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Vacuum Gauge Applications

Vacuum-Packaged Structures
• Vacuum electronics:  MMW and THz 
vacuum electronics (e.g. amplifiers, 
oscillators, traveling wave tubes)  
• Microgyroscopes: e.g. as resonators

RF MEMS it h filt
Uncapped resonator

• RF MEMS: e.g. switches, filters Sparks, Ansari, Najafi, 
IEEE Trans. Adv. Packaging, vol. 26, 2003

Vacuum Micro-cavity
Vacuum Micro cavity• Device performance within micro-cavity 

usually affected by quality of vacuum
• Small-volumes  large pressure changes
f th l i d d ti

Vacuum Micro-cavity

from thermal excursions and gas desorption
• Miniature vacuum gauges integrated with 
micro-cavities can non-invasively monitor 
local pressures to characterize device
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local pressures to characterize device 
performance over product lifetime
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Piezoresistive Mechanism
• Metallic SWNTs on ALD-
deposited membranes of Al2O3

Piezoresistive Mechanism

• Pressure differential causes 
membrane to bulge, inducing 
strain in overlying SWNT 
This Work: ThermalThis Work:  Thermal 
Conductivity Mechanism
• Heat transferred to gas function 
of pressure for sensor held at

gasradiationsubstrateTotal EEEE 

of pressure for sensor held at 
fixed bias

gasradiationsubstrateTotal

C. Stampfer, C. Hierold, et al. Nano Lett., 
vol 6 2006

• Small dimension of CNT and 
large TCR values enables greater 
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vol. 6, 2006. g g
pressure sensitivity
• Non-intrusive: low power, small-
size, promising for micro-cavities

Electrothermal CNT Gas Sensor Reported: T. 
Kawano, L. Lin, et al. Nano Lett., vol. 7, 2007.
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Device Fabrication Facilities
JPL’ Mi d i L bJPL’s Microdevices Laboratory: 12,000 square feet class 10 cleanroom

Contact lithography units Conventional ICP etchers: high density,
low pressure plasma

JEOL E-beam aligner
Canon Excimer Laser DUV Stepper

Oth k i t

RIE etchers (CF4/BCl3)
low pressure plasma
(chlorine and fluorine 
chemistries)

Other key equipment:
-dc magnetron sputtering system
-CVD furnace (CNT growth)
-Fe e-beam evaporator (catalyst layer)

di l i d i i
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Dektak profilometer

E-beam evaporator (Pt, Ti, Au electrodes)

-PECVD dielectric deposition
-AFM, SEM (CNT imaging, characterization)
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Fabricated Devices
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Measurement Set-up
Computer interface to parameter 
analyzer using ICS data acquisition 
software; current sampled at 1 sec 

Bell-jar

intervals at fixed bias voltage

coaxial 
Devices wire-bonded on 

chip-carrier

Electrical feed through for
2-terminal measurements

cables

• Wheatstone bridge not required, sensitivity 
~10 pA on analyzer
• Mechanical pump (760 Torr – 35 mTorr); 
pressure measured with convectron gauge

HP 4156C 
Parameter Analyzer
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pressure measured with convectron gauge
• Ultimate pressure ~ 10-7 Torr (cryo pump); 
pressure measured using ion gauge
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Static Pressure Response

• Reduced conductance 
at low pressures5.0E-06

Dashed lines: 1  • Change in I detected 
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propensity of Ti for 
oxidation)
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oxidation)
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Dynamic Pressure Response
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• Conductance decreases rapidly initially (760 Torr - 1 Torr) for all biases
• Response less sensitive at lower pressures; molecular collision rates 
higher at higher pressures  greater cooling, greater current change

A bi lt i d t f t h i i li
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• As bias voltage increased, rate of current change increases in linear 
regime (inset)
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Pressure Sensitivity with Power
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• Sensitivity increases with power (temperature changes higher)
• At powers as low as 20 nW, measurable sensitivity ~ 40 fA/Torr
• Increases up to ~ 1 nA/Torr at ~ 14 W
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p 
• Earlier thermal conductivity gauges show similar behavior but
at > mW-levels of power
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• I-V characteristic 
predominately 
linear at 290 K.
• Slight non-4.0E-07
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50 K linearity at 200 K 
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V lt (V)V lt (V)
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• At 290 K, conductance independent of bias voltage (as expected).  
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, p g ( p )
• At 50 K conductance suppression observed at low bias
• Gap formation occurs for V below ~ 1.5 V at 50 K, where conductance is 
suppressed by more than 3-orders of magnitude, converges to 290 K value

e24
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• T << 1 low transparency contacts, CNT weakly coupled to leads 
• Luttinger liquid behavior                 ( = 0.33-0.38) did not fit data wellTG 

h
eTG 4.
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y = -4.58*10-1x - 4.08*10-1
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• Suppressed conductace at low temperatures and under low bias 
diti ld i f l h i

0.0 4.0 8.0 12.0 16.0 20.0

1000/T (K-1)

conditions could arise from several mechanisms
• Potential barrier at contacts suggesting CNT weakly coupled to the 
leads (coloumb blockade)
• Defects in long tubes (bends etc ) leads to suppressed conductance
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• Defects in long tubes (bends, etc.) leads to suppressed conductance 
• Electron localization due to defects (thermally activated transport)   
provided a good fit to data where hopping energy, Ea ~ 39.5 meV

