
 1

The Interim, Until You Achieve an Operationally Responsive Ground System 
 

Bob Wendlandt, Kelly Clarke, Charles Miyamoto, Jordan Lei, Kyran Owen-Mankovich 
 

Jet Propulsion Laboratory 
California Institute of Technology 

4800 Oak Grove Drive, M/S 301-240 
Pasadena, CA 91109-8099 

{Bob.Wendlandt, Kelly.Clarke, Charles.Miyamoto, Jordan.Lei, Kyran} @jpl.nasa.gov 
JPL Approval #________    

 
 

Introduction 
 

Everyone wants to achieve a "Responsive" Ground Data 
System (GDS), but that takes time.  What do you do in the 
interim? Our group, called the Integration, Test and 
Deployment Team (ITD), is a group of responsive 
engineers whose primary focus is to assist JPL projects to 
successfully adapt, test, integrate and deploy their ground 
data system. 
 
The team configures and adapts the GDS for a project, so 
that analysts, engineers and scientist do not need to be 
experts in the GDS to operate it.  The team has developed 
a human interface to accommodate all types of users.  It 
provides Graphical User Interfaces (GUI’s) for those that 
want GUI's, command line interfaces for those that want 
control, and selection button interfaces for other users.  
 
The cornerstone of a responsive Ground Data System is 
responsive people.  Without individuals who can be aware 
of a project's changing needs and requirements, how can 
the GDS become responsive? 
 

Ground Data System 
 
JPL’s GDS is a UNIX based system running primarily on 
Sun workstations.  It is currently moving toward Linux.  
Development began in 1986 to generate a single generic 
Multi-mission Ground Data System that would not need 
to be rewritten for each new spacecraft project.  Today 
much of the core GDS is table driven so that when a new 
mission is under development it is not a major effort to 
adapt the GDS to it.  Users view the GDS system in many 
ways and with different abilities. 
 
The GDS is an exceptional piece of architecture that has 
been designed with a great deal of flexibility. But, have 
you ever thought for a minute about what flexibility 
entails?  Flexibility means options.  Options mean 
variability.  Variability means more to remember.  More 
to remember means forgetting something.  Forgetting 
something means possible mistakes. 
The ITD team works in cooperation with the mission 
ground data system engineers and the JPL institutional 

software development organizations.  The team’s goal is 
to provide GDS system solutions to help alleviate the 
possibility of mistakes by users of the GDS.   By 
designing and adapting ground solution processes and 
environments it is possible to mitigate user error. 
 
The following discussion will present various vignettes or 
real life examples that demonstrate how we have been 
responsive in attempting to alleviate this situation and still 
give the flexibility to the user that they want and need. 
 

The Nature of Our Team: 
 Responding to Dynamic Environments 

 
GDS users work in a very dynamic environment.  One 
moment everything is quiet, no data is arriving, then on 
schedule, data begins to arrive and everyone is actively 
reviewing the latest data for the health and welfare status 
of the spacecraft or rover.  When a Ground Data System 
user experiences unexpected results and they are not sure 
what is going on, they call the ITD Team. The team 
attempts to resolve any user problem in an expedient 
manner. If it is an immediate issue (e.g., no one is seeing 
any data) then the team has to act quickly.  Most of the 
time each team member is working on or investigating 
other project issues, so when a problem call comes in, the 
appropriate team member for that project will set aside 
what they are currently working on and respond to the 
problem.   Each team member constantly has to juggle 
between immediate and long-term tasks.  The long-term 
tasks are essentially queue driven, when one is finished 
the next task in the queue moves to the top. 
 
The short term or immediate tasks operate more like a 
stack.  The stack is empty, and then within a very short 
time span there can be several urgent tasks pushed onto it.  
This requires each team member to be flexible in their 
work schedule to set aside what they are working on and 
change gears to a different more important activity.    
Responding to this ever changing environment of 
immediate verses long term tasks and activities is what 
challenges the ITD Team. 
 



