [15], and Mair [6], are
limited in scope. What is more usual are narrowly focused studies, such as those conducted by Kemerer
[16], Lum [1], and Ferens [17] that test linear regression models in different environments. Given the
need, why aren't there more studies comparing software effort models?

I The research described in this abstract was carried out at the Jet Propulsion Laboratory. Calil"JrI1ia Institutc of Technology, under a cDntracl
with the National Aeronautics and Space Administration. Kelerence hcrcin to any specific commercial product. proccss. or service by trade name.
trademark, manulacturcr, or otherwisc. tiDes not constitutc or imply its endorsemcnt by the United Slates Govcrnment.

One possible explanation for these narrowly-focused studies is that comparing different effort models is
fundamentally difficult. As shown in Table 1, standard software effort estimation data suffers from very
large performance deviations. The table shows thirty experiments where ten records (at random) were
selected as a test set. Effort models were built on the remaining records, and then applied to the test set.
Table 1 is sorted by the average deviation (in the final column) of performance scores. Note that the
average deviation on the error can grow to over 300 times larger than the mean. Such large deviations
make it difficult to distinguish the performance of different effort estimation models. Worse still, these
deviations mean that managers cannot check if they are using the wrong (i.e. the worst) technique.

Table 1. Effort Modeling Results

co(l>L~.Ill(ll

eocSLmo::l\!:oI)::
COCSl.~.ftll

eocSl.aU
eoe8Uiic:iJl;l~~

eocSlco:iee
(OeSl};j:Jll'm:!l
nJI,,~9)"eaummil:q:"!1l

nasa93.ur..avioIlicsmonitot'
nasa~J ~{ljecg1';

na,,~~ JeeotM.5
na>~93 :"~M 1975
n~sa9Jfg.g

ILl \ a9J mod@;d
llasa93all
n3saHyel1.9 BO
n3,a~3p!ll;e(tg:ro

113sa93ceD~2

n3sa93 Illo::l\!:e

reCDrd-s

Ilnl;'" Ifntl
lfJ ,D
II :0
14 ,0
53 ,0
JJ W
IS :0
II H'
to 10
20]0
28]0
19 :0
27 :0
i{l W
59 :0
S, :0
1:& Ie,
B :0
:n ~o

11 H)

a.\'er~ge lest ~rr(l[- mmre=
\~'!' Ir3"~:dic~'*"'1'': _a~-t Ur1,{ I I
," ~" (td::'4: d I i:-\- -I ~

me:'lc id ~\-';

~4 2~ ~~

32 27 37
SO 49 95
.:;1 45 ~a;

47 51 iO,7
~2 47 m
,-, 66 139

:~ :~ 1~~
M ,42 2C~

SO 1~9 1D9
S2 i91 233
53 12~~ 235
58 149 254
60 iS7 1M)
E: 2ll 160
56 lfS 296
H ,48 BS

ISS 649 M4

This article reports an extensive study using data mining techniques to identify the best performing
models for varying specializations of records and variables. The tool developed to perform the analysis is
called COSEEKMO, as the data we had available were all COCOMO data sets. The techniques
described can easily be generalized to other standard models.

II. COSEEKMO
COSEEKMO is a tool for assessing different estimation models based upon COCOMO data sets using
data mining techniques despite large deviations. COSEEKMO does this by generating numerous effort
models from a specified data set using a range of techniques (local calibration, linear regression, model
trees and the WRAPPER attribute selection algorithm [18]). Each technique is selected for its potential
value in improving model prediction and reducing performance deviance. For example, the WRAPPER
can cull the superfluous noisy attributes that confuse an effort model. The effort models found by
COSEEKMO are assessed via rejection rules that cull the weaker models. Using the rules, the deviation
in model performance seen in Table 1 can be significantly reduced. Without them, we show that certain
classic effort estimation experiments cannot be reproduced.

