Austere Human Missions to Mars

Hoppy Price
Jet Propulsion Laboratory, California Institute of Technology

Alisa Hawkins, Torrey Radcliffe
The Aerospace Corporation

AIAA Space 2009 Conference
Pasadena, California
September 16, 2009
Background

• Design Reference Architecture 5 (DRA 5) is the most recent concept developed by NASA to send humans to Mars in the 2030 time frame. DRA 5 is optimized to provide a robust program that could deliver a new 6-person crew at each biennial Mars opportunity and provide for power and infrastructure to maintain a continuing human presence on Mars.

• “Austere” architecture is scaled back from DRA 5 and might offer lower development cost, lower flight cost, and lower development risk. This approach will not meet all the DRA 5 mission requirements.
 – This approach exercises many of the descope options described in DRA 5 Addendum Table 7-15, “Example Contingencies, Fallbacks, and Descope Options” (see “Additional Material”)
 – This may represent a minimum mission set that would be acceptable from a science and exploration standpoint
Top-level Mars Architecture Tree with an “Austere” Architecture

- Human Exploration Of Mars
- Conjunction Class Long Surface Stay
- Opposition Class Short Surface Stay
- Special Case 1-year Round-trip

Mission Type
- Conjunction Class
- Long Surface Stay
- Opposition Class
- Short Surface Stay
- Special Case 1-year Round-trip

Cargo Deployment
- Pre-Deploy
- All-up

Mars Capture Method
- Aerocapture
- Propulsive

Mars Ascent Propellant
- ISRU
- No ISRU

Interplanetary Propulsion
- NTR
- Electric
- Chemical

- 1) 1988 “Mars Expedition”
- 2) 1989 “Mars Evolution”
- 3) 1990 “90-Day Study”
- 4) 1991 “Synthesis Group”
- 5) 1995 “DRM 1”
- 6) 1997 “DRM 3”
- 7) 1998 “DRM 4”
- 8) 1999 “Dual Landers”
- 9) 1989 Zubrin, et.al
- 10) 1994-99 Borowski, et. al
- 11) 2000 SERT (SSP)
- 12) 2002 NEP Art. Gravity
- 13) 2001 DPT/NEXT
- 14) 2009 DRA 5

Austere approach (Landers)
Austere approach (Transit Habitat)

Pre-Decisional – For Planning and Discussion Purposes Only

NTR- Nuclear Thermal Rocket
Electric= Solar or Nuclear Electric Propulsion

H. Price, 9/10/2009
Ground Rules for Notional “Austere” Approach

- Meet basic science goals of DRA 5, but with reduced crew size and mission frequency
 - Crew of 4 launched every 4 years
- Implemented as a flat-funded, sustainable program
 - Ideally with no greater annual cost or total cost than ISS (thru 1st Mars mission)
- Design the program to be implementable on the earliest possible schedule
 - Reduce total cost
 - Maintain public interest
- Driven by philosophy of minimizing development risk and cost, and in-flight mission risk
- Conservative approach, minimizing high risk or high cost technology development (i.e. avoid developing new technology, if you don’t absolutely need it).
- Maximize development commonality and production commonality, e.g. common lander designs, common Earth Departure Stages (EDS’s)
Mission Elements for Notional “Austere” Approach

Contingency Consumables Module (jettisonable)

CEV would launch separately on Ares I and dock with TMI stack in LEO

After MOI, Mars Transit Habitat (with CEV) would dock with MAV Lander (for crew transfer) in high elliptical Mars orbit

MOI would be smaller burn into high elliptical Mars orbit. Aerobraking would be used to get to final Mars orbit.

Aerocapture into high elliptical Mars orbit, then, later, de-orbit and EDL

Orbit adjust engine

Note: Not to scale. EDS would be about 2 times larger.

3 launches, not including CEV

3 launches per lander stack

Contingency Consumables Module (jettisonable)

CEV would launch separately on Ares I and dock with TMI stack in LEO

After MOI, Mars Transit Habitat (with CEV) would dock with MAV Lander (for crew transfer) in high elliptical Mars orbit

MOI would be smaller burn into high elliptical Mars orbit. Aerobraking would be used to get to final Mars orbit.

Aerocapture into high elliptical Mars orbit, then, later, de-orbit and EDL

Orbit adjust engine

Note: Not to scale. EDS would be about 2 times larger.

3 launches, not including CEV

3 launches per lander stack

Contingency Consumables Module (jettisonable)

CEV would launch separately on Ares I and dock with TMI stack in LEO

After MOI, Mars Transit Habitat (with CEV) would dock with MAV Lander (for crew transfer) in high elliptical Mars orbit

MOI would be smaller burn into high elliptical Mars orbit. Aerobraking would be used to get to final Mars orbit.