 2

When an issue comes up and a team member does not 
know the answer to a problem, they are able to utilize the 
resources of the team.  This is where having the team co-
located in a lab environment benefits the team and 
ultimately the projects. Any time a team member has a 
question, they need only turn around and ask other 
members in the lab.  If the individual is in a project area, 
they can call the central number at the lab. Chances are 
someone has encountered a similar issue before. If one 
person is stuck, another is likely to have a new idea, a 
different perspective, an alternate thought, or a different 
track to take on how to approach the problem.  An 
incredible amount of time is saved by this interaction.  
Through this lab environment cross training is 
accomplished on a daily basis, and customer issues are 
resolved much faster than sitting in a cube alone, banging 
our head against a wall for hours. The result of this is that 
the individual can now utilize the resources of the entire 
team when they encounter a new or unusual situation.  It 
is the individual characteristics of each person that 
comprise the team.  Or to state it another way: the team is 
greater than the sum of all its members.   
While the team also formally cross-trains, the 
spontaneous bouts of informal learning make it a lot 
easier for individuals on the team to cover one another 
when someone leaves on vacation or is out sick.  Each 
team member has a core set of skills and knowledge base 
that makes it easy for each one to learn from the other.  
 
This teaming comes into play not only for learning and 
growing, but also in more concrete terms.  We are able to 
find out about innovative GDS solutions, usually in the 
form of tools, which have been provided to other 
missions.  We can then take and adapt some of these tools 
for other projects.  These tools often expand to meet the 
dynamically changing needs of new missions. 
 
Teaming has been about what and how the ITD team has 
accomplished what it does.  Now let us take a closer look 
at some of the GDS issues the team needs to respond to 
and find solutions for. 
 

What Time Is It? 
 
What time is it?  A simple enough question when we deal 
with it in the home or the office, but what about when our 
office is a Space Flight Operations Area and our home is 
Mars?  On Earth we have PST and UTC time differences.  
Dealing with “what time is it?” on the Mars Exploration 
Rover (MER) Project, time takes on an even wider 
perspective. 
 
At the beginning of the MER Surface Operations, the 
team had a lot to learn what others had in mind when they 
specified a time.  We would get a phone call or someone 
would walk by and say: “data is coming down at 3.”  

After they left, we would realize that we did not know 
what time that really was.  We did not know what their 
perspective of time was.  This does not just pertain to 
data, but, also, for meetings, meals, etc.  The following 
table of “times” demonstrates the different times that we 
regularly had to deal with: 
 
    Pacific Standard Time               = 3:00am PST = 3:0 0am PST 
    Universal Time Coordinated     = 0300 UTC    = 8:00pm PST 
    For Mars time:  
      Spacecraft2 /MER-A/Spirit          = 3 LMST   = 6:40pm PST  
    Or   
      Spacecraft1/MER-B/Opportunity = 3 LMST  = 6:58am PST 
      Note: The two rovers, Spirit and Opportunity, are on opposite 
                sides of Mars.  One would be AM and one would be PM. 

Table 1. Example of Different Time Perspectives 
 

In Table 1 each of these times is different!  And hopefully 
you can see the confusion that could arise because of the 
differences.  The confusion is expanded when each rover 
can and is referred to by its original spacecraft 
designation number (1 or 2), by its launch identifier 
(MER-A or MER-B), or by its assigned name (Spirit or 
Opportunity). Note that Spacecraft 2 is MER-A, because 
it was the second spacecraft to begin construction, but it 
became the first spacecraft to be launched. 
 
Initially, MER Operations was run on Mars time.  Each 
Rover had its own team that lived on a Mars day that was 
about 39 minutes longer than an Earth day.  Therefore, 
each day they started their workday, 39 minutes later than 
the day before.  But this is a whole different topic for 
another time.   For more information about Martian time, 
please visit: www.giss.nasa.gov/tools/mars24/, Goddard’s 
web site about Time on Mars.  Or go to Mars and look at 
your watch… 
 
Our team comprised MER’s Mission Data Operations 
Team (MDOT) and dealt with both rovers.  For this 
reason our team did not have to live on Mars time, but 
was able to live and work on Earth time.  Our Team still 
worked 24 hours a day, 7 days a week, like the rest of the 
teams, but we were rotating through on a standard 8-hour 
schedule.  Working on the MDOT team, we constantly 
had to translate time and rover references depending on 
who stated the time value.  It generally depended on 
which rover team and point of reference they were 
working and living on.  Briefly, the MDOT Team was 
responsible for keeping an eye on the Ground Data 
System for MER.  The MDOT team is the primary focus 
for resolving any GDS questions or problems. 
 