The key elements of COSEEKMO are

1. The capability to repeatedly generate random data subsets containing records used for
calibration/tuning and hold out or test sets to evaluate model performance (validation)

2. Programmable Rejection Rules for quantitatively assessing model performance
3. Wrapper for culling non Value-added cost drivers

Random data sets and test sets

The ability to randomly select a specified number of records as a test set and then use the remaining
records for calibration/tuning, and to do this as many times as you want, is an important feature that
cannot easily be performed manually by an estimator. Each randomly selected set is a different set than

the next random set. This capability, in essence, gives the estimator a large dataset, from which to
develop better, more accurate models.

Rejection Rules

The rejection rules are the core of COSEEKMO. In our own work, we revised the rules until they satisfied
certain sanity checks.

In Experimental Methods for Artificial Intelligence, Cohen advises comparing the performance of a
supposedly more sophisticated approach against a simpler "straw man" method [19, p81]. In
COSEEKMO the straw man is a model based only on lines of code because clearly all other models are
superfluous if estimates learned from just lines of code perform as well. Hence, we always ensure that
one of the attribute subsets explored is just lines of code and effort.

Another important sanity check is that any new model should outperform COCOMO 81, or one should just
use the off-the-shelf version of the model. To check this, the COCOMO 81 model is always explored,
based on whether that software is an embedded system; a semi-detached system; or an organic system.

An important final sanity check was that the rules should able to reproduce at least one historical expert
effort estimation study. Initially, COSEEKMO failed this sanity check since an early version of its rules
could not reproduce Boehm's 1981 COCOMO 81 model from the original COCOMO 81 data set.

In addition to these sanity checks, the following model evaluation rules were used in this study:
• Rule 1 is a statistical test condoned by standard statistical textbooks. If a two-tailed t-test reports

that the mean of two treatments is statistically different, then we can check if one mean is less
than the other.

• Rule2 (which checks for correlation) is a common check used at JPL: the best effort model tracks
well between predicted and actual values. Without rule2, many parts of our data produce multiple
survivors.

• Rule 3 is added in case there is more than one model with the same average performance and
R2 The model with the smallest MMRE is selected

I00 ~ Ipredicted! - actual! I
MMRE=-L,

T, actual!

• Rule4 was added because PRED is a widely used performance measure for effort models. [20].

PRED(N) = I00f.{lilMRE, ~ I~'II
T i 0 otherwise

• Rule5 can be justified from Miller's work [21]. This rule rejects treatments that have similar
performance, but use more attributes.

Different rules are applied because they measure different aspects of model performance. For example,
Correlation, MMRE and PRED are subtly different performance measures. Overall, PRED measures how
well an effort model performs while MMRE measures poor performance. A single large mistake can skew
the MMREs and not affect the PREDs. Shepperd and Schofield comment that:

MMRE is fairly conservative with a bias against overestimates while Pred(30) will identify those
prediction systems that are generally accurate but occasionally wildly inaccurate [7, p736].

Wrapper

COSEEKMO's attribute pruning method is called the "WRAPPER" [22]. Starting with the empty set, the
WRAPPER adds some combinations of columns (columns contain data on effort, size, and fifteen
COCOMO 81 cost drivers) and asks some learner (in our case, the LC method discussed below) to build
an effort model using just those columns. The WRAPPER then grows the set of selected attributes and
checks if a better model comes from learning over the larger set of attributes. The WRAPPER stops when
there are no more attributes to select, or there has been no significant improvement in the learned model
for the last five additions (in which case, those last five additions are deleted). Technically speaking, this
is a forward select search with a "stale" parameter set to 5.

COSEEKMO uses the WRAPPER since experiments by other researchers strongly suggest that it is
superior to many other attribute pruning methods. For example, Hall and Holmes [23] compare the
WRAPPER to several other attribute pruning methods including principal component analysis (PCA~ a
widely used technique). Column pruning methods can be grouped according to:

• Whether or not they make special use of the target attribute in the data set such as "development
cost";

• Whether or not they use the target learner as part of their pruning.
PCA is unique since it does not make special use of the target attribute. WRAPPER is also unique, but for
different reasons: unlike other pruning methods, it does use the target learner as part of its analysis. Hall
and Holmes found that PCA was one of the worst performing methods (perhaps because it ignored the
target attribute) while WRAPPER was the best (since it can exploit its special knowledge of the target
learner). WRAPPER is thorough but, theoretically, it is quite slow since (in the worst case), it has to
explore all subsets of the available columns. However, all the data sets in this study are small enough to
permit the use of the wrapper.