Aerocapture into high elliptical Mars orbit, then, later, de-orbit and EDL

Orbit adjust engine

Note: Not to scale. EDS would be about 2 times larger.
Photos of Scale Models (1/144 scale)

TransHab TMI with EDS Stage 2 attached

TransHab and DAV docked in Mars orbit
Descent/Ascent Vehicle TMI, Cruise, and MOI

1. TMI burns (no crew)
2. Cruise to Mars (no crew)
3. Aerocapture maneuver (no crew)
4. Jettison aerocapture heat shield
5. In High Elliptical Mars Orbit (no crew)
Transit Habitat TMI, Cruise, and MOI

1. TMI burns
2. Cruise to Mars
3. MOI burn
4. In High Elliptical Mars Orbit
DAV and TransHab Docking and Aerobraking

1. Docking in High Elliptical Mars Orbit

2. Aerobraking passes

3. Crew transfer to DAV

4. Separation and deorbit of DAV

Note 1: If rendezvous in elliptical orbit is unsuccessful, vehicles could aerobrake independently and dock in lower orbit.

Note 2: Significant ΔV could be saved by de-orbiting Lander from high elliptical Mars orbit. Disadvantage is that for abort-to-orbit, MAV would have to loiter for 1-3 months for TransHab to aerobrake.
EDL Concept

Note: There are no parachutes or inflatable decelerators

Pre-entry
Entry and atmospheric deceleration
Supersonic Retro-Propulsion
Subsonic propulsive deceleration
Terminal landing phase
Jettison heat shield
Landed!

Mars
MAV Ascent, TransHab Docking, and TEI

1. MAV ascent to rendezvous orbit
2. Docking with TransHab
3. Crew transfer to TransHab
4. Separation of MAV & Contingency Consumables Module
5. TEI burn
Key Features of Transit Habitat (TransHab)

- Similar to Zvyezda module on ISS
 - Expanded to support crew of 4
 - Larger solar arrays for operation in Mars orbit
- Zvyezda type multiple docking node
 - Would support CEV, Mars Lander, and Contingency Consumables Module (CCM)
 - Could serve as airlock for EVAs to correct anomalies or perform repairs
- Would contain an MOI/TEI propulsion module with LOX/LCH₄ propellant to avoid more difficult cryo storage and volume problems with LH₂
- TransHab would launch to LEO on Ares V with CCM. CEV would launch separately on Ares I and dock with TransHab.
- Two EDSs stages would launch to LEO separately, each on an Ares V
- The TransHab with docked CEV would launch as a single stack to Mars, and could safely return the astronauts to Earth in the event that it fails meets up with any other mission elements
- Transit Habitat would use low ΔV MOI into high elliptical orbit, dock with DAV, and then aerobrake as a stack into Low Mars Orbit (LMO)
 - Aerobraking estimated to take 1-3 months
- TransHab would return crew and CEV to Earth at conclusion of Mars mission
- TransHab design could support other interplanetary missions (e.g. asteroids)
Key Features of Earth Departure Stage

- A common LOX/LH$_2$ Earth Departure Stage (EDS) would be utilized for all vehicle stacks launched to Mars
 - Would include rendezvous and docking equipment, possibly similar to ATV
 - Two EDSs would be used as a two-stage vehicle for each launch to Mars
- A possible design would be to scale down the Ares V 2$^\text{ND}$ stage in height to ~ 60% propellant capacity, use interstage structures based on Ares V, and utilize as much commonality and/or tooling as possible
- EDS would need power and cooling equipment to loiter in LEO, possibly for several months, to facilitate docking with other mission elements in the stack for launch to Mars
Key Features of Landers

- All landed elements would use identical Mars Entry, Descent, and Landing (EDL) system, planform/moldline, and Earth departure configuration. This would allow for design verification with a single unmanned flight. It would also facilitate efficiencies in design and production.
- Landed elements would include:
 - Descent Ascent Vehicle (DAV) to transport crew to and from Martian surface
 - Mars Surface Habitat (SurfHab)
 - Mars Surface Power and Logistics Module
 - Probably required as a separate module on a volume basis, if not a mass basis
 - Would notionally have ~20 kW of Radioisotope Stirling power
 - Would also include two small pressurized 2-man rovers
 - Specialized cargo landers (e.g. deep drilling platform, large ISRU unit)
- The DAV would aerocapture into high elliptical Mars orbit (unmanned at the time) and later dock with the TransHab for crew transfer to the DAV
 - After aerocapture, the first heat shield is jettisoned like a skin over a second heat shield. The second heat shield is later used for Mars EDL.
- The DAV could perform abort-to-orbit in the very last seconds of the landing profile in the event of bad terrain, landing gear failure, or descent propulsion failure
- Cargo landers would probably use direct entry rather than aerocapture
- Propulsion on Landers and MAV would be traditional biprop (NTO/MMH)
 - Low risk and volumetrically compact
Deployable Supersonic Retro-Propulsion Concept

