
NASA

JPL Fault ProtectionJPL Fault ProtectionJPL Fault Protection
Experiences – Case Studies

JPL Fault Protection
Experiences – Case Studies

RResponse to:
(1) Growth in Flight Software (FSW) Complexity” V5, NASA OCE
(2) Reducing Complexity in Flight Software, July 11, 2007, JPL

Kevin Barltrop, Jet Propulsion Laboratory, California Institute of Technologye a t op, Jet opu s o abo ato y, Ca o a st tute o ec o ogy
Dan Dvorak, Jet Propulsion Laboratory, California Institute of Technology

.

1JPL FP Experience / Barltrop, Dvorak

NASA

Case Studies
We’ll now look at some case studies exploring:

1. Defining the scope for the fault protection.
2. Matching the requirements and the software solution.
3 Generating software solutions3. Generating software solutions.

March 6, 2008 2JPL FP Experience / Barltrop, Dvorak

NASA

Case #1: Context
 The mission is a “Discovery” class mission to excavate

material from a comet using the impact of a daughter g p g
spacecraft while a parent spacecraft collects up-close
images and spectral data of the impact crater growth.

March 6, 2008 3JPL FP Experience / Barltrop, Dvorak

NASA

Case #1: Essential Complexity
What essential complexity is established by the key

mission requirements and goals?

 Operate for two weeks unattended time without ground-in-the-loop. (actual time was expanded
to six-months during extended mission)

 Fail operational during the 24-hour Encounter activity that includes two spacecraft operating in
tandem with several fundamentally different operating modes each:y p g

Parent spacecraft :
1. Release the daughter spacecraft
2. Execute a pre-planned large divert maneuver.
3. Provide real-time communications link for daughter spacecraft.
4. Perform several minutes of mission critical imaging and relay subset in real-time to ground.
5. Pass near to comet using shield mode to reduce probability of catastrophic damage.
6 P f l k b k i i d l b k d d d t6. Perform look-back imaging and play back recorded data.
Daughter spacecraft:

1. Separate from Flyby spacecraft and fly on its own for first time.
2. Acquire comet image and estimate relative motion.
3. Execute three autonomously computed maneuvers during the last few hours before impact.
4. Intercept the surface of the comet

A d d di b d hill h Accommodate unexpected disturbance torques due to comet hill-sphere.
 Comply with single point failure policy by supporting configuration management of two strings of

hardware with several cross-strapping regions defined to reduce propagation of faults across
subsystems during encounter.

 Allow tuning of recovery priorities at encounter to match relative importance of ongoing
activities

March 6, 2008 4JPL FP Experience / Barltrop, Dvorak

activities.
 Support autonomous navigation function and fall-back to degraded operation modes.
 Minimize amount of fault protection commanding during mission. (Goal)

NASA Case #1: Incidental Complexity
Systems Engineering Analysis

How did systems engineering analysis affect the growth of
incidental complexity?

 Some incidental complexity began with systems engineering
decisions early in the project. A number of proposed descopes were
rejected:
 Remove fail operational capability during encounter Remove fail operational capability during encounter
 Eliminate autonomous use of cross-strapping
 Remove use of targeted hardware responses in addition to blanket system

responses
 Remove autonomous responses of any kind during encounter

D ’t k ft t h t i hibit f lt it t ti ll Don’t make software smart enough to inhibit fault monitor at operationally
appropriate times.

 Don’t apply belt and suspenders disabling of algorithms.

 Fault tree and failure modes analysis was applied to identify which Fault tree and failure modes analysis was applied to identify which
conditions would be handled by on-board fault protection.

 A home-grown hierarchy based response architecture model was
used to generate scenarios that needed to be covered within the

March 6, 2008 5JPL FP Experience / Barltrop, Dvorak

used to generate scenarios that needed to be covered within the
flight software architecture. This guided the organizational structure
of the responses.

NASA Case #1: Incidental Complexity
Software Architecture

How did software architecture affect the growth of incidental
complexity?

 The software architecture provided some good provisions to control growth:
 Design Summary:

 An inherited architecture for detecting, diagnosing and responding to faults [Matured design descended from Pathfinder and
Deep Space 1]

 A sequence engine shared with nominal activity sequence execution A sequence engine shared with nominal activity sequence execution.
 A common data bus for state information and event notification shared with other flight software tasks.

Overall -- This provided the typical benefits of a good architecture in many areas of the design.

 However, we had some mismatches between algorithm design and
architecture services:architecture services:

 The initial design to produce a well-behaved system was modeled using a fault tree hierarchy and time lines for recovery
scenarios, but the architecture provided only a flat structure with no concept of recovery time lines, preventing global
enforcement of layering and pacing of responses. The hierarchy of recovery and the pacing to allow for completion of recovery
attempts was repeatedly represented in the implementation of the individual responses rather than supported in a system model
by the architecture.