III. DATA
The data used in the analysis is from the original 63 records in the COCOMO 81 data set and a historical
NASA data set we refer to as NASA93 as it has 93 flight and ground records form multiple NASA Centers
that completed from the late 1970's through the late 1980's. The NASA93 data has been in the public
domain for many years but few have been aware of it. It can now be found at the PROMISE (Predictor
Models in Software Engineering) web site. 2 PROMISE is an organization of software engineers working
to organize data sets that can be used to verify existing studies and to make data available for future
research. To participate in a PROMISE workshop one must promise to make their data available to the
PROMISE repository.

In this study, COSEEKMO built effort estimators using all or some part of two COCOMO 81 data sets
(nasa93 and coc81). Each part selected some subset of the total records. The parts and data sets are
described in more detail in Figure 1.

"" Coc81: has 63 records in the COCOMO 81 format
05 Nasa93:0 has 93 NASA records in the COCOMO 81 format

AI/. selects all records from a pmiicular source; e.g.. "coc81_all" and "nasa93_all"

Categorv:
VJ is a NASA-specific designation selecting the type of project; e.g. avionics, data capture, etc.c;

'C
Fg. selects either "f' (flight) of "g" (ground) software0

b/]
<U Killc/-:;
u selects records relating to the development platform; max = mainframe and mic =microprocessor
(:

.~ Lang. selects records about different development languages
05 Center: l1asa93 designation selecting records relating to where the software was built0
t,::

05 Project: nasa93 designation selecting records relating to the name of the project...
Mode: selects records relating to different COCOMO 81 development modes; org, sd, and e are ShOl1

~
OIl for organic, semi-detached, and embedded (respectively)v
OIl

T1]JC: selects different COCOMO 81 designations and include "bus" (for business application) or "sys"~
::l

(/J (for system software)
Year: is a nasa93 tern1 that selects the development years, grouped into units of five; e.g. 1970, 197 I,

1972, 1973, 1974 are labeled" 1970"

Figure 1. Data and subsets used in this study.

2 http://promise.site.uottawa.ca/SERepository/

IV. EXPERIMENTS AND RESULTS
When an analysis contains tens of thousands of runs over hundreds of experiments, there are many
different ways of looking at the results. In this paper the focus has been narrowed by only addressing
three main issues that we deemed would be of most interest to cost model developers and cost
estimators:

• Local Calibration and Stratification
• Finding the Best Model
• Cost Driver Instability

Local Calibration and Stratification

The two methods most commonly used to tune models to local environments are

• Local calibration (or LC); i.e. using local data to estimate the 'a' and 'b' parameters of the

standard COCOMO equation: ejlort(personmonths) =a * (KLOC h)* (I]EM)]

• Stratification; i.e. given a database of past projects, and a current project to be estimated,
restrict local calibration to just those records from similar projects.

These two approaches can easily be shown to fall short of what should be expected from a best model. If
stratification improved performance, then subsets of the data should usually generate better models with
lower error rates than models learned from all the data. This is not necessarily the case as can be seen in
Figure 2:

• The dashed horizontal lines of Figure 2 shows the error rate of models learned from all data from
the two sources.

• The crosses of Figure 2 show error rates seen in models learned from subsets of the data.

• Seven subsets fall below the lines; i.e. those subsets generate models with lower and better error
rates;

• But an equal number fall above the lines; i.e. they generate higher and worse error rates.

....- Goc81- nasa93
('Ci 15
.3 55 .3 200@ I I I @ X-- -- 180..-...