- Backshell and Lander "payload"
- Descent engine, stowed
- Descent engine (e.g. RD-0210), deployed
- Heat shield
- Propellant tankage
- Landing leg
- Propulsion Module structure and thermal shielding

~13 m
Concept for Mars Surface Habitat Deployment

Landed Habitat

Jettison backshell and sit down
Lander on landing legs

Deploy Habitat

Note: Solar panels and antennas not shown
Conceptual Types of Mars Landers

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descent/Ascent Vehicle</td>
<td>46</td>
</tr>
<tr>
<td>Crew cabin</td>
<td>6</td>
</tr>
<tr>
<td>Ascent Stage with propellant</td>
<td>40</td>
</tr>
<tr>
<td>Surface Habitat</td>
<td>52</td>
</tr>
<tr>
<td>Pressurized Habitat with all required consumables</td>
<td>35</td>
</tr>
<tr>
<td>Airlock with EVA suits</td>
<td>5</td>
</tr>
<tr>
<td>Two 5 kWe radioisotope Stirling generators</td>
<td>1</td>
</tr>
<tr>
<td>Small atmospheric ISRU oxygen generator</td>
<td>1</td>
</tr>
<tr>
<td>Science equipment</td>
<td>10</td>
</tr>
<tr>
<td>Power/Logistics Module</td>
<td>52</td>
</tr>
<tr>
<td>Two 2-man Small Pressurized Rovers, each with one 5 kWe radioisotope Stirling generator</td>
<td>20</td>
</tr>
<tr>
<td>Two relocatable 5 kWe radioisotope Stirling generators (in addition to the rover units)</td>
<td>1</td>
</tr>
<tr>
<td>Additional consumables</td>
<td>10</td>
</tr>
<tr>
<td>Science equipment</td>
<td>21</td>
</tr>
</tbody>
</table>
EDL Concept

- Blunt body entry vehicle
 - Good design heritage and flight history
 - Efficient load paths
 - No complex extraction of the lander
- No deployable parachutes or inflatable decelerators
 - Flight regime cannot utilize foreseeable parachute designs
 - Development and test costs of advanced decelerators (e.g. inflatables) avoided
 - Complexity and possible in-flight risks avoided
- Supersonic Retropropulsion (SRP) used for deceleration to subsonic regime
- Same SRP rockets utilized for subsonic deceleration and landing
- EDL profile:
 - Atmospheric entry ranging from ~3.3 – 4.5 km/s
 - Initiate SRP ~6 min. after entry at ~10 km alt. and ~1.5 km/s
 - Thrust/weight ratio of ~ 4/1 (Martian weight)
 - Becomes subsonic ~70 sec. later
 - Jettison heatshield and deploy landing gear
 - Landing is ~20 sec. later
EDL Phase Diagram for Common Lander

Aero + Prop Gravity Turn
BN=770kg/m², L/D=0.2 liftup

Mach 1
Mach 10
Mach 15

0.5 kPa
1 kPa
5 kPa
10 kPa
15 kPa

Initiate retro propulsion

Mars atmospheric entry

Dots are 10 sec. increments

Alt. (km MOLA)

Vel. (m/s)

Diagram courtesy of Rob Manning
Aerospace Corporation used Trajectory Optimization Program (TOP) to perform independent assessments of austere architecture EDL.

Results were similar to JPL analysis.

