Risk Analysis for Resource Planning Optimization

Kar-Ming Chueng
Jet Propulsion Laboratory, California Institute of Technology

9th International Probabilistic Safety Assessment and Management Conference

May 18-23, 2008
What this paper is NOT about

• NOT about anatomy of planning and optimization algorithms
 – But to formulate a risk analysis and planning framework that plugs in different planning and optimization schemes like FMINCON, ILOG, and GA

• NOT about generation of an “optimal” plan
 – But to provide a “near-optimal plan” of non-deterministic events whose probability of failure P_F can be quantified analytically and by simulation

• NOT about tedious mathematical derivations
 – But to demonstrate that non-deterministic events and their relationships (constraints) can be mathematically modeled, and lend itself to mathematical optimization and empirical simulation
Main goals

• The main purpose of this paper is to introduce a risk management approach that allows planners to quantify the risk and efficiency tradeoff in the presence of uncertainties, and to make forward-looking choices in the development and execution of the plan.

• Demonstrate a planning and risk analysis framework that tightly integrates mathematical optimization, empirical simulation, and theoretical analysis techniques to solve complex problems.
Problem statement (1)

• Extending link analysis techniques to resource planning optimization in the presence of uncertainties
 – Standard link analysis is a proven statistical risk analysis technique for evaluating communication system performance and trade-off
 – Many of the gain/loss parameters (in dB’s) of the link are statistical
 • Parameter \(x \) with designed value \(x_d \), minimum value, \(x_{\text{min}} \), maximum value \(x_{\text{max}} \), and a probability function \(f(x) \), result in \(x_{\text{mean}} \) and \(x_{\text{var}} \)
 – With the ‘hand-waving’ assumption that the sum of all gain/loss link parameters has a Gaussian distribution with distribution \(N(m, \sigma^2) \), one can design a link and establish link margin policy based on statistical confidence level measured in terms of \(\sigma \) (i.e. n-sigma event)

 – Non-deterministic events has variable time durations
 – Extend the link performance analysis (in dB’s) to non-deterministic event planning (in time)
Problem statement (2)

- Some notations
 - Planning horizon \([T_s, T_e]\): given start time \(T_s\), given end time \(T_e\), all events must fit within \([T_s, T_e]\)
 - Event \(E_i\): start time \(t_o^i\), duration \(d_i\), where \(t_o^i\) is the state variables to optimize, and \(d_i\) is a random variable that has a unimodal probability distribution function \(p_i(d_i)\) with mean \(m_i\) and standard deviation \(\sigma_i\)
 - A plan consists of a number of events within the planning horizon, and events \(E_i\) and \(E_j\) might bear certain pair-wise relationship \(R_{ij}\)
 - There are one or more resource limits that cannot be exceeded

\[
\begin{align*}
E_1 & \quad t_o^1 \quad d_1 \quad \text{Triangular distribution} \\
E_2 & \quad t_o^2 \quad d_2 \quad \text{Uniform distribution} \\
E_n & \quad t_o^n \quad d_n \quad \text{Gaussian distribution}
\end{align*}
\]
Problem statement (3)

• Some definitions of terms
 – Planning is the process of a priori scheduling the events within the planning horizon
 – There are one or more objective functions that the plan is trying to optimize subjected to the given rules and constraints
 – A plan is said to be successfully executed if
 • All events in the plan can be accommodate within the planning horizon
 • There is no resource usage that exceeds the maximum allowable limit
 • There is no violation to the set of pre-defined rules and constraints
Applications (1)

- Space mission planning and sequencing
 - Mission planning/sequencing translates science intents and spacecraft health and safety requests from the users into activities in the mission plan
 - Non-deterministic spacecraft events: star-tracker to acquire a star, data volume per pass, slew, … etc.
 - Spacecraft resources: power/energy, data rate/data volume, thermal limits, onboard storage, CPU etc.
 - Event-driven spacecraft activities: an activity could be contingent upon the complete of other activities, upon the state of the spacecraft and/or estimated resources, or triggered by real-time events such as observation of a supernova explosion
Applications (2)

• Risk analysis for cost and schedule planning
 – Model budget (resource) and schedule (duration) and their uncertainties
 – Model tasks dependencies

• Risk analysis for communication network planning
 – Model link durations and their uncertainties
 • Time uncertainty to transmit a certain fix data volume in the presence of retransmission (e.g. Prox-1)
 – Model link availabilities as resources
 • Number of users in a multiple access scheme
 • Data rates
 – Model link dependencies
 • Store-and-forward relay link: forbidden synchronous
 • Bent-pipe relay link: inclusion
Risk analysis approach by iterative simulation and optimization

- Given an acceptable risk level P_{th}, find a plan with $P_F \leq P_{th}$ by iterative optimization and simulation
- Plan is intentionally sub-optimal to ensure a stable solution
 - Start time t_o^i is not dependent upon the completion time of any prior events
 - Ensure successful execution of plan as long as $d_i \leq \Delta_i$
- Simulation always converge
- P_F is always “well-behaved”, i.e. increasing the task duration Δ_i will always yield lesser events to be accommodated but higher probability or completion or vice versa
Mathematical representation of non-deterministic events and constraints (1)