Our team for many years has utilized a standard Mission 
Clock that we deliver to each mission we support.  It is 
present on each Unix computer screen and contains both 
Pacific Standard Time (PST) and Universal Time 
Coordinated (UTC), in addition to other useful project 



 3

information.  For the MER mission we expanded this 
clock to also include the unique local Mars time for each 
rover.  These times started ticking at the moment that 
each rover landed.  Each rover’s time is color-coded, 
Spirit is Blue and Opportunity is Green. 
 
The primary length of the MER mission was 90 Solar 
Days or sols.  To be on the safe side, a three-digit sol time 
was included on the project clock.  The rovers are running 
so well that we have had to update the clocks and several 
other scripts to contain a four-digit sol instead of the 
original three-digit sol.  This was similar to what the 
computer industry went through back in the year 2000, 
remember it was called Y2K?  We called our situation 
sol2k.  We are currently up to 1509 sols for Spirit, and 
1489 sols for Opportunity.  That is over 2 Martian years 
or 4 Earth years and the rovers are still going.  Figure 1 is 
an image of the MER project clock. 
 

 
Figure 1.  Mars Exploration Rovers Mission Clock 

 
What about the situation where someone says that data is 
coming down from Spirit at 3:20 LMST, what time is that 
here on Earth?  We created our own simple conversion 
tool that would convert from Mars time to UTC and vise-
versa. Now we would be ready at the correct time for the 
data flow. Learning which people were on which rover 
team also helped a lot. 
 
This is just one example of how we have responded to a 
need, which enabled the Ground Data System to be a 
more responsive ground system. 
 

“Wrapping” the Multi-Mission GDS  
 
GDS software should be flexible and have various kinds 
of options or built-in hooks that allow users to 
manipulate/morph/transform data as they need to. 
 

Every flight project has users that run the entire range 
from experienced to non-experienced. We have three 
types of users.  First, those who are experienced users of 
our GDS. Second, is the repetitive user who uses the GDS 
everyday, but only to perform one particular repetitive 
task. The third type is the occasional user that only uses 
the GDS from time to time.  Our approach has been to 
setup our GDS interfaces for this occasional user.  They 
are the users we are concerned about most.  They are the 
user that may end up continually calling our group for 
help. 
 
The experienced user is not a quiet bunch, they will let us 
know what they need, or they will figure it out 
themselves.  If the GDS is simple enough to be operated 
by the occasional user, the rest of the varied users should 
have no trouble.  But, you can’t just focus on one level of 
user group; you need to provide a GDS that satisfies all 
the various levels of expertise. 
 
The technique that has provided the most benefit to 
assisting users interface with the GDS is by wrapping the 
GDS. The fact is that if a user says, “The GDS should be 
able to do xyz,” they are generally right. As an example, 
the GDS should be able to manipulate and represent data 
in many many many different ways. 
 
 The GDS is not infinitely configurable, but this should be 
the goal of the multi-mission GDS developers.  However, 
due to limited requirements, time, and funding, the 
developers are unable to implement all the options or 
hooks that users would want.  Therefore, our job is to 
mold the user interfaces into a form that is focused on a 
project’s particular requirement. 
 
It is our responsibility to; 1) Make sure the multi-mission 
GDS software correctly supports the data formats for a 
project and 2) provide small wrapper scripts that allow 
users to conveniently view their data and get their job 
done.  They should be able to do this without knowing the 
many options and combinations that the various GDS 
components are streamed together with. 
 
The goal is not to hide the details; rather the goal is to 
push the details to the back so the user can focus on the 
necessary parts (querying data, viewing telemetry) so they 
can get their job done.  The users job is not to be a GDS 
expert, that job is our job.  Users want to see their data; 
they don’t want to know how the data arrives or how the 
GDS works. Imagine that someone asks: “what time is 
it?”  No one would ever respond with: “Dozens of little 
gears are hidden underneath the clock’s covering that 
slowly rotate.  Each gear drives another gear that moves 
the next gear.”  All the person wanted to know was “what 
time it is”, not how the clock works, or how the GDS 
works.  They just want to see their data. 