Different entry profiles all ended up in the same velocity/altitude/dynamic pressure regime for SRP initiation, therefore the propulsive profiles were almost identical.
Notional Mass Allocations for Major Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass (T)</th>
<th>"Gear Ratio"</th>
<th>Prop. type</th>
<th>Ares V</th>
<th>Ares I</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAV Cabin</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.8 times Apollo Ascent Module dry mass</td>
</tr>
<tr>
<td>MAV Total</td>
<td>45.9</td>
<td>7.4</td>
<td>NTO/MMH</td>
<td></td>
<td></td>
<td>Includes ascent propulsion and structure</td>
</tr>
<tr>
<td>Lander Descent Stage</td>
<td>119.3</td>
<td>3.6</td>
<td>NTO/MMH</td>
<td></td>
<td></td>
<td>Includes separate aerocapture heat shield</td>
</tr>
<tr>
<td>Lander/MAV Total</td>
<td>165.2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAV EDS's</td>
<td>330.3</td>
<td>3.0</td>
<td>LOX/LH₂</td>
<td>2</td>
<td></td>
<td>Two stage assembly requiring two Ares V launches</td>
</tr>
<tr>
<td>Cargo Lander payload</td>
<td>52.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Can be Habitat, or Surface Power and Logistics Module</td>
</tr>
<tr>
<td>Cargo Descent Stage</td>
<td>114.4</td>
<td>3.2</td>
<td>NTO/MMH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargo Total</td>
<td>166.4</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargo EDS's</td>
<td>332.8</td>
<td>3.0</td>
<td>LOX/LH₂</td>
<td>2</td>
<td></td>
<td>Two stage assembly requiring two Ares V launches</td>
</tr>
<tr>
<td>CEV</td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Current Orion CM mass</td>
</tr>
<tr>
<td>Transit Habitat</td>
<td>35.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For comparison, Mir Core Module mass = 21 T</td>
</tr>
<tr>
<td>Contingency Module</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Emergency supplies for Mars abort to orbit (jettisonable)</td>
</tr>
<tr>
<td>Subtotal</td>
<td>52.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOI/TEI Module</td>
<td>114.4</td>
<td>3.2</td>
<td>LOX/LCH₄</td>
<td></td>
<td></td>
<td>Assumes 1.2 km/s MOI followed by aerobraking</td>
</tr>
<tr>
<td>Subtotal (w/o CEV)</td>
<td>156.4</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>A single Ares V launches MOI/TEI module plus Habitat</td>
</tr>
<tr>
<td>EDS Stages</td>
<td>332.8</td>
<td>3.0</td>
<td>LOX/LH₂</td>
<td>2</td>
<td></td>
<td>Two stage assembly requiring two Ares V launches</td>
</tr>
<tr>
<td>Grand Total</td>
<td>1,983.1</td>
<td>12</td>
<td></td>
<td>1</td>
<td></td>
<td>Incl. 2 Cargo Landers (Surf. Hab., Power & Logistics)</td>
</tr>
</tbody>
</table>

- "Gear Ratios" were checked by JPL Mass Tracker tool analyses.
- Ares V is assumed to deliver ~167 T to LEO to provide adequate mass capability.
New Technology Development

- New technologies were considered only where needed to enable the mission, reduce cost, or reduce development or mission risk
 - Supersonic Retropropulsion (SRP) for Lander EDL
 - Probably needed by any crewed Mars mission architecture
 - 5 kWe Stirling Dynamic Isotope Power System (DIPS) for surface power
 - Judged to be lower risk, lower mass, and lower cost than fission or solar
 - No deployable elements
 - No placement issues
 - Insensitive to dust storms
 - No SCRAM issues or non-recoverable events
 - Possibilities exist for mechanical repairs (very low radiation environment)
 - Each 4-yr. mission cycle would need 4-6 times the amount of Pu238 used on Cassini
 - LOX/CH\textsubscript{4} propulsion for TransHab
 - LOX/kerosene could be an alternate propellant choice (might even be better choice)
 - NTO/MMH biprop might be a possible fallback (see “Additional Material” in back)
- Some optional technologies could greatly enhance the mission
 - Small ISRU unit for generating breathing oxygen from Martian atmosphere
 - Would enable more EVA time
 - Inflatable surface habitat to provide larger living quarters
Notional Flight Test Program for Lander

- Unmanned DAV test flight would use full-up system with two EDS modules to launch the stack to Mars
 - Would require three Ares V launches
 - Would validate all phases of the DAV mission:
 - LEO assembly
 - TMI
 - Cruise to Mars
 - Aerocapture into high Mars orbit
 - Aerobraking to low Mars orbit
 - EDL
 - Would remain on the surface for the duration required by a crewed mission; then the MAV would be launched into Mars orbit
 - The MAV in the test flight could deliver a Mars sample container to Mars orbit as part of a robotic Mars Sample Return mission
 - DAV test flight would also validate EDL design for the cargo landers, since they utilize an identical mold line and identical EDL subsystem design
 - Cargo landers might employ direct entry rather than entry from low Mars orbit, so that difference would have to be validated by analysis
Notional Flight Test Program for Transit Habitat

- TransHab design could be validated in a relevant environment without having to travel to Mars
- Could be achieved by a test flight in near-Earth space that could be crewed with abort-to-Earth capability in the event of problems
- A three-year flight would fully validate the TransHab, and this could be conducted in LEO, Lunar orbit, near-Earth space such as L₂, or some combination of those regions
- Could be fully crewed for the duration, crewed for only certain intervals in the test flight, or staffed by rotating crew teams
 - Nominal Mars mission would have crew in TransHab for no more than ~10 months at a stretch
- One EDS would be desirable for the test flight to validate interfaces and performance, so two Ares V launches would be needed to support the test flight
Notional Development and Flight Schedule