 Lack of capability to examine symptom message payloads (such as identify of hardware string in fault) in response algorithms
led to proliferation of message IDs representing germane payload combinations, many of which mapped to separate response p g p g g p y , y pp p p
instantiations with their own parameters. Would have been better to make the payload accessible and then have the response
designs individually determine whether it was necessary to key off of that payload.

 An FP sequence interlock to avoid re-entry was coded within each sequence rather than built into the sequence engine, making
FP configuration sequences too risky to use for nominal activities, despite their likely utility.

 Much of the flight software was driven by tables with selectable entries that lacked identification with abstract modes of the
system. This make it difficult to coordinate the “implied” modes of the table entries with the system behavior. For example, one
table included multiple thruster-based control configurations and wheel-based control configurations with no flag indicating to
which of those two classes the configuration belonged This made it difficult to adjust performance monitoring according to the

March 6, 2008 6JPL FP Experience / Barltrop, Dvorak

which of those two classes the configuration belonged. This made it difficult to adjust performance monitoring according to the
system control mode.

Overall – Because the design was optimized to use functions not supported in the architecture
that was available, we introduced some avoidable complexity.

NASA Case #1: Incidental Complexity
Tools

How did tools affect the growth of incidental complexity?

 Visualization and communication
 The good

State machine representations ere sed for responses and allo ed the designers to nderstand the State machine representations were used for responses and allowed the designers to understand the
behavior.

 Flow chart representations were used for monitors.
 Mapping tables clearly showed progression from symptoms to responses

 The bad
B t t hi d “ i ” f t di th l l f d t il t h f t i Because state machines were used “as is” for autocoding, the level of detail was too much for most review
audiences. Should have had a filter to present more abstract versions of the diagrams.

 The flow chart representations used a non-standard convention that required frequent explanation.
 The proliferation of IDs due to the architecture led to large tables and we did not do a good job of

distinguishing between cases where these IDs represented used payload combinations versus un-used.
 We lacked tools to illustrate the behavior of critical sequencing roll-back and roll-forward. As a result there q g

were late changes in timing for this area and at least one design breakage (fortunately benign) that made it
to the final activity.

Overall – We did only a fair job of presenting the design in a way that facilitated
understanding.

March 6, 2008 7JPL FP Experience / Barltrop, Dvorak

g

NASA Case #1: Incidental Complexity
Tools

How did tools affect the growth of incidental complexity (cont’d)?

State machine autocoding tool
 The good

 We were able to unit test much of the algorithm behavior in the state machine design We were able to unit test much of the algorithm behavior in the state machine design
environment (Matlab Stateflow) before even going to code.

 Software defects in the autocoded algorithms were negligible. The only example of
something resembling a defect was when an identical structural change was made to a
dozen state machine diagrams, a copy and paste error was introduced into one.

 The command and telemetry database was always perfectly consistent with the The command and telemetry database was always perfectly consistent with the
documented design and the generated code.

 The bad
 As “source code” for the software, the state machine diagram files were de facto software

artifacts, but we overlooked the cost and effort to CM them like software.
 The manually written code to unpack spacecraft telemetry into the state data accessible by

the response algorithms had a high defect rate. Would have been better to have integrated
data infrastructure for both the fault protection code and the rest of the flight code.

Overall We did a good job of generating code with less additional

March 6, 2008 8JPL FP Experience / Barltrop, Dvorak

Overall – We did a good job of generating code with less additional
complexity for the specified system design compared to past missions.

NASA Case #1: Incidental Complexity
Tools

How did tools affect the growth of incidental complexity (cont’d)?

Verification and Validation
 The good

 Perl script models of the initial fault hierarchy and recovery time-line created the initial Perl script models of the initial fault hierarchy and recovery time line created the initial
confirmation of system behavior.

 Stateflow models of the monitors and responses allowed comprehensive testing of the
paths and states.

 The bad
 We attempted to apply model checking with Promela and Spin, but got so bogged down in

formulation of the “correctness properties” that we really didn’t get useful results.

Overall – We did a good job of exploiting early design validation techniques
t fl h t k f tto flush out key features.

March 6, 2008 9JPL FP Experience / Barltrop, Dvorak

NASA Case #1: Complexity
Consequences

What where some key consequences of the complexity?

C f i d i d i i Confusion during design reviews.
 Contractor management frequently complained that they didn’t understand what was being

presented.
 Too much time was spent explaining how to interpret state machine diagrams and the

unconventional monitor flow charts.
 There was frequent disagreement over the autonomy scope for the mission.