50-
.$ f- >< - .$
('Ci

~< X
('Ci 160

E 45 f- - E 140'Z '~rJ:..
Q) ._.._.~ ---x--_· -- ------~(--. Q) 120I 40 - -
('Ci ('Ci 100::::: :::::
t) 35 - - -"

)(u 80 ~-3 >(-3 xr.f:! 30 r.f:! 60 - -cor- --- --- ~./.-.•~
.0 f- - .0 /;- ~~x

('Ci ('Ci--- --- 40 A:X::<
C 25 I I I C

ffi 0 20 40 63 ffi 0 30 60 93E E
size size

Figure 2. The plots show mean performance error (i.e.
I(predicted - actual)IJactual) found after 30 experiments with
each subset. In each experiment, ten records were selected at
random to be a test set. Effort models were built on the
remaining records using COCOMO's local calibration method [2,
p526-529], then applied to the test set. The horizontal lines show
the mean error performance using all records in the sources. The
crosses show the mean error performance seen in models
learned from subsets of that data. Crosses below/above the lines
indicate models performing better/worse (respectively) than
models built from all the data.

In this study we looked at 207 possible stratifications, only four subsets generate better effort models. It
was found that in 98% of the cases stratification was not beneficial for our data. This is not to say
stratification is always useless. Rather, stratifications must be selected and assessed with greater care
than has been practiced to date.

A similar conclusion was found for local calibration. While LC sometimes produces the best models, often
it does not. Figure 3 compares standard LC with the multiple algorithms contained in our COSEEKMO
tool. Note while standard LC sometimes does as well as anything else, COSEEKMO's algorithms yielded
models with overall smaller mean error and much smaller standard deviation on the model error.
Reducing the error deviation is most important: without it, the results generated from effort modeling are
highly unreliable.

The results indicate that effort modeling needs to be much more than just LC and stratification. In our
view, LC and stratification are just two members of a large set of modeling methods. Our proposed effort
modeling methodology is to try all the methods, then select the one that works best for the local domain.

150 - nasa93 - -
(j)

100 COC8i c:::=:::::J.D! - -
(f)

50 000.0.0001 •• 1 •••••- -
0 - -

600 - r -
standard LC ------- !500 - COSEEKMO ------ -

LU 400 -

i
-

a::
:?:
-g 300 - -

200 - -~'

~
100 f- I

j~ . -
I ~

~

~~/~----_·-·- ... '·"'II

/-.~.-.

0
w Ia:: 150 - -
:?: 100 - -<:: .. ~~-co 50 - -(j) ~~~s-...'~.,_ __ -- .. ~.~/·---~-~
E 0

19 data sets, sorted by sd(LC)

Figure 3. The top plot shows the number of projects in 27 subsets of our two data sources. The
middle and bottom plots show the standard deviation and mean in performance error. Data
subsets are sorted by the error's standard deviation. Effort models were learned via either

standard LC or C05EEKMO.

Finding the Best Model

A summary of the best models as identified by COSEEKMO is displayed in Table 2. The stratifications
shown are for all data subsets of coc81 and nasa93 with 20 or more records. There are five observations
we would like to draw to the reader's attention.

Firstly, COSEEKMO's rules were adjusted until they concurred with Boehm's 1981 analysis. Hence, there
are no surprises in the coc81 results. Coc81 did not require any of COSEEKMO's advanced modeling
techniques (model trees, or the WRAPPER); i.e. this study found nothing better than the methods
pUblished in 1981 for processing the COCOMO 81 data. For example:

• The embedded and organic "a" and "b" values worked best for coc81 embedded and organic
systems (row 3 and row 6 of Table 2).