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Develop Lander/MAV</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lander/MAV test flight (uncrewed sample return)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Develop TransHab</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TransHab test flight (crewed lunar orbit)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Develop TMI stage</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Develop Surface Hab Module</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Mission 1 Surface Hab fab. and test</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Mission 1 Surface Hab launch</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Mission 1 Surface Hab TMI</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mission 1 Surface Hab landing</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Develop Power/Logistics Module</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Mission 1 Pwr./Log. Module fab. and test</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Mission 1 Pwr./Log. Module launch</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Mission 1 Pwr./Log. Module TMI</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Mission 1 Pwr./Log. Module landing</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Mission 1 Lander/MAV fab. and test</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Mission 1 Lander/MAV launch</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Mission 1 Lander/MAV TMI</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Mission 1 Lander/MAV MOI</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Mission 1 TransHab fab. and test</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Mission 1 TransHab launch</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Mission 1 CEV launch on Ares I</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Mission 1 TransHab TMI</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Mission 1 TransHab MOI</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1st crewed Mars landing!</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Mission 1 surface mission</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Mission 1 TEI</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Mission 1 Earth return!</td>
<td></td>
</tr>
</tbody>
</table>

Note: This schedule would require three Ares V rockets to be available to launch the DAV test flight in 2022
Estimated Cost Profile (All-U.S. Program)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Descent/Ascent Vehicle (DAV) dvmt.</td>
<td>500</td>
<td>1,000</td>
<td>1,500</td>
<td>2,200</td>
<td>2,500</td>
<td>2,000</td>
<td>500</td>
<td></td>
<td>10,200</td>
</tr>
<tr>
<td>Earth Departure Stage (EDS) dvmt.</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>600</td>
<td>500</td>
<td>400</td>
<td>200</td>
<td></td>
<td>2,600</td>
</tr>
<tr>
<td>Ares V upgrade dvmt.</td>
<td>300</td>
<td>400</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>300</td>
<td>200</td>
<td></td>
<td>3,000</td>
</tr>
<tr>
<td>DAV test flight</td>
<td></td>
</tr>
<tr>
<td>TransHab Development dvmt.</td>
<td></td>
</tr>
<tr>
<td>MOI/TEI Stage dvmt.</td>
<td></td>
</tr>
<tr>
<td>CEV upgrade dvmt.</td>
<td></td>
</tr>
<tr>
<td>TransHab test flight</td>
<td></td>
</tr>
<tr>
<td>SurfHab Development dvmt.</td>
<td></td>
</tr>
<tr>
<td>Power/Logistics Module dvmt.</td>
<td></td>
</tr>
<tr>
<td>SurfHab Flt. 1</td>
<td></td>
</tr>
<tr>
<td>Power/Logistics Module Flt. 1</td>
<td></td>
</tr>
<tr>
<td>DAV Flt. 1</td>
<td></td>
</tr>
<tr>
<td>TransHab/Crew Flt. 1</td>
<td></td>
</tr>
<tr>
<td>SurfHab Flt. 2</td>
<td></td>
</tr>
<tr>
<td>Power/Logistics Module Flt. 2</td>
<td></td>
</tr>
<tr>
<td>DAV Flt. 2</td>
<td></td>
</tr>
<tr>
<td>TransHab/Crew Flt. 2</td>
<td></td>
</tr>
<tr>
<td>Reserves/margin (50%)</td>
<td></td>
</tr>
<tr>
<td>Total (SM)</td>
<td>1,500</td>
<td>2,550</td>
<td>3,750</td>
<td>5,400</td>
<td>7,050</td>
<td>7,200</td>
<td>6,510</td>
<td>5,031</td>
<td>4,961</td>
<td>3,531</td>
<td>3,632</td>
<td>5,314</td>
<td>6,440</td>
<td>4,877</td>
<td>4,777</td>
<td>5,314</td>
<td>4,877</td>
<td>75,165</td>
<td></td>
</tr>
</tbody>
</table>