 4

 
This is where the GDS wrapper script comes in.  So what 
is a GDS wrapper script? 
 
On the Dawn project, as an example, we have many small 
scripts containing several hundred lines of code each, 
usually written in Perl. Sometimes we use Python, or 
simply C-shell, the language does not really matter. What 
matters is that a user can execute these wrapper scripts, 
utilizing a minimum of options, and up pops their 
Telemetry Display, or their queried data, or their 
Spacecraft Event Messages all color-coded and nicely 
displayed in their format of choice. Remember, our goal 
is to streamline (aka simplify) the GDS. 
 
Using wrapper scripts makes the project GDS more 
straightforward for the average user. The expert user can 
ignore the wrapper scripts we provided and utilize the 
core options themselves if they desire. The ultimate goal 
is for the GDS to work for the user, whether they are an 
expert or an occasional user.  The core GDS with all of its 
options is always available to the user. 
 
We can assist the users in two ways.  The first is to make 
it easy for someone to understand what the wrapper script 
does.  Second, we can anticipate future user needs by 
keeping the GDS, and the wrappers, flexible.  One 
method to accomplish this is via a hidden option on all 
wrapper scripts. No matter how many options the wrapper 
script has, always have one extra option called, -debug. 
 
As users transition from beginner to experienced, they 
tend to start asking more in depth questions and want to 
know exactly what the wrapper scripts are doing. This is 
knowledge we want to share! The easiest way to achieve 
this goal is to allow the user to execute the wrapper in a 
debug (or verbose) mode. In this mode the wrapper would 
print everything it is doing to the screen, such that the 
user can learn how the multi-mission GDS components 
are being used. 
  
The delivered multi-mission GDS may be written in many 
languages and much of it delivered as compiled binaries. 
This makes sense for the core GDS. However, the 
wrapper scripts are not core. They belong to the project 
and are simply tools that build up the arguments for a 
particular project environment, for a particular capability, 
and execute it. By keeping them open, we fulfill an earlier 
goal of not hiding the details. 
 
Another way to assist the experienced user is to be 
flexible in our GDS deployment, where we listen to the 
experienced users (they are usually our biggest clients) 
and add options to our wrappers that give them access to 
the hooks they need. Whenever possible, new options 
should be defaulted to the original value, so that a user 

who does not specify the new option gets the same 
behavior as they did before the option was added. We 
need to be thoughtful as we add options to our wrappers, 
because if we add too many, then we are back where we 
started, and the occasional user is lost in a sea of options.  
If this happens then we have wasted our time by 
duplicating the same hooks the core GDS already had. 
 
With these wrapper scripts we have streamlined the ease 
with which a user can get what they need out of the 
system. In addition, these wrapper scripts prevent us from 
duplicating simple GDS syntax in multiple locations. If 
we have one script to query data, and another script also 
needs to query data, then one can call the other. If we 
need to be able to perform some GDS action from a pull-
down or from a button on a GUI, simply have that pull-
down or button call the wrapper script. The next time the 
multi-mission software is upgraded and a new required 
argument is added to the Spacecraft Event Viewer, for 
example, we do not need to add it every place a user can 
invoke the tool. We just change our one project wrapper 
script that calls the Event Viewer. 
 
The payoff is that the use of wrapper scripts allows for a 
consistent way for all users to have only the visibility they 
want and/or need, which ultimately leads to less user 
errors and a more responsive project GDS. 
 
The reality of a GDS for any mission is that it is complex, 
flexible and has many unique parts. We have taken these 
multi-mission masterpieces and adapted them with scripts 
and wrappers to enable the most common functions to be 
non-repetitive. After all, why should a user have to 
specify their mission (e.g. browser –mission=Galileo) 
every time they invoke a command? Why should an 
occasional user be presented with the opportunity to have 
typos if we can configure it so they do not? We have 
customized the environment to make things project 
specific – again to reduce repetitive steps, but more 
importantly to avoid mistakes.  
 
From the wrapper scripts we now go one level further in 
simplifying a user’s interface with the GDS.  We do this 
via the drop down menu and the remote menu. 
 