• Local calibration was called only once for coc81.all (row 5 of Table 2) and this is as expected.
Coc81.all is a large mix of different project types so it is inappropriate to use canned values for
embedded, semi-detached, or organic systems

1234f25Tabe urvivors rom Rejection Rule , , , ,5.
Records Treatment Results

source: part
T=ltrainl

T=ltestl
Numbers

ISubsetl
Learn Mean MMRE

row
PRED(30) Sdmean

1. coc81 :kind.min 11 10 precise 17 e 60 31 21
2. coc81 :Iang.ftn 14 10 precise 17 sd 42 44 30
3. coc81 :mode.e 18 10 precise 17 e 46 40 34
4. coc81 :kind.max 21 10 precise 17 e 52 38 33
5 coc81 :all 53 10 precise 17 LC 50 40 37
6. coc81 :mode.org 13 10 precise 17 org 62 32 33

7. coc81 :Iang.mol 10 10 precise 17 sd 56 36 41
8. nasa93: projecLY 13 10 precise 16 LC 78 22 20
9. nasa93:category.missionplanning 10 10 rounded 17 e 50 36 37
10. nasa93:category.avionicsmonitoring 20 10 precise 8 M5P 53 38 39
11. nasa93:mode.sd 59 10 rounded 7 LC 62 33 34
12. nasa93: project.X 28 10 precise 17 e 42 42 45
13. nasa93:fg.g 70 10 rounded 10 LSR 65 32 39
14. nasa93:center.5 29 10 precise 12 LC 43 57 70
15. nasa93:year.1975 27 10 precise 11 LSR 52 50 62
16. nasa93:all 83 10 rounded 14 LSR 43 48 62
17. nasa93:year.1980 28 10 precise 16 LC 53 53 80
18. nasa93:mode.e 11 10 precise 17 e 42 64 100
19. nasa93:center.2 27 10 precise 17 LC 83 22 38

Secondly, COSEEKMO can dramatically reduce the deviation in model performance. In the results of
Figure 3, nasa93's normalized deviations from standard LC had a median of 254% and, in 10/12 cases,
was over 200%. In the results of Table 2, generated by COSEEKMO, nasa93's normalized deviations
have a median value of 122% and, in no case was it over 200%.

Thirdly, in six cases (rows 9,11,13,16 of Table 2), COSEEKMO found the precise COCOMO numerics
were superfluous and that the rounded values sufficed. That is, for those data sets, the precise COCOMO
numerics were an over-specification of the effects of attributes on the total effort.

Fourthly, in 8 cases (rows 8,10,11,13,14,15,16,17 of Table 2) the WRAPPER discarded, on average, five
to six attributes, and sometimes many more (e.g. in row 10,11 of Table 2 the surviving models discarded
nearly half the attributes). This result, plus the last one, raises concerns for those that propose changes to
business practices based on the precise COCOMO numerics published in the standard COCOMO texts
[2], [8]. Before using part of an estimation model to make a business case (e.g. such as debating the
merits of sending analysts to specialized training classes), it is advisable to check if that part of the
standard COCOMO model is culled by better effort models.

Fifthly, many of the results in Table 2 use non-standard effort estimation methods. As mentioned above,
in 8 experiments, the WRAPPER was useful. Also, in four cases, the best effort models were generated
using linear regression (rows 13,15,16 of Table 2) or model trees (row 10 of Table 2). That is, standard
effort estimation methods are not optimal in all cases and should be augmented with other techniques

To summarize this section our results indicate that no one approach to tuning a model is always the best
approach. Sometimes one can use the model right out of the box, sometimes local calibration is
sufficient, and sometimes a full regression analysis needs to be performed to obtain optimal results. The
good news is that the standard functional form shown below is virtually always selected as indicated by
the non-standard model M5P being selected only once.

eU(Jrt(personmonths) = a * (KLOC
h)*lIf EM i J

Cost Driver Instability

As we ran the experiments we began to notice that the number of significant cost drivers in the 'best'
models, as reported in Table 2, was constantly changing and not in any systematic manner. ObViously,
this started to raise a number of questions. Is there a consistent set of cost drivers that are significant
across all stratifications of the data? For any given stratification, is a cost driver always significant or not,
or is it sometimes in and sometimes out? Which cost drivers get dropped or kept the most?