- Cost estimates are notional and draw heavily upon the cost estimates performed for DRA 5.
- Based upon NAFCOM models, top-level historical analogies, and results from previous Mars mission studies.
- Costs for test flights & operational flights include Ares V launches, Ares I launches, and Orion crewed spacecraft.
- Estimates do not contain sustaining costs for the Constellation Program nor mission operations costs.
Estimated Cost Profile (International Program)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Descent/Ascent Vehicle</td>
<td>500</td>
<td>1,000</td>
<td>1,500</td>
<td>2,200</td>
<td>2,500</td>
<td>2,000</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>(DAV)</td>
<td></td>
</tr>
<tr>
<td>Earth Departure Stage</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>600</td>
<td>500</td>
<td>400</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>(EDS)</td>
<td></td>
</tr>
<tr>
<td>Ares V upgrade</td>
<td>300</td>
<td>400</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>300</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>DAV test flight</td>
<td></td>
</tr>
<tr>
<td>TransHab Development</td>
<td></td>
</tr>
<tr>
<td>MOI/TEI Stage</td>
<td></td>
</tr>
<tr>
<td>CEV upgrade</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>TransHab test flight</td>
<td>335</td>
<td>500</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>SurfHab Development</td>
<td>300</td>
<td>300</td>
<td>700</td>
<td>750</td>
<td>800</td>
<td>750</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>Power/Logistics Module</td>
<td>200</td>
<td>400</td>
<td>500</td>
<td>700</td>
<td>750</td>
<td>550</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>SurfHab</td>
<td></td>
<td>851</td>
<td>1,703</td>
</tr>
<tr>
<td>Power/Logistics Module</td>
<td></td>
<td>920</td>
<td>1,840</td>
</tr>
<tr>
<td>DAV</td>
<td></td>
</tr>
<tr>
<td>TransHab/Crew</td>
<td></td>
<td>440</td>
</tr>
<tr>
<td>SurfHab</td>
<td></td>
<td>851</td>
<td>1,703</td>
</tr>
<tr>
<td>Power/Logistics Module</td>
<td></td>
<td>920</td>
<td>1,840</td>
</tr>
<tr>
<td>DAV</td>
<td></td>
</tr>
<tr>
<td>TransHab/Crew</td>
<td></td>
</tr>
<tr>
<td>Reserves/margin (50%)</td>
<td>500</td>
<td>850</td>
<td>1,250</td>
<td>1,700</td>
<td>2,050</td>
<td>1,950</td>
<td>1,900</td>
<td>1,520</td>
<td>1,043</td>
<td>1,000</td>
<td>843</td>
<td>1,211</td>
<td>1,771</td>
<td>1,529</td>
<td>1,250</td>
<td>1,529</td>
<td>1,771</td>
<td>1,529</td>
</tr>
<tr>
<td>Total ($)</td>
<td>1,500</td>
<td>2,550</td>
<td>3,750</td>
<td>5,100</td>
<td>6,150</td>
<td>5,850</td>
<td>5,700</td>
<td>4,560</td>
<td>3,128</td>
<td>3,000</td>
<td>2,528</td>
<td>3,632</td>
<td>5,314</td>
<td>4,588</td>
<td>3,750</td>
<td>4,588</td>
<td>5,314</td>
<td>4,588</td>
</tr>
</tbody>
</table>
Development Item Costs

<table>
<thead>
<tr>
<th>Development Item</th>
<th>Comments</th>
<th>Cost Basis or Analogy</th>
<th>Cost ('09 $B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Departure Stage (EDS)</td>
<td>Incl. rend. & docking system (ATV heritage)</td>
<td>Ares V EDS</td>
<td>3.9</td>
</tr>
<tr>
<td>Descent/Ascent Vehicle dvmt.</td>
<td>Incl. Supersonic Retro-Propulsion (SRP) dvmt.</td>
<td>Orion development</td>
<td>15.3</td>
</tr>
<tr>
<td>Test flight: DAV, unmanned</td>
<td>Might be part of an MSR mission</td>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td>Mars Surface Habitat</td>
<td>Leverages off of earlier lunar surface habitat</td>
<td>ISS module</td>
<td>7.1</td>
</tr>
<tr>
<td>Surface Power/Logistics Module</td>
<td>Assuming Stirling RTG's</td>
<td></td>
<td>5.7</td>
</tr>
<tr>
<td>CEV Block Upgrade for Mars</td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>Mars Transit Habitat</td>
<td>Incl. MOI/TEI prop. module</td>
<td>ISS module</td>
<td>9.6</td>
</tr>
<tr>
<td>Test flight: TransHab & CEV</td>
<td>Manned flight in LEO or circumlunar</td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>51.2</td>
</tr>
</tbody>
</table>

Notes:
- Cost bogeys do not include mission or ground operations or facilities.
- Costs include 50% margin over DRA 5/Aerospace Corp. estimates.
- Lander/MAV test flight doesn't incl. any costs for an MSR mission.
- This table doesn't include any Ares V upgrade costs.
Hypothetical Launch Timeline

