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NASA

Case Studies
We’ll now look at some case studies exploring:

1. Defining the scope for the fault protection.
2. Matching the requirements and the software solution.
3 Generating software solutions3. Generating software solutions.
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NASA

Case #1: Context
 The mission is a “Discovery” class mission to excavate 

material from a comet using the impact of a daughter g p g
spacecraft while a parent spacecraft collects up-close 
images and spectral data of the impact crater growth.
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NASA

Case #1: Essential Complexity
What essential complexity is established by the key 

mission requirements and goals?

 Operate for two weeks unattended time without ground-in-the-loop. (actual time was expanded 
to six-months during extended mission)

 Fail operational during the 24-hour Encounter activity that includes two spacecraft operating in 
tandem with several fundamentally different operating modes each:y p g

Parent spacecraft : 
1. Release the daughter spacecraft
2. Execute a pre-planned large divert maneuver.
3. Provide real-time communications link for daughter spacecraft.
4. Perform several minutes of mission critical imaging and relay subset in real-time to ground.
5. Pass near to comet using shield mode to reduce probability of catastrophic damage.
6 P f l k b k i i d l b k d d d t6. Perform look-back imaging and play back recorded data.
Daughter spacecraft:

1. Separate from Flyby spacecraft and fly on its own for first time.
2. Acquire comet image and estimate relative motion.
3. Execute three autonomously computed maneuvers during the last few hours before impact.
4. Intercept the surface of the comet

A d d di b d hill h Accommodate unexpected disturbance torques due to comet hill-sphere.
 Comply with single point failure policy by supporting configuration management of two strings of 

hardware with several cross-strapping regions defined to reduce propagation of faults across 
subsystems during encounter.

 Allow tuning of recovery priorities at encounter to match relative importance of ongoing 
activities
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activities.
 Support autonomous navigation function and fall-back to degraded operation modes.
 Minimize amount of fault protection commanding during mission. (Goal)



NASA Case #1: Incidental Complexity
Systems Engineering Analysis

How did systems engineering analysis affect the growth of 
incidental complexity?

 Some incidental complexity began with systems engineering 
decisions early in the project. A number of proposed descopes were 
rejected:
 Remove fail operational capability during encounter Remove fail operational capability during encounter
 Eliminate autonomous use of cross-strapping 
 Remove use of targeted hardware responses in addition to blanket system 

responses
 Remove autonomous responses of any kind during encounter

D ’t k ft t h t i hibit f lt it t ti ll Don’t make software smart enough to inhibit fault monitor at operationally 
appropriate times.

 Don’t apply belt and suspenders disabling of algorithms.

 Fault tree and failure modes analysis was applied to identify which Fault tree and failure modes analysis was applied to identify which 
conditions would be handled by on-board fault protection.

 A home-grown hierarchy based response architecture model was 
used to generate scenarios that needed to be covered within the
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used to generate scenarios that needed to be covered within the 
flight software architecture.  This guided the organizational structure 
of the responses.



NASA Case #1: Incidental Complexity
Software Architecture

How did software architecture affect the growth of incidental 
complexity?

 The software architecture provided some good provisions to control growth:
 Design Summary: 

 An inherited architecture for detecting, diagnosing and responding to faults [Matured design descended from Pathfinder and 
Deep Space 1]

 A sequence engine shared with nominal activity sequence execution A sequence engine shared with nominal activity sequence execution.
 A common data bus for state information and event notification shared with other flight software tasks.

Overall -- This provided the typical benefits of a good architecture in many areas of the design.

 However, we had some mismatches between algorithm design and 
architecture services:architecture services:

 The initial design to produce a well-behaved system was modeled using a fault tree hierarchy and time lines for recovery 
scenarios, but the architecture provided only a flat structure with no concept of recovery time lines, preventing global 
enforcement of layering and pacing of responses.  The hierarchy of recovery and the pacing to allow for completion of recovery 
attempts was repeatedly represented in the implementation of the individual responses rather than supported in a system model 
by the architecture.

 Lack of capability to examine symptom message payloads (such as identify of hardware string in fault) in response algorithms 
led to proliferation of message IDs representing germane payload combinations, many of which mapped to separate response p g p g g p y , y pp p p
instantiations with their own parameters.  Would have been better to make the payload accessible and then have the response 
designs individually determine whether it was necessary to key off of that payload.