The Beauty of the Project-Specific Menu 
 
 Most users need a small subset of available GDS 
capabilities to do their everyday jobs. In addition they do 
not want to be bothered with an infinite number of 
options. Sometimes a user will say, “I just want to see my 
data.” Why make them remember a command line 
syntax? We can take these command line syntaxes and 
put them into a drop down menu that utilizes our 
customized environment and wrapper scripts. In that vein, 
we then put together a drop down menu with these tools 



 5

already configured for the user on their project.  Figure 2 
below is an example from the Mars Exploration Rovers 
drop-down menu. 
 

 
Figure 2. Mars Exploration Rover’s drop-down menu. 

 
We have also tried simplifying things to enable key teams 
to do their jobs quickly, easily, and with fewer errors and 
shorter training times.  For example, the people who 
command the spacecraft are interested in sending 
commands, rather than analyzing data. They are permitted 
to do things not everyone else is able to do. The Spitzer 
Space Telescope project has a special tool that allows the 
people commanding the spacecraft to have all their tools 
brought up properly configured and setup for them to 
focus on doing their jobs accurately. 
 
Some of our users log in remotely, but the drop-down 
menu is not available to remote users because the window 
manager controls the drop down menu. Whether they are 
logging in from home or from a university half way 
around the world, we wanted a tool that would provide 
them the same capability as the drop down menu. We 

have created a tool that enables users to bring up most of 
the same functionality of the drop down menu remotely.  
 
This tool makes available the most frequently used tools 
that are already customized for the user’s project.  
Everything is x-hosted back to the user’s workstation or 
laptop.  Figure 3 is an example of Mars Exploration 
Rovers remote menu for Spirit. 
 

 
Figure 3. Mars Exploration Rovers remote menu for Spirit 
 
The remote menu for Spirit (also known as MER-A) is 
blue and lists a group of tools that are setup and 
customized for Spirit. Opportunity (also known as MER-
B) has a similar menu that is green.  The coloring was 
done by choice; so that our users would know which 
spacecraft they were looking at immediately, without 
having to read a small text box hidden in a corner. When 
invoking the vast majority of the buttons from these 
menus, they in turn bring up tools that we have 
customized for the specific rover and are color coded to 
help eliminate confusion. At 3:00 am in the morning 
anyone can make mistakes.  By customizing the 
commands and color-coding the tools the remote menus 
make it more difficult for users to make certain errors. 
 
These menus enable users to quickly start the necessary 
tools. These menus also eliminate some aspects of human 
error since the wrapper scripts are dynamically invoked 



 6

by the menu and are customized and tailored for 
particular uses.  
 
We are quickly able to diagnose user problems with any 
tool activated from one of these menus because we know 
exactly how the tool is implemented.  Less training is 
required because everything is visually displayed and 
easy to invoke. Besides eliminating a lot of repetitive 
typing it also reduces the confusion of the user thinking: 

 “What was that command-line tool again?” 
 “What is that argument?” 
 “What is the value of that argument?” 
  “Oops, I didn’t mean that value” 

And thus saves time, energy, and prevents some errors.  
The end result is GDS users can focus their time on being 
responsive to the data the spacecraft sends down instead 
of thinking about the details of the GDS tools.  
 
 

Victor’s Magic Button 
 
Taking this progression one step further, from a drop-
down menu to a GUI based remote menu, leads us to 
“Victor’s Magic Button", a single “do-everything” button. 
   
A primary focus of our team is to assist in the 
configuration and setup of the GDS in a project’s testbed 
environment.  A project testbed is an environment where 
various parts of a project’s hardware and software can be 
tested.  Before testbed testing can begin, the GDS system 
needs to be configured and activated. This includes 
starting parts of the GDS that normally a project would 
not start in flight operations.  However, in a testbed 
environment you do not connect to the Deep Space 
Network (DSN), you do not have flight operations 
personnel available to run and maintain your GDS.  You 
have to run it with an ever-rotating group of test 
engineers.  To put it simply, this is not just a single 
system process to be initiated, but multiple system 
processes, each with their own special configuration 
requirements. 
 