In the machine learning field the reduction of variables is called feature subset selection. One of the
standard models is WRAPPER, which is included in COSEEKMO. While an extensive analysis is
planned for the future, reported here are the WRAPPER results run as part of finding the best performing
model using local calibration (LC). This is relevant because local calibration seems to be the most
frequently used method for tuning commercial and industry cost models like COCOMO.

COSEEKMO applies WRAPPER to perform feature subset selection after completing the local calibration
experiments to see if a better model can be found by reducing the number of cost drivers. Again the
procedure is to randomly select a test set and then randomly select from the remaining records to
construct the calibration set. The construction of the calibration sets is repeated 10 times and tested
against the test set. We call this an experiment. Then a new test set is selected and another feature
subset selection analysis was repeated 10 times on the remaining dataset. This goes on for a total of 30
experiments. Within each experiment, the number of times a cost driver was selected out of the 10 times
is documented. The 3D-experiments were performed for most of the subsets of data in Table 1. Lang
and Kind were skipped because the types of languages and platforms were outdated and deemed not of
interest.

For each trial, the cost driver can be selected anywhere from 0 to 10 out of 10 times. Cost driver stability
is indicated when a cost driver was either never selected or was selected 10 out of 10 times.
Unfortunately, there were many experiments in which the results were mixed. To determine if the degree
of inconsistency in the results was significant, a statistical test had to be identified. Given the data was
binary, selected vs. non-selected, and that we are counting the number of times something occurred, the
data fits the standard description for using a median test. A 95% confidence interval for the median was
computed based on the rank order of the data and a test was performed for each cost driver in each
subset to determine if the number of times a cost driver was selected was significantly different from 10.
The results are summarized in Table 3.

In Table 3, a blue filled circle indicates the median of the 30 trials is not significantly different than 10. An
orange unfilled circle indicates the median was not significantly different from 9. At the time, we were
unable to test to see whether there was a difference between a cost driver being selected 10 out of 10
times versus 9 out of 10 times. Therefore, if the median of the 30 trials was not significantly different than
9, they mayor may not be significant to the subset. The grayed-out boxes in Table 3 indicate the cost
driver was not significant for that subset and had a median confidence interval that did not include 9 or
10.

The results are significant and indicated by the fact that COSEEKMO reproduces Dr. Boehm's original
COCOMO model when using his data. It makes sense that for coc81_all that all fifteen cost drivers are
significant, since the data is a mix of various modes, categories, and years. Overall the stratifications
(embedded, semi-detached, and embedded) also have the most significant cost drivers compared to the
other stratifications. These unsettling results, which we strongly believe are also correct results, are that
for the NASA data set and its stratifications, there is no clear pattern. It can be easily seen in Table 3,
that a cost driver in one subset might be significant, whereas, it is not significant in another subset. For
example, the pcap cost driver is significant for the mission planning subset, but not for the avionics
monitoring subset. Why should there be a difference in this case?

Until we have time to pursue a more detailed analysis, what we are recommending is that cost estimators
use these results to guide them in their model development and cost analysis. The results indicate that
the cost drivers for projects from 1970-1990 that are most likely to be significant are acap, time, cplx,
aexp, virt, data, turn, rely, and stor. The cost drivers that are unlikely to improve model performance are
pcap, vexp, lexp, modp, tool, seed. It is expected for more contemporary data that star and time would
drop out because there are fewer computer constraints these days and modp may become more
significant, but only if organizations are forward-looking and trying to engage new design methods and
programming languages.

V. CONCLUSION
Current definitions of best practice for industrial effort estimation using linear regression often include
stratification and local calibration. We have shown here that those definitions need to be extended.
Sometimes, LC and stratification are indeed the best effort modeling methods. However, often they aren't
and other methods should be used instead.

Distinguishing between rival modeling methods is problematic. Often, effort models must be learned from
a very small number of records and generalization from limited experience is an inherently under
constrained task. Consequently, the deviations in model performance can be so large (see Figure 3) that

standard statistical methods (e.g. t-tests) can't distinguish between the performance of rival methods. In
our view, this problem of large deviances has not been adequately acknowledged or addressed.
Furthermore, we believe it is the large variance problem that underlies why cost modeling and estimation
is more art than engineering.