 An FP sequence interlock to avoid re-entry was coded within each sequence rather than built into the sequence engine, making 
FP configuration sequences too risky to use for nominal activities, despite their likely utility.

 Much of the flight software was driven by tables with selectable entries that lacked identification with abstract modes of the 
system.  This make it difficult to coordinate the “implied” modes of the table entries with the system behavior.  For example, one 
table included multiple thruster-based control configurations and wheel-based control configurations with no flag indicating to 
which of those two classes the configuration belonged This made it difficult to adjust performance monitoring according to the
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which of those two classes the configuration belonged.  This made it difficult to adjust performance monitoring according to the 
system control mode.

Overall – Because the design was optimized to use functions not supported in the architecture 
that was available, we introduced some avoidable complexity.



NASA Case #1: Incidental Complexity
Tools

How did tools affect the growth of incidental complexity?

 Visualization and communication
 The good

State machine representations ere sed for responses and allo ed the designers to nderstand the State machine representations were used for responses and allowed the designers to understand the 
behavior.

 Flow chart representations were used for monitors.
 Mapping tables clearly showed progression from symptoms to responses

 The bad
B t t hi d “ i ” f t di th l l f d t il t h f t i Because state machines were used “as is” for autocoding, the level of detail was too much for most review 
audiences.  Should have had a filter to present more abstract versions of the diagrams.

 The flow chart representations used a non-standard convention that required frequent explanation.
 The proliferation of IDs due to the architecture led to large tables and we did not do a good job of 

distinguishing between cases where these IDs represented used payload combinations versus un-used.
 We lacked tools to illustrate the behavior of critical sequencing roll-back and roll-forward.  As a result there q g

were late changes in timing for this area and at least one design breakage (fortunately benign) that made it 
to the final activity.

Overall – We did only a fair job of presenting the design in a way that facilitated 
understanding.
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NASA Case #1: Incidental Complexity
Tools

How did tools affect the growth of incidental complexity (cont’d)?

State machine autocoding tool
 The good

 We were able to unit test much of the algorithm behavior in the state machine design We were able to unit test much of the algorithm behavior in the state machine design 
environment (Matlab Stateflow) before even going to code.

 Software defects in the autocoded algorithms were negligible.  The only example of 
something resembling a defect was when an identical structural change was made to a 
dozen state machine diagrams, a copy and paste error was introduced into one.

 The command and telemetry database was always perfectly consistent with the The command and telemetry database was always perfectly consistent with the 
documented design and the generated code.

 The bad
 As “source code” for the software, the state machine diagram files were de facto software 

artifacts, but we overlooked the cost and effort to CM them like software.
 The manually written code to unpack spacecraft telemetry into the state data accessible by 

the response algorithms had a high defect rate.  Would have been better to have integrated 
data infrastructure for both the fault protection code and the rest of the flight code.

Overall We did a good job of generating code with less additional
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Overall – We did a good job of generating code with less additional 
complexity for the specified system design compared to past missions.



NASA Case #1: Incidental Complexity
Tools

How did tools affect the growth of incidental complexity (cont’d)?

Verification and Validation
 The good

 Perl script models of the initial fault hierarchy and recovery time-line created the initial Perl script models of the initial fault hierarchy and recovery time line created the initial 
confirmation of system behavior.

 Stateflow models of the monitors and responses allowed comprehensive testing of the 
paths and states.

 The bad
 We attempted to apply model checking with Promela and Spin, but got so bogged down in 

formulation of the “correctness properties” that we really didn’t get useful results.

Overall – We did a good job of exploiting early design validation techniques 
t fl h t k f tto flush out key features.
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NASA Case #1: Complexity 
Consequences

What where some key consequences of the complexity?

C f i d i d i i Confusion during design reviews.
 Contractor management frequently complained that they didn’t understand what was being 

presented.
 Too much time was spent explaining how to interpret state machine diagrams and the 

unconventional monitor flow charts.
 There was frequent disagreement over the autonomy scope for the mission.

 Unclear and delayed verification and validation.
 A key system recovery capability for Encounter was not completed and tested until after 

launch.
A key undercharge scenario repeated failed in simulation but passed on the flight hardware A key undercharge scenario repeated failed in simulation, but passed on the flight hardware.