Historically, each system was brought up manually, then 
as time permitted, wrapper scripts where written to help 
automate activation of each system.  This still took time 
and some manual effort.  A testbed lead, Victor, did not 
want to waste test time doing this initialization for every 
test every day.  “Why can’t you just give me a single 
button that I can press to start the whole system?” Victor 
asked.  That button or the concept has become known to 
our team as “Victor’s Magic Button”.  Today, that idea 
has continued to expand and been improved upon.  Many 
of the tools and scripts we use today have undergone 
similar improvements and enhancements, as users have 
suggested innovations that they would like incorporated 
to make their jobs, and lives more productive. 

 
In JPL’s Multi-mission System Architecture Platform 
(MSAP) Testbed we have what is called the 
“msap_menu”. It is more of a GUI then a menu.   It 
allows a user of this unique testbed to start the GDS with 
a single button push, accepting all the current predefined 
default configuration values.  Alternatively, the user may 
change a dozen different defaults to values that are unique 
for their specific testing criteria.  For example, this can 
include using an older command dictionary, or even a 
new, non-released command dictionary they have just 
built themselves via the menu. 
 
Figure 4 is an example of today’s magic button on the 
MSAP project.  It’s the button titled: Start DOWNLINK 
 

 
Figure 4.  Victor’s Magic Button: Start DOWNLINK 

 
The underlying feature of MSAP’s menu is that the button 
selection display and associated functionality for each 
button has been separated from each other into separate 
processes. This separation of function from button 
selection has allowed the addition of an entirely new GDS 
architecture to the menu, to be a simple effort.  The user 
still pushes the same single magic button, but now they 
interact with a new GDS system. 
 
At this point we have given users: clocks, wrapper tools, 
menus, and even a magic button.  What could be next?  
How about automating the automation that is already built 
into the GDS? 
 

Victor’s  
Magic Button



 7

Automating the Automation 
 
Many GDS’s have some automation features already built 
in. It is these automation features that allow a GDS to be 
operationally responsive.  One way to create a more 
responsive GDS is to leverage off these automation 
features and streamline the current human-in-the-loop 
processes to be faster and more efficient. 
 
An example of a pre-existing automation feature at JPL is 
the GDS’s common file cataloging system that many 
projects use to store their flight related files. The 
designers of this cataloging system decided to add a 
messaging server that monitors the transactions it 
performs and distributes messages on certain events. 
What if we build additional automation leveraging on top 
of this already automated messaging service? 
 
That is exactly what the early GDS Engineers on the 
Dawn project did. They thought about the numerous 
versions of Alarm files, Telemetry Dictionaries, and other 
required project files. Combining this with the numerous 
independent operational environments spread across the 
country and they realized it would be tedious to propagate 
manually updated files into each environment throughout 
the life of the project. 
 
Therefore, they implemented software for the propagation 
of Alarm files and Telemetry Dictionaries. In the case of 
the Alarm file propagation, the result is that every time a 
new file is pushed to the Alarm file collection on the 
common file system, one project workstation in each of 
the independently different environments sees the updated 
file and automatically copies it to the local systems. The 
time from when a team member builds and publishes a 
new file, until it is available on all project workstations is 
a matter of minutes. It is the best way to guarantee 
minimum turn around time from the user triggering the 
process until the GDS has the new file available for use in 
operations. 
 
The workflow for the automated propagation of 
Telemetry Dictionaries is even more involved. The actual 
Telemetry Dictionary builds are not published at JPL, but 
at an external contractor site on the other side of the 
country. The contractor team member takes the latest 
Telemetry Dictionary files and publishes it to this 
common file system. However, the format they publish 
needs modification for it to be usable by the JPL project 
workstations. The first set of automation sees the newly 
published files, copies them down, and builds the JPL 
formatted files, compiles them, and publishes them back 
up to a different collection in the common file system. 
Now that the files are usable by the JPL project 
workstations, one project workstation in each of the 
different locations sees the updated file and copies it 

down.  Ultimately a user will be able to sit down at any 
project workstation and is able to choose this newest 
Telemetry Dictionary when they start their display or 
query tools. 
 
Both of these automation processes took some time for 
the project to implement, but leveraging off the core GDS 
capabilities made the Dawn project’s GDS very 
responsive, enabling users to receive their project files 
faster.  Much faster now that the human interaction has 
been removed. 
 