TBk
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LnG
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Substrate removal

gasradiationsubstrateTotal EEEE 

CNT Vacuum Gauge
• Losses through 
substrate important at 
low pressures

CNT Vacuum Gauge
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continued decrease in 
current down to 10-5

Torr

Time (sec)Time (sec)
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Effect of Power at High Vacuum
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Effect of power on unreleased and released CNT devices
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• Effect of power on unreleased and released CNT devices
• Net current change I measured for pressure change from 5 x 10-6

Torr to 8 x 10-7 Torr
• Released CNT device has the highest I ~ 550 nA compared to ~
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Released CNT device has the highest I  550 nA compared to  
150 nA for unreleased CNT device at ~ 6 W 
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Summary and Future Work

CNT Vacuum Gauges
• have a broad range of pressure response from 760 - 10-6 Torr

h t h 100’ A i hi h i (10 6• have current changes ~ 100’s nA in high vacuum regime (10-6

Torr) and sensitivity increases with power and substrate removal
• have a negative dR/dT (TCR negative) where a thermal 
hopping energy Ea was determined to be ~ 40 meV.
• have compatible fabrication requirements for their integration 
with micromachined structureswith micromachined structures
• can be operated at low power (nW – W)
• have an active device region footprint of < 10 m2

are non intrusive due to small size and passive operation• are non-intrusive due to small size and passive operation
Future Work
• Further work is necessary to fully characterize the effects tube 
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characteristics (chirality, length, transparency at the contacts) 
have on pressure response of devices 
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Backups
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Hydrocarbons (CnHm) C(s) + H2
Fe (or Ni, Co, etc.)

600-800 C

High solubility of 
C in catalyst at 
high temperatures 600 800 Chigh temperatures

nm-sized catalytic metal

CnHm
CNTs H2

SWNT Synthesis Conditions

2” Quartz Tube

Tube Furnace CH4 1500 sccm & H2 50 sccm @ 850 ºCCVD

183/19/2008

~ 1 nm thick Fe-catalyst film
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Formation Process

Final release in 
10:1 BOE (with Cr

193/19/2008

electrodes instead 
of Ti) and Critical
Point drying
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NASA Technology Development

Flight technologies

Mid-level technologies

This work:This work:
Feasibility study 
of CNT-based 
vacuum

Early level technologies

203/19/2008

vacuum
gauges
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Conventional Pressure Sensors

Pirani, Ion Gauges
• Sensitivity good at UHV conditions
• Large volume high power: invasive

Diaphragm-based for capacitive, 
Piezoresistive, optical sensing

• Large volume, high power: invasive
• Difficult to integrate with micro-cavities

MEMS-based pressure sensorsMEMS-based pressure sensors
• Low power, small volumes
• Mechanisms: capacitive, 
i i ti ti l d t i ti f

Mastrangelo, Zhang, Tang, J. MEMS, 
vol. 5, 1996

Recently: Radio isotopepiezoresistive, optical determination of 
membrane deflection, resonance 
frequency shift, radio-isotope based 

Recently: Radio-isotope
charged cantilever for sensing

Proposing: Carbon nanotube based

pressure sensors
• Wide-dynamic range challenging

A Lal et al J Appl Phys vol 92 2002
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Proposing: Carbon nanotube based 
thermal conductivity vacuum gauge

A. Lal et al. J. Appl. Phys. vol. 92, 2002.
H. Li and A. Lal, Proc. of the 12th Int. Conf. 
on Solid State Sensors, Actuators and 
Microsystems, vol. 1, 2003.
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CVD Synthesis of SWNTs
Good Growth No GrowthGood Growth No GrowthRole of H2

• H2 required to minimize 
amorphous carbon, but too much H2amorphous carbon, but too much H2
or hot annealing causes particle 
fusion and inhibition of SWNT 
growth
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• Stagnant zone in boats results in 
variable gas mixing leading to 

i bl SWNT i ld

Nanoparticle Size

Distribution

Nanoparticle Size

Distribution

Nanoparticle Size

Distributionvariable SWNT yield
• Flat top holders with laminar flow 
give consistent results
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ppp

Wong, E.W. et al., Chem. Mater., 17 (2005) 237-241
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JPL CNT Device Efforts
• CNT schottky diodes for THz detectors
(H. Manohara, E. Wong et al.)

CNT fi ld itt f TH• CNT field emitters for THz sources (H. 
Manohara, M. Bronikowski)

• Nanowire-based chemical spectrometer
for molecular ID (B. Hunt, E. Wong, M. 
Bronikowski, et al.)

• CNT mechanical resonators for RF 
signal processing (B H t L E t l )signal processing (B. Hunt, L. Epp et al.)

• CNT switches (A Kaul E Wong et al )
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• CNT switches (A. Kaul, E. Wong, et al.)
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Effect of Annealing
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Voltage (V)
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Wet Process Effects
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Tube Chirality
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Heat Dissipation

grst EEEE 

 LTAKEs /)( 

A = area through which heat transfer occurs, 
K = thermal conductivity of the SiO2
T = temperature difference between the current 
carrying element and the substrate 
L = distance from the element to the substrate

 ATTE ahr )( 44 

L = distance from the element to the substrate 

 = Stefan-Boltzmann radiation constant
 = thermal emissivity of element
Th, Ta = temperatures of the element and ambientahr )( Th, Ta  temperatures of the element and ambient

 
h

ahtrg T
TTAPE 273)( 

r = accommodation coefficient
t = free molecule thermal conductivity
A = surface area of the element
P = pressure 
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