Little can be done about the size of the training or test data; small sample sizes are common in effort
estimation and must be somehow managed. COSEEKMO manages learning from small sample sizes via
a set of model generation techniques: local calibration, linear regression, model trees, and the
WRAPPER. Each technique was selected to address one or more of the possible causes of performance
variability.

COSEEKMO constrains estimation model generation via rejection rules. These rules model the heuristic
model selection criteria (art aspects of cost modeling) used by effort modelers. To the best of our
knowledge, these rules have not been seriously studied prior to this article. By explicitly representing
them, the rules can now be audited, reviewed, and revised.

Another major result is that our experiments indicate that most cost models have far too many cost
drivers, which means our models tend to be over-specified and have too many switches or knobs. More
parsimonious models would provide clearer results and be reproducible, which would help to move our
profession from being more art to an engineering/science discipline. Of course, this might make it harder
for us to spin the results and continue to keep our sponsor's off balance so they will keep approving those
low-ball estimates.

Table 3. Number of Significant Cost Drivers in each Subset based on 95% Median Significance Test

.cocBLall

IcocB1 m::Jde embedded

nasa93_C31egory co:.:-mi:.:-ss:....;io:....:nc:..pl:....:an:.:-n:.:-in.f!...g--.......,f---'-~~~h...-c-~
nasa93_C3tegory_avionicsm::Jnitoring

nasa93-year_1975

nasa93_projeclgro

Usually Significant

Always 51 niflcant

Total Number of Significant Occurrences

Legend:

• =Not significantly different than 10 at a 95% Confidence Interval

," =Not significantly different than 9 or greater at a 95% Confidence Interval

1
6
7

2
5
7

3
4
7

15
14
13
8

5
9
6
10

13
7

REFERENCES

[1] K. Lum, J. Powell, and J. Hihn, "Validation of spacecraft cost estimation models for flight and
ground systems," in ISPA Conference Proceedings, Software Modeling Track, May 2002.

[2] B. Boehm, Software Engineering Economics. Prentice Hall, 1981.
[3] "The Standish Group Report: Chaos 2001," 2001, available from http://standishgroup.com/sample

research/PDFpages/extreme chaos. pdf.
[4] J. Hihn and H. Habib-agahi, "Identification and measurement of the sources of flight software cost

growth," in Proceedings of the 22nd Annual Conference of the International Society of Parametric
Ana/ysts (ISPA), Noordwijk, Netherlands, 8-10 May 2000.

[5] M. Garre, M. S. J.J. Cuadrado-Gallego, M. Charro, and D. Rodriguez, "Segmented parametric
software estimation models: Using the em algorithm with the isbsg 8 database," in 27th
International Conference on Information Technology Interfaces. IT! 2005, Dubrovnik, Croatia, 2005.

[6] C. Mair, G. Kadoda, M. Lefley, K. Phalp, C. Schofield, M. Shepperd, and S. Webster, "An
investigation of machine learning based prediction systems," The Journal of Systems and Software,
vol. 53, no. 1, pp. 23-29, 2000. [Online]. Available: citeseer.ist.psu.edu/mair99investigation.html

[7] M. Shepperd and C. Schofield, "Estimating software project effort using analogies," IEEE
Transactions on Software Engineering, vol. 23, no. 12, November 1997, available from
http://www.utdallas.edu/-rbanker/SE Xll.pdf.

[8] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark, B. Steece, A. W. Brown, S. Chulani,
and C. Abts, Software Cost Estimation with Cocomo 1/. Prentice Hall, 2000.

[9] R. Park, "The central equations of the price software cost model," in 4th COCOMO Users Group
Meeting, November 1988.

[10] R.Jensen, "An improved macrolevel software development resource estimation model," in
5th ISPA Conference, April 1983, pp. 88-92.