As you have read we have done many things to ease the 
life of a user.  Although, they still do have issues as they 
interact with the GDS.  Here are some issues and how we 
respond to them. 
 

I Can’t See My Data. 
  That’s OK, No One Else Can Either 

 
Three user issues we frequently respond to are: 

1. “I can’t see my data.” 
2. “Something is wrong.” 
3. “The Ground Data System isn’t working!” 

 
We try hard to be responsive to user questions and 
concerns. Many times however, the user has done 
something incorrect and it is easy to figure out why 
something is not working correctly.  However, sometimes 
it is hard to figure out what they have done. In this case it 
usually means that the user has really done something 
unique this time.  It is not always the system that actually 
has a problem. Our GDS at JPL is actually a very reliable 
system; we know that, so going into a problem, we are 
quite sure it is not the GDS that has a problem.  We know 
the strengths and limitations of our GDS, and are willing 
to defend it. 
 
We did not build the ground system, that was done by 
developers in another section.  We are however, the ones 
left to defend it, or if not defend it, at least get it to work 
the way the user would like it to work.  Sometimes we 
can respond immediately to the user’s question: “I can’t 
see my data, the system isn’t working!”  With the simple 
statement: “That’s OK, no one else can either, because 
right now there is no data coming down”.  In addition to 
responding to user problems we are also able reassure 
them about the health of their GDS, and that it is working 
fine.  If we could not respond quickly to their concern 
about the ground system, then their concern that “the 
GDS is not working correctly”, turns to a reality within 
their mind. And from there, they tell everyone how bad 
your GDS system is.  Not because it is bad, but because 
they perceived that it was bad.  Part of our accepted task, 
although it is not in our job description, is to be 
encouragers of the ground system.  Of course sometimes 



 8

they cannot see their data because there really is a 
problem with the data flow or sometimes simply because 
they have done something wrong in their setup. 
 
Most of the time, the ground system is working correctly.  
However, sometime, something or someone may not be 
functioning correctly.  The more we can ascertain or 
demonstrate that the ground system is working correctly, 
the more people will have confidence in their GDS.  
 
The real challenge is the third statement: “The Ground 
System isn’t working”.  We have come to realize that not 
all that is deemed wrong is wrong with the ground 
system.  The challenge is to figure out what actually is 
wrong. It may be the GDS, the user, or something entirely 
different.   Many times when we try and duplicate the 
user’s problem, everything works fine for us.  One 
example was on our MSAP project.  MSAP stands for 
Multi-mission System Architecture Platform (MSAP), in 
a nutshell it’s a generic Multi-mission testbed, which 
allows a new project to walk in the door and immediately 
begin to be productive in their testing.  As part of the 
processing a user needs to remotely log into another 
machine and at the prompt, they need to enter their 
password.   This has been done many times and every 
time it works fine.  What this user was experiencing 
however was rather strange.  When they got to the 
password login prompt, the prompt instead of sitting 
silently in one place waiting for input from its user, this 
prompt, became rebellious and continuously scrolled off 
the screen preventing the user from completing their 
login.  There it was scrolling past on the screen, but what 
was causing it?  It turned out it was not the ground system 
doing this but it was the operating system.  The simple fix 
was that when the user had started the process, they had 
put it into the background.  Background processes on a 
Unix System don’t really have a concept of having their 
own terminal window for displays, so in this case the 
password prompt kept flying past on the screen. 
 
Once the user learned not to begin the process in the 
background, everything worked fine. It would have been 
impossible to determine what was going on over the 
phone.  Many times we will meet with the user to observe 
their interactions with the system.  The extra five minutes 
it takes for us to walk over to their office or lab, is a lot 
quicker than spending thirty minutes on the phone doing 
question and answer dialogs. 
 
How do we manage all of this button, selection, 
automation, and user issues?  Here is how we manage 
everything. 
 

Using a Ticket-less Support System 
 

We all know that a support system, electronic or not, is 
widely prevalent in industry to keep track of problems, 
complaints, requests and many other subjects.  The 
methods and applications used vary greatly, but the main 
purpose of a ticketed system is to track, open and close 
requests by users. 
 