- Examples of objective Functions
 - Given start times $t_o^1, t_o^2, \ldots, t_o^n$ (state variables to optimize)

\[
\begin{align*}
 f_1(t_o^1, \ldots, t_o^n) &= \max_i \{t_o^i + d_i\} & \text{f}_1 & : \text{Minimizing maximum end time} \\
 f_2(t_o^1, \ldots, t_o^n) &= \sum_{i=1}^{n} t_o^i & \text{f}_2 & : \text{Minimizing initial time occurrence of all events} \\
 f_3(t_o^1, \ldots, t_o^n) &= \sum_{i=1}^{n} t_o^i + d_i & \text{f}_3 & : \text{Minimizing end time of all events} \\
 f_n & : \text{Priority weighted versions of the above}
\end{align*}
\]
Mathematical representation of non-deterministic events and constraints (2)

- Example of linear constraints
 - Ranges of start time t_o^i

\[
\overline{x} = \begin{bmatrix} t_o^1 \\ \vdots \\ t_o^n \end{bmatrix}_{nx 1} \quad \overline{lb} = \begin{bmatrix} T_{\min}^1 \\ \vdots \\ T_{\min}^n \end{bmatrix}_{nx 1} \quad \overline{ub} = \begin{bmatrix} T_{\max}^1 \\ \vdots \\ T_{\max}^n \end{bmatrix}_{nx 1}
\]

\[
\overline{lb} \leq \overline{x} \leq \overline{ub} \Rightarrow \begin{bmatrix} T_{\min}^1 \\ \vdots \\ T_{\min}^n \end{bmatrix} \leq \begin{bmatrix} t_o^1 \\ \vdots \\ t_o^n \end{bmatrix} \leq \begin{bmatrix} T_{\max}^1 \\ \vdots \\ T_{\max}^n \end{bmatrix}
\]
Mathematical representation of non-deterministic events and constraints (3)

- An example of non-linear constraints (with explanation)
 - Forbidden synchronic: when two given events are both scheduled, they must not occur simultaneously at any point in time

Direct form: \[\max(t_o^i + \Delta_i, t_o^j + \Delta_j) - \min(t_o^i, t_o^j) \geq \Delta_i + \Delta_j \]

Alternate form: \[[\Delta_i + \Delta_j - |2(t_o^i - t_o^j) + \Delta_i - \Delta_j|] \leq 0 \]
Other examples of non-linear constraints (with no explanation)

- Inclusion: if event i is scheduled, then event j must be initiated in some chosen time interval $[w_o^j, w_f^j]$
 \[
 \left(2t_o^j - w_o^j - w_f^j \right) + w_o^j - w_f^j \leq 0
 \]

- Exclusion: if event i is scheduled, then event j must not be initiated in some chosen time interval $[w_o^j, w_f^j]$
 \[
 \left(w_f^j - w_o^j - \left|2t_o^j - w_o^j - w_f^j\right|\right) \leq 0
 \]

- Others: precedence relationships, resource constraints, etc.
Empirical results and theoretical results (1)

- Theoretical result: a simple upper bound of P_F
 - Denote $P_{F,i}$ the probability that event i would end with a duration d_i that exceeds the predetermined duration Δ_i, and $P_{S,i} = 1 - P_{F,i}$
 - Denote P_S the probability that the schedule succeeds, meaning it does not violate constraints nor exceeds the planning horizon; it is obvious that $P_S \geq P_{S,1} P_{S,2} \cdots P_{S,n}$, because $P_{S,1} P_{S,2} \cdots P_{S,n}$ does not take into account all the possible ways in which event may exceed the designated durations determined by $P_{S,i}$, and still have a successful schedule
 - Therefore
 $$P_F = 1 - P_S \leq 1 - P_{S,1} \times \cdots \times P_{S,n} \leq 1 - (1 - P_{F,1}) \cdots (1 - P_{F,n})$$
 - Which results in an upper bound of P_F given by
 $$P_F \leq P_{F,1} + P_{F,2} + \cdots P_{F,n}$$
- The upper bound of P_F can be used to guide the adjustment of λ_i in the iterative optimization/simulation process
Empirical results and theoretical results (2)

• Theoretical result: Saddle-Point approximation of $P' F$ of an Ensemble of Tasks in Tandem
 – In task planning, a common situation is that there are a number of tasks that are required to execute in tandem, sometime with a constraint on overall duration
 – If no dependencies between these tasks with other tasks, one can treat them as a single task to simplify downstream analysis and optimization
 – The probability that the total duration of tasks exceed α, $P' F(z > \alpha)$, can be approximated by

$$q_+(\alpha) \approx \frac{e^{\psi(s_0)}}{\sqrt{2\pi \psi''(s_0)}}$$

 – See next chart for outline of derivation
Empirical results and theoretical results (3)