 Unclear and delayed verification and validation.
 A key system recovery capability for Encounter was not completed and tested until after

launch.
A key undercharge scenario repeated failed in simulation but passed on the flight hardware A key undercharge scenario repeated failed in simulation, but passed on the flight hardware.

 At least five key simulation models were incorrect, leading to inaccurate test results in those
areas. Most were discovered during operations anomalies.

 Frustration and cascade effects during code maintenance.
 A small late change in an ACS algorithm setting “broke” the launch sequence less than twoA small late change in an ACS algorithm setting broke the launch sequence less than two

months prior to launch.
 The Encounter sequence required numerous small fault protection tweaks, some quite late in

the game.
 Encounter sequence triggered an unexpected, but benign, alarm due to a small late command

timing shift whose effect wasn’t modeled in the simulations.

March 6, 2008 10JPL FP Experience / Barltrop, Dvorak

g
 Gaps in testing due to schedule crunches.

 Some tests were combined, but original test scope largely intact.

NASA Case #2: Context

Mission is a “Discovery” class mission to sequentially
rendezvous with and orbit two asteroids.

March 6, 2008 11JPL FP Experience / Barltrop, Dvorak

NASA Case #2: Essential Complexity

What essential complexity is established by the key
mission requirements?

Operate for two weeks unattended time without ground-
in-the-loop.in the loop.

 Fail safe during the mission.
Comply with single point failure policy by supporting

configuration management of two strings of hardwareconfiguration management of two strings of hardware
with several cross-strapping regions defined to reduce
propagation of faults across subsystems during
encounterencounter.

Minimize amount of fault protection commanding during
mission. (Goal)

Support protection of difficult power subsystem design

March 6, 2008 12JPL FP Experience / Barltrop, Dvorak

Support protection of difficult power subsystem design
needed for the ion propulsion system.

NASA Case #2: Incidental Complexity
Systems Engineering Analysis

How did systems engineering analysis affect the
growth of incidental complexity?g p y

Performed fault tree and failure modes analysis to
id tifidentify coverage.

Approach was to augment legacy earth-orbit design with
additional capabilities needed to satisfy mission.p y

Had few if any system modeling or global behavioral
strategies to improve implementation behavior.

March 6, 2008 13JPL FP Experience / Barltrop, Dvorak

NASA Case #2: Incidental Complexity
Software Architecture

How did software architecture affect the growth of incidental complexity?

 The software architecture consisted of a telemetry monitoring task that triggered
simple fault protection sequences via a custom fault protection sequence engine.

 Monitors were used to trigger behaviors for off-nominal events as well as nominal
events such as launch initialization.

 The architecture required some work-arounds to support deep space operations
instead of the legacy earth-orbit ops:
 Interactions were managed within the sequences through mutual enabling andInteractions were managed within the sequences through mutual enabling and

disabling of other sequences and fault monitors
 Sequence chains were used to compensate for size limitations on individual

sequences.
 The standard monitoring was augmented through “derived functions” that

incidentally obscured visibility into what quantities were actually being checkedy y q y g
 Required exhaustive test case exploration, fixing particularly bad interactions as they

were discovered.
 Small changes in any of the fault protection sequences led to high risk of introducing

new interactions due to shifts in time lines.
 Accommodating the increase scope of fault coverage with this architecture allowed Accommodating the increase scope of fault coverage with this architecture allowed

the system to over-respond to multiple symptoms resulting from an underlying fault.

Overall – The architecture was probably “too simple” for the specified application, which
forced the development of work-arounds that circumvented the architecture and to
strive for good overall system behavior via as needed solutions for logic problems

March 6, 2008 14JPL FP Experience / Barltrop, Dvorak

strive for good overall system behavior via as-needed solutions for logic problems.

NASA Case #2: Incidental Complexity
Tools

How did tools affect the growth of incidental complexity (cont’d)?

Visualization and Communication
 The design was presented in terms of its simple look-up table

architecture, but the actual behavior resulting from the interaction of the
components was not describable with any of the tools availablecomponents was not describable with any of the tools available.

Overall – Visualization was oversimplified, which curtailed discussions, but
underrepresented the complexity of the actual behavior.

Verification and Validation
 Software-only simulations of the flight system were used to perform brute

force testing via thousands of fault scenario test runs This contributedforce testing via thousands of fault scenario test runs. This contributed
greatly to flushing out some bad design interactions.

 However, there was insufficient time to even begin multi-fault stress
cases prior to launch, as is often done to test out the limits of a system.

March 6, 2008 15JPL FP Experience / Barltrop, Dvorak

Overall – Lack of analysis tools on top of a shallow architecture and large
implementation complexity led to a dangerously low level of V&V.