<table>
<thead>
<tr>
<th>Time</th>
<th>KSC Launch</th>
<th>LEO Launch</th>
<th>Vehicle</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-875 days</td>
<td>Mars Surface Habitat</td>
<td>Ares V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-870 days</td>
<td>Power/Logistics Module</td>
<td>Ares V</td>
<td></td>
<td>Isotope Stirling pwr.; small pressurized rovers</td>
</tr>
<tr>
<td>M-825 days</td>
<td>Habitat EDS 1</td>
<td>Ares V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-820 days</td>
<td>Habitat EDS 2</td>
<td>Ares V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-815 days</td>
<td>Habitat TMI</td>
<td>EDS 1&2</td>
<td></td>
<td>Habitat is launched to Mars</td>
</tr>
<tr>
<td>M-790 days</td>
<td>Power EDS 1</td>
<td>Ares V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-785 days</td>
<td>Power EDS 2</td>
<td>Ares V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-780 days</td>
<td>Power TMI</td>
<td>EDS 1&2</td>
<td></td>
<td>Surface Power/Logistics Module launched to Mars</td>
</tr>
<tr>
<td>M-95 days</td>
<td>Descent/Ascent Vehicle</td>
<td>Ares V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-90 days</td>
<td>Mars Transit Habitat</td>
<td>Ares V</td>
<td></td>
<td>Based on Zvezda-type module</td>
</tr>
<tr>
<td>M-45 days</td>
<td>Lander EDS 1</td>
<td>Ares V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-40 days</td>
<td>Lander EDS 2</td>
<td>Ares V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-35 days</td>
<td>Lander TMI</td>
<td>EDS 1&2</td>
<td></td>
<td>DAV is launched (uncrewed) to Mars</td>
</tr>
<tr>
<td>M-15 days</td>
<td>CEV</td>
<td>Ares I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-10 days</td>
<td>TransHab EDS 1</td>
<td>Ares V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-5 days</td>
<td>TransHab EDS 2</td>
<td>Ares V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M TransHab</td>
<td>TransHab TMI</td>
<td>EDS 1&2</td>
<td></td>
<td>Crew is launched to Mars</td>
</tr>
</tbody>
</table>

Notes:
M = TMI time for crewed Mars Transit Habitat with CEV
This is not necessarily the best timeline. It's just a representative example of one that might work.
Conceptual Ares V (51.00.48) Launch Configurations

Lander Configuration
Would require non-standard fairing ~13 m diameter, or lander backshell serves as fairing

Cargo Lander Types:
1. Surface Habitat
2. Power/Logistics Package
3. Deep Drilling Package

DAV includes Mars Ascent Vehicle (MAV)

TransHab Configuration
- Standard 10m fairing
- Includes MOI/TEI propulsion module
- Contingency Consumables Module could be launched separately, if needed, to reduce launch mass on Ares V

Earth Departure Stage (EDS) Configuration
- EDS could be derived from Ares V stage 2 (40% reduction)
- Top of standard 10m fairing used for nose cone on EDS
- Large production rate might lend to COTS
- Program might provide one spare EDS/Ares V on standby to cover a launch failure

Number of launches per 4-year campaign cycle:
- Lander: 3
- TransHab: 1
- Earth Departure Stage: 8

Pre-Decisional – For Planning and Discussion Purposes Only
Conclusions

- This is conceptually a low risk approach with very little new technology development
 - Supersonic Retro-Propulsion (SRP) for EDL
 - Space storable LOX/LCH\textsubscript{4} propulsion for Transit Habitat
 - 5 kWe Dynamic Isotope Power System (DIPS)
 - Bulk of dvmt. work would be straightforward engineering design, fab, and testing
- Development risk could be low, with a program cost and schedule similar to that of the ISS – about 18 years and $100 B
- This architecture would require a ~170 T to LEO Ares V
- 2/3 of the Ares V launches would be identical build-to-print EDS stages
 - Economy of scale in production
 - COTS provider might be a possibility
 - Mission reliability could be significantly increased by holding an extra Ares V with EDS Stage in reserve, ready to launch on short notice
- This is just a notional concept for a crewed Mars mission architecture. Validating this concept would require developing Phase A designs for each of the mission elements and performing simulation runs with higher fidelity mission modeling tools.
- Cost estimates are notional, based on NAFCOM modeling and comparisons to past developments. Coming up with validated cost estimates would require considerable analysis.
Additional Material
DRA 5 Contingencies, Fallbacks, and Descope Options Table