- Some notations
 - \(x_1, x_2, \ldots x_n \) are \(n \) independent random variable with pdf \(f_{x_i}(x_i) \)
 - \(z \) is the sum of \(x_1, x_2, \ldots x_n \)
 - \(\Psi_{x_i}(s) \) is the characteristic function of \(x_i \), and \(\Psi_z(s) \) is the characteristic function of \(z \)
 - \(q_+(\alpha) \) is the tail probability of \(z \)

\[
\psi(s) = -s\alpha + \log \Psi_z(s) - \log s
\]

\[
z = \sum_{i=1}^{n} x_i \quad f_z(z) = f_{x_1}(x_1) \ast f_{x_2}(x_2) \ast \ldots \ast f_{x_n}(x_n)
\]

\[
\Psi_z(s) = \int_{-\infty}^{\infty} e^{sz} f_z(z) \, dz \quad \Psi_z(s) = \Psi_{x_1}(s) \Psi_{x_2}(s) \ldots \Psi_{x_n}(s)
\]

\[
q_+(\alpha) = \int_{\alpha}^{\infty} f_z(z) \, dz \quad q_+(\alpha) \approx \frac{e^{\psi(s_0)}}{\sqrt{2\pi\psi''(s_0)}}
\]

- Analysis challenges
 - Evaluation of pdf of sum of \(n \) variables requires \(n-1 \) nested integration
 - Inverse of \(\Psi_z(s) \) is usually extremely difficult, if not impossible
10-event case toy problem
 - Events 1 and 3 may not overlap
 - Event 1 must finish before event 4 begins
 - Each event consumes 1 unit of resource, limit 3 at any time
 - PDF and its parameters of each of the ten event durations

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Type of Dist.</th>
<th>Parameters</th>
<th>Min. Value</th>
<th>Max Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Uni.</td>
<td>NA</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Beta</td>
<td>$\alpha=4, \beta=4$</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Norm</td>
<td>$\mu=10, \sigma=.5$</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>Tri.</td>
<td>Peak=4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>LogN</td>
<td>$\mu=2, \sigma=.5$</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>Uni.</td>
<td>NA</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Beta</td>
<td>$\alpha=5, \beta=5$</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>Uni.</td>
<td>NA</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Tri.</td>
<td>Peak=3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>Tri.</td>
<td>Peak=4</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
10-event case optimization and simulation results

Set durations Δ_i such that each event has a 99% confidence of successful completion.

<table>
<thead>
<tr>
<th>Simulation ID</th>
<th>Probability of Schedule (10 Events) Failing (5000 runs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0424</td>
</tr>
<tr>
<td>2</td>
<td>0.0430</td>
</tr>
<tr>
<td>3</td>
<td>0.0458</td>
</tr>
<tr>
<td>4</td>
<td>0.0448</td>
</tr>
<tr>
<td>5</td>
<td>0.0382</td>
</tr>
<tr>
<td>6</td>
<td>0.0372</td>
</tr>
<tr>
<td>7</td>
<td>0.0358</td>
</tr>
<tr>
<td>8</td>
<td>0.0434</td>
</tr>
<tr>
<td>9</td>
<td>0.0400</td>
</tr>
<tr>
<td>10</td>
<td>0.0430</td>
</tr>
<tr>
<td>Ave. P_F</td>
<td>0.0414</td>
</tr>
</tbody>
</table>

Upper Bound of P_F 0.10
Empirical results and theoretical results (6)

- 30-event case
 - 2 precedence relations, 1 exclusion relation, 1 resource limit of 3
Using Stochastic Optimization to Find a Good Initial Point (1)

- **Challenges of optimization**
 - Speed and optimization performance depends strongly on the initial guess of the state vector \([t_o^1, t_o^2, \ldots t_o^n]^T\)
 - A bad guess results in slow convergence and/or poor locally-optimal solution

- **Improved optimization using stochastic optimization algorithm**
 - Use stochastic optimization algorithm (e.g. genetic algorithm) to find a set of viable and promising state vectors to serve as initial guesses
 - Use the initial guesses as input to more sophisticated optimization schemes (e.g. Sequential Quadratic Programming in Matlab’s FMINCON) to generate a set of locally-optimal solutions
 - Obtain an “overall” optimal solution out of all the local optima by subjecting them to a probabilistic simulation to determine likelihood of failure and to compare objective values
Using Stochastic Optimization to Find a Good Initial Point (1)

- Genetic Algorithm
- Set of Initial Guesses
- Sequential Quadratic Programming: FMINCON
- Locally Optimal Solution Set
Using Stochastic Optimization to Find a Good Initial Point (2)

- 100 event case, 40 constraints, 2 resources limit of 4
Using Stochastic Optimization to Find a Good Initial Point (3)

- Resource#1 usage profile of 100 event case