NASA Case #2: Complexity
Consequences

What were some key consequences of the complexity?

 Confusion during design reviews.
 Reviews were not perceived to be especially confusing, but it turns out that the real

behavior of the system was not really discussed.
 Unclear and delayed verification and validation Unclear and delayed verification and validation.

 At least one critical problem was exhibited in a discretionary test case and not
found in any of the incompressible cases.

 Testing of core launch scenarios completed very late.
 General sense that a body of undiscovered interaction cases remained.y

 Frustration and cascade effects during code maintenance.
 A couple of fault protection sequence changes before launch produced side effect

breakage that wasn’t detected until after delivery.
 The fault protection team routinely argued against even minor externally directed The fault protection team routinely argued against even minor externally directed

changes due to cascade concerns.
 Gaps in testing due to schedule crunches.

 Significant test descopes were required during the six months before launch.
 Many of the ion thrusting test cases were not completed before start of the ion

March 6, 2008 16JPL FP Experience / Barltrop, Dvorak

 Many of the ion thrusting test cases were not completed before start of the ion
thrust mission phase.

 Little or no intentional multi-fault stress cases to probe the limits of the system.

NASA Case #3: Context

 The project was to develop a prototype control system for
a next-generation Deep Space Network consisting of a g p p g
large array of small antennas. The project demonstrates:
 A control architecture that shapes both systems engineering and software

engineeringg g
 Requirements specified in a structured form rather than free-form English

“shall” statements
 Fault protection that is integrated with and uses the same control

mechanisms as nominal operation
 A reusable software framework that turns most development into

adaptations of architectural components

March 6, 2008 17JPL FP Experience / Barltrop, Dvorak

NASA Case #3: Essential Complexity

What essential complexity is established by the key
project requirements?p j q

Automate all routine activities (antenna setup, tracking,
t d)tear-down)

Coordinate multiple elements (antennas, front-end
electronics, signal processing) and multiple concurrent , g p g) p
tracking activities

Allocate/reallocate assets according to policies
(especially in oversubscribed situations)(especially in oversubscribed situations)

Perform on-the-fly replacement of a failed antenna during
a tracking activity

March 6, 2008 18JPL FP Experience / Barltrop, Dvorak

NASA Case #3: Incidental Complexity
Systems Engineering Analysis

How did systems engineering analysis affect the
growth of incidental complexity?g p y

Used State Analysis to:
 Make clear distinction between control system and system under control
 Understand the ‘physics’ of the system under control via a “state effects

diagram” and associated models

St t Eff t Di d di d l dState Effects Diagram and corresponding models proved
very valuable in communication between systems and
software engineers

Continually made distinctions between framework
functionality and adaptation

 Lack of “projection” capability induced some

March 6, 2008 19JPL FP Experience / Barltrop, Dvorak

 Lack of projection capability induced some
complexity/workaround in adaptation

NASA Case #3: Incidental Complexity
Software Architecture

How did software architecture affect the growth of
incidental complexity?p y

 The state/model/goal-based architecture shaped both the
ft hit t d th t ti fsoftware architecture and the representation of

requirements, making the translation straightforward
Software architecture made some key distinctions:y

 Measurements are not the same as state estimates
 Estimation should be separated from control
 State timelines distinguish between operational intent and state

knowledge

Had to always fight the urge for a “software solution” that
fixed the immediate symptom but not the real cause

March 6, 2008 20JPL FP Experience / Barltrop, Dvorak

y p

NASA Case #3: Incidental Complexity
Tools

How did tools affect the growth of incidental
complexity?p y

 Lack of a tool to check for architectural compliance
l b ilt t l bl t h kleaves as-built system vulnerable to hacks

Want a tool to visually compare simulated state,
estimated state, and desired state,

A Wiki, structured according to architectural elements,
proved useful for keeping alignment between systems
engineering analysis and softwareengineering analysis and software

March 6, 2008 21JPL FP Experience / Barltrop, Dvorak

NASA Case #3: Complexity
Consequences

What were some key consequences of the
complexity?

Happily, small changes in requirements had small
localized effects on softwarelocalized effects on software

Occasional confusion between intent and knowledge was
easy to identify

Control architecture helped bridge the gap betweenControl architecture helped bridge the gap between
systems and software engineers … but both need
training in this new approach

Had to devote more resources to verification ofHad to devote more resources to verification of
framework software (but that’s a good investment
because it’s reusable software)

Operations plans easy to review with domain experts

March 6, 2008 22JPL FP Experience / Barltrop, Dvorak

Operations plans easy to review with domain experts
because it follows the state effects diagram