[11] L. Putnam and W. Myers, Measures for Excellence. Yourdon Press Computing Series, 1992.
[12] L. Briand, T. Langley, and I. Wieczorek, "A replicated assessment and comparison of common

software cost modeling techniques," in Proceedings of the 22nd International Conference on
Software Engineering, Limerick, Ireland, 2000, pp. 377-386.

[13] A. Smith and A. Mason, "Cost estimation predictive modeling: Regression versus neural network,"
The Engineering Economist, vol. 42, no. 2, pp. 137-161, 1997.

[14] G. Finnie, G. Wittig, and J. Desharnais, "A comparison of software effort estimation techniques:
Using function points with neural networks, case-based reasoning and regression models," Journal
of Systems and Software, vol. 39, no. 3, pp. 281-289, 1997.

[15] A. Gray and S. MacDonnell, "A comparison of techniques for developing predictive models of
software metrics," Information and Software Technology, vol. 39, 1997.

[16] C Kemerer, "An empirical validation of software cost estimation models," Communications of the
ACM, vol. 30, no. 5, pp. 416-429, May 1987.

[17] D. Ferens and D. Christensen, "Calibrating software cost models to Department of Defense
Database: A review of ten studies," Journal of Parametrics, vol. 18, no. 1, pp. 55-74, November
1998.

[18] R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artificial Intelligence, vol. 97, no.
1-2, pp. 273-324, 1997. [Online]. Available: citeseer.nj.nec.com/kohavi96wrappers.html

[19] P. Cohen, Empirical Methods for Artificial Intelligence. MIT Press, 1995.
[20] S. Chulani, B. Boehm, and B. Steece, "Bayesian analysis of empirical software engineering cost

models," IEEE Transaction on Software Engineering, vol. 25, no. 4, July/August 1999.
[21] A. Miller, Subset Selection in Regression (second edition). Chapman & Hall, 2002.
[22] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java

Implementations. Morgan Kaufmann, 1999.
[23] M. Hall and G. Holmes, "Benchmarking attribute selection techniques for discrete class data

mining," IEEE Transactions On Knowledge And Data Engineering, vol. 15, no. 6, pp. 1437- 1447,
2003.

~ Karen lum is a senior cost analysis at the Jet Propulsion laboratory, involved in the
collection of software metrics, and the development of software cost estimating relationships, She has a
MBA in Business Economics and a Certificate in Advanced Information Systems from the California State
University, los Angeles, She has a BA in Economics and Psychology from the University of California at
Berkeley. She is one of the main authors of the JPl Software Cost Estimation Handbook, Publications
include Best Conference Paper for ISPA 2002: Validation of Spacecraft Software Cost Estimation Models
for Fli ht and Ground Systems. email: ktlum@jpl.nasa.goY

Jairus Hihn is a Principal Member of the Engineering staff at the Jet Propulsion
laboratory and is currently the manager for the Software Quality Improvement Projects Measurement
Estimation and Analysis Element, which is establishing a laboratory wide software metrics and software
estimation program at JPL. M&E's objective is to enable the emergence of a quantitative software
management culture at JPL. He has a Ph.D. in Economics from the University of Maryland. He has been
developing estimation models and providing software and mission level cost estimation support to JPl's
Deep Space Network and flight projects since 1988. He has extensive experience in simulation and
Monte Carlo methods with applications in the areas of decision analysis, institutional change, R&D project
selection cost modeling, and process models. email jhihn@jpl.nasa.gov

t

Tim Menzies is an associate professor at the lane Department of Computer Science
at the University of West Virginia (USA), and has been working with NASA on software quality issues
since 1998. He has a CS degree and a PhD from the University of New South Wales. His recent research
concerns modeling and learning with a particular focus on light weight modeling methods. His doctoral
research aimed at improving the validation of, possibly inconsistent, knowledge-based systems in the
QMOD specification language. He also has worked as an object-oriented consultant in industry and has
authored over 150 publications and served on numerous conference and workshop programs and well as
guest editor of journal special issues. email tim@menzies.us