 At least five key simulation models were incorrect, leading to inaccurate test results in those 
areas.  Most were discovered during operations anomalies.

 Frustration and cascade effects during code maintenance.
 A small late change in an ACS algorithm setting “broke” the launch sequence less than twoA small late change in an ACS algorithm setting broke  the launch sequence less than two 

months prior to launch.
 The Encounter sequence required numerous small fault protection tweaks, some quite late in 

the game.
 Encounter sequence triggered an unexpected, but benign, alarm due to a small late command 

timing shift whose effect wasn’t modeled in the simulations.
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g
 Gaps in testing due to schedule crunches.

 Some tests were combined, but original test scope largely intact.



NASA Case #2: Context 

Mission is a “Discovery” class mission to sequentially 
rendezvous with and orbit two asteroids.
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NASA Case #2: Essential Complexity

What essential complexity is established by the key 
mission requirements?

Operate for two weeks unattended time without ground-
in-the-loop.in the loop. 

 Fail safe during the mission.
Comply with single point failure policy by supporting 

configuration management of two strings of hardwareconfiguration management of two strings of hardware 
with several cross-strapping regions defined to reduce 
propagation of faults across subsystems during 
encounterencounter.

Minimize amount of fault protection commanding during 
mission. (Goal)

Support protection of difficult power subsystem design
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Support protection of difficult power subsystem design 
needed for the ion propulsion system.



NASA Case #2: Incidental Complexity
Systems Engineering Analysis

How did systems engineering analysis affect the 
growth of incidental complexity?g p y

Performed fault tree and failure modes analysis to 
id tifidentify coverage.

Approach was to augment legacy earth-orbit design with 
additional capabilities needed to satisfy mission.p y

Had few if any system modeling or global behavioral 
strategies to improve implementation behavior.
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NASA Case #2: Incidental Complexity
Software Architecture

How did software architecture affect the growth of incidental complexity?

 The software architecture consisted of a telemetry monitoring task that triggered 
simple fault protection sequences via a custom fault protection sequence engine.

 Monitors were used to trigger behaviors for off-nominal events as well as nominal 
events such as launch initialization.

 The architecture required some work-arounds to support deep space operations 
instead of the legacy earth-orbit ops:
 Interactions were managed within the sequences through mutual enabling andInteractions were managed within the sequences through mutual enabling and 

disabling of other sequences and fault monitors 
 Sequence chains were used to compensate for size limitations on individual 

sequences.
 The standard monitoring was augmented through “derived functions” that 

incidentally obscured visibility into what quantities were actually being checkedy y q y g
 Required exhaustive test case exploration, fixing particularly bad interactions as they 

were discovered.
 Small changes in any of the fault protection sequences led to high risk of introducing 

new interactions due to shifts in time lines.
 Accommodating the increase scope of fault coverage with this architecture allowed Accommodating the increase scope of fault coverage with this architecture allowed 

the system to over-respond to multiple symptoms resulting from an underlying fault.

Overall – The architecture was probably “too simple” for the specified application, which 
forced the development of work-arounds that circumvented the architecture and to 
strive for good overall system behavior via as needed solutions for logic problems
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strive for good overall system behavior via as-needed solutions for logic problems.



NASA Case #2: Incidental Complexity
Tools

How did tools affect the growth of incidental complexity (cont’d)?

Visualization and Communication
 The design was presented in terms of its simple look-up table 

architecture, but the actual behavior resulting from the interaction of the 
components was not describable with any of the tools availablecomponents was not describable with any of the tools available.

Overall – Visualization was oversimplified, which curtailed discussions, but 
underrepresented the complexity of the actual behavior.

Verification and Validation
 Software-only simulations of the flight system were used to perform brute 

force testing via thousands of fault scenario test runs This contributedforce testing via thousands of fault scenario test runs.  This contributed 
greatly to flushing out some bad design interactions.

 However, there was insufficient time to even begin multi-fault stress 
cases prior to launch, as is often done to test out the limits of a system.
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Overall – Lack of analysis tools on top of a shallow architecture and large 
implementation complexity led to a dangerously low level of V&V.