<table>
<thead>
<tr>
<th>Contingencies</th>
<th>Benefits</th>
<th>Impacts</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOX/kerosine propulsion for landers and MAV</td>
<td>Lower development cost and risk. Heritage for pump-fed engines. Lower in-flight risk for long-term cryo fuel storage, esp. for pre-deploy. Easier thermal design.</td>
<td>Slightly lower I<sub>sp</sub></td>
<td></td>
</tr>
<tr>
<td>Aerobraking used to lower Mars apoapsis for Mars Transit Vehicle (MTV)</td>
<td>Much lower propulsive MOI ΔV</td>
<td>2-3 months for aerobraking taken from surface mission. Probably some moderate impacts to spacecraft configuration.</td>
<td>Aerobraking might be possible in <2 months</td>
</tr>
<tr>
<td>Fallbacks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface power is solar with RPS emergency power</td>
<td>Lower development cost and risk</td>
<td>Lower overall power available. ISRU for propellant may be problematic. Only have emergency survival power during severe duststorms.</td>
<td></td>
</tr>
<tr>
<td>Blunt-body entry vehicle for landers</td>
<td>Probably lower development cost and risk. Better structural load paths. Probably simpler implementation in jettisoning heatshield and backshell.</td>
<td>Lower internal volume. Less configuration flexibility. Possibly less heritage from Lunar Lander.</td>
<td>Might use inflatable hypercone or other deployable aerobrake</td>
</tr>
<tr>
<td>Chemical in-space propulsion (TMI, MOI, and TEI)</td>
<td>Lower development cost and risk</td>
<td>Higher launch mass</td>
<td>LOX/LH<sub>2</sub> or LOX/LCH<sub>4</sub></td>
</tr>
<tr>
<td>Descopes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced crew size (e.g. 4)</td>
<td>Lower mass and cost</td>
<td>Reduced crew capability and redundancy</td>
<td></td>
</tr>
<tr>
<td>Launch opportunities alternate between cargo and crew</td>
<td>1/2 the launch rate. Significantly lower sustaining cost.</td>
<td>Crews sent to Mars only at every other Mars opportunity. Lose benefits of overlapping redundant elements.</td>
<td>Uses pre-deploy architecture</td>
</tr>
</tbody>
</table>
Possible Mission Contingencies

• If DAV were to fail prior to descent, crew would remain in TransHab and return to Earth at the designated time in the mission plan.
• If the Power/Logistics module were to fail, the crew could still perform a full-duration surface mission, but would be limited in resources and ability to travel very far from the SurfHab.
• If the SurfHab were to fail, the crew could still perform a significant surface mission living in the two small pressurized rovers and utilizing other resources on the Power/Logistics module. Limitations in resources and living volume would probably necessitate a less than full-duration surface mission.
• If both the SurfHab and Power/Logistics modules were to fail, and there was no common-cause lander failure, then the crew could perform a landing in the DAV and conduct a brief surface mission similar to the Apollo lunar missions.
Concept for Transit Habitat NTO/MMH Option

- Based on Mass Tracker runs, the architecture conceptually closes using NTO/MMH propellants for the TransHab under the following conditions:
 - Separate NTO/MMH stages for MOI and for TEI
 - Ares V must be capable of lifting ~180 T to LEO, or an additional launch is required to deliver all the TransHab elements to LEO
 - Current Ares V (51.00.48) has been assessed as delivering 187.7 T to LEO
- This could potentially be a lower risk and lower development cost implementation or could provide a fallback option in the event that LOX/LCH₄ or LOX/kerosene propulsion were not used for the TransHab
Acknowledgements

- The authors would like to thank Bret Drake and the DRA 5 Team for their support in developing this work. Without that body of work to draw upon, this study would not have been possible. Rob Manning greatly assisted in providing consulting and some of the EDL analysis. Mark Adler suggested the use of aerobraking to reduce ΔV and enable the architecture. Benjamin Solish performed the MassTracker runs to validate the gear ratios used in this study.

- The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Terminology

- CCM – Contingency Consumables Module
- CEV – Crew Exploration Vehicle (Orion)
- COTS – Commercial Orbital Transportation Services
- DAV – Descent/Ascent Vehicle
- DIPS – Dynamic Isotope Power System
- DRA – Design Reference Architecture
- DRM – Design Reference Mission
- EDL – Entry, Descent, and Landing
- EDS – Earth Departure Stage
- EVA – Extra Vehicular Activity
- \(I_{SP} \) – Specific Impulse
- ISS – International Space Station
- ISRU – In-situ Resource Utilization
- JPL – Jet Propulsion Laboratory
- \(L_2 \) – Earth Lagrangian point 2
- LEO – Low Earth Orbit
- \(LCH_4 \) – Liquid Methane
- \(LH_2 \) – Liquid Hydrogen
- LOX – Liquid Oxygen
- MAV – Mars Ascent Vehicle
- MAWG – Mars Architecture Working Group
- MOI – Mars Orbit Insertion
- MSL – Mars Science Laboratory
- NTR – Nuclear Thermal Rocket
- \(Pu^{238} \) – Plutonium 238
- SCRAM – Safety Control Rod Axe Man (jargon for emergency reactor shutdown)
- SPLM – Surface Power and Logistics Module
- SRP – Supersonic Retropropulsion
- SurfHab – Mars Surface Habitat
- \(T \) – Metric ton (1,000 kg)
- TEI – Trans-Earth Injection
- TMI – Trans-Mars Injection
- TOP – Trajectory Optimization Program
- TransHab – Mars Transit Habitat
References

- Thompson, Robert, Cliatt, Larry, Gruber, Chris, Steinfeldt, Bradley, Sebastian, Tommy, Wilson, Jamie, Design of an Entry System for Cargo Delivery to Mars, 5th International Planetary Probe Workshop, June 2007, Bordeaux, France.