NASA Case #2: Complexity 
Consequences

What were some key consequences of the complexity?

 Confusion during design reviews.
 Reviews were not perceived to be especially confusing, but it turns out that the real 

behavior of the system was not really discussed.
 Unclear and delayed verification and validation Unclear and delayed verification and validation.

 At least one critical problem was exhibited in a discretionary test case and not 
found in any of the incompressible cases.

 Testing of core launch scenarios completed very late.
 General sense that a body of undiscovered interaction cases remained.y

 Frustration and cascade effects during code maintenance.
 A couple of fault protection sequence changes before launch produced side effect 

breakage that wasn’t detected until after delivery.
 The fault protection team routinely argued against even minor externally directed The fault protection team routinely argued against even minor externally directed 

changes due to cascade concerns.
 Gaps in testing due to schedule crunches.

 Significant test descopes were required during the six months before launch.
 Many of the ion thrusting test cases were not completed before start of the ion
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 Many of the ion thrusting test cases were not completed before start of the ion 
thrust mission phase.

 Little or no intentional multi-fault stress cases to probe the limits of the system.



NASA Case #3: Context

 The project was to develop a prototype control system for 
a next-generation Deep Space Network consisting of a g p p g
large array of small antennas. The project demonstrates:
 A control architecture that shapes both systems engineering and software 

engineeringg g
 Requirements specified in a structured form rather than free-form English 

“shall” statements
 Fault protection that is integrated with and uses the same control 

mechanisms as nominal operation
 A reusable software framework that turns most development into 

adaptations of architectural components

March 6, 2008 17JPL FP Experience / Barltrop, Dvorak



NASA Case #3: Essential Complexity

What essential complexity is established by the key 
project requirements?p j q

Automate all routine activities (antenna setup, tracking, 
t d )tear-down)

Coordinate multiple elements (antennas, front-end 
electronics, signal processing) and multiple concurrent , g p g) p
tracking activities

Allocate/reallocate assets according to policies 
(especially in oversubscribed situations)(especially in oversubscribed situations)

Perform on-the-fly replacement of a failed antenna during 
a tracking activity
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NASA Case #3: Incidental Complexity
Systems Engineering Analysis

How did systems engineering analysis affect the 
growth of incidental complexity?g p y

Used State Analysis to:
 Make clear distinction between control system and system under control
 Understand the ‘physics’ of the system under control via a “state effects 

diagram” and associated models

St t Eff t Di d di d l dState Effects Diagram and corresponding models proved 
very valuable in communication between systems and 
software engineers

Continually made distinctions between framework 
functionality and adaptation

 Lack of “projection” capability induced some
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 Lack of projection  capability induced some 
complexity/workaround in adaptation



NASA Case #3: Incidental Complexity
Software Architecture

How did software architecture affect the growth of 
incidental complexity?p y

 The state/model/goal-based architecture shaped both the 
ft hit t d th t ti fsoftware architecture and the representation of 

requirements, making the translation straightforward
Software architecture made some key distinctions:y

 Measurements are not the same as state estimates
 Estimation should be separated from control
 State timelines distinguish between operational intent and state 

knowledge 

Had to always fight the urge for a “software solution” that 
fixed the immediate symptom but not the real cause
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NASA Case #3: Incidental Complexity
Tools

How did tools affect the growth of incidental 
complexity?p y

 Lack of a tool to check for architectural compliance 
l b ilt t l bl t h kleaves as-built system vulnerable to hacks

Want a tool to visually compare simulated state, 
estimated state, and desired state,

A Wiki, structured according to architectural elements, 
proved useful for keeping alignment between systems 
engineering analysis and softwareengineering analysis and software
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NASA Case #3: Complexity
Consequences

What were some key consequences of the 
complexity?

Happily, small changes in requirements had small 
localized effects on softwarelocalized effects on software

Occasional confusion between intent and knowledge was 
easy to identify

Control architecture helped bridge the gap betweenControl architecture helped bridge the gap between 
systems and software engineers … but both need 
training in this new approach

Had to devote more resources to verification ofHad to devote more resources to verification of 
framework software (but that’s a good investment 
because it’s reusable software)

Operations plans easy to review with domain experts
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Operations plans easy to review with domain experts 
because it follows the state effects diagram