The challenging aspect of a ticketed support system is the 
fact that users must take the time to fill out fields and 
describe the problem they are experiencing. Not only is 
this time consuming, but also many times the user is 
already frustrated and does not wish to spend time typing 
out details only to be placed in a queue on a ticket system. 
 
Our team uses a form of a ticket-less support system, 
which has proven to be not only a more efficient system, 
but also user accepted. In many ticket systems you fill out 
the form and are lucky if you hear back from them the 
same day.  We generally need to fix a problem as soon as 
possible.  Waiting hours to fix a problem in a testbed that 
has half a dozen engineers standing around is just not 
acceptable. 
 
This ticket-less system still allows for internal 
accountability of calls and issues from users, but also 
removes the dependency of the user to fill out forms or 
answer pre-defined questions asked by a standard ticketed 
system. A common scenario is when a user is attempting 
to provide details of a problem, but provides incorrect 
information which leads to longer troubleshooting time. 
Another common occurrence is when a user will simply 
state, “The System is not working” or write what they 
perceive is the problem, but in reality is only a symptom.  
 
A ticket-less support system consists of a user calling in a 
problem, our team member assessing the situation and 
determining what course of action may be needed to 
resolve the problem in real-time. If the recipient of the 
call cannot recommend a solution over the phone, they 
commonly will obtain the users information, including 
name, location and extension. At which point they will 
then go to the user’s office or location and sit down in 
front of the workstation to resolve the problem with the 
user. 
 
We try to always keep in mind that these users are 
spacecraft or science data analyst’s trying to obtain data 
from their spacecraft. If they cannot perform their job, 
bigger problems can arise. This method makes 
troubleshooting much easier and also gives the user a 
sense of connection between themselves and those who 
are there to help them. Meeting with the user gives the 
user the feeling that they can count on our team to assist 
them any time a problem should arise. Additionally they 
know that they will be attended to and not just placed in a 
support system as a number, which is an annoyance to 



 9

most users. This promotes the user to call more often for 
any problems they may have without any hesitation.  
These are usually simple questions that can be easily 
answered, which further reinforces assurance to the user 
that the GDS is doing what it is supposed to be doing. 
 
 When the problem has been resolved, the engineer who 
fixed it can now enter all data of interest into their own 
internal problem tracking system. This data could contain 
time spent on the problem, resolution, symptoms, and any 
other information.  This information may be useful to 
display the work performed, and as a future reference on 
similar problems which may be called in. 
 
This system keeps the users happy since they do not have 
to spend time writing out details of a problem and can talk 
directly to a support engineer.  We do not have an 
automated answering system; the project personnel do 
however have our cell phone numbers. Responsiveness is 
expected and it is provided. This system has proven to be 
very efficient and cuts down on troubleshooting time for 
certain issues. The volume of calls may increase due to a 
caller’s lack of hesitation in placing a call. That is because 
they have a trusting relationship with the support 
engineers and know that their problems will be resolved 
in a timely manner without any hassle or annoyances, 
which is our goal.  
 
That is how we handle tracking.  Now let us turn to how 
do we coordinate and train our team?  We have formal 
cross training on all of our missions, but to give you a 
clearer understanding of how it works we’ll focus on 
MER. 
 

You Are Certified 
 
During the second extended period of the Mars 
Exploration Rover (MER) mission in 2005, experienced 
project engineers were leaving for new projects. This 
included the GDS analysts (GDSA) in the Mission Data 
Operation Team (MDOT).  New hires and new members 
were joining MDOT but needed training quickly in order 
to support the mission effectively. The question was, 
how? 
 
This on the job training process required time and effort, 
but time was something we did not have much of.  After 
some brain storming, a certification program was created 
to accelerate the process. The certification program did 
not intend to fail anyone but rather to assist new team 
members in adapting to the project environment and learn 
the GDSA roll as quickly as possible. All new team 
members who completed the certification program should 
be capable of supporting daily mission operations.  
 

The MER MDOT certification program covers three 
categories: data flow monitoring, MDOT process 
operations and general user support. In each area, it 
contains questions related to hardware and software.  
 
There are about two hundred questions of review 
material.  The certification process can take several days 
to complete.  The examinee is required to take some 
action or give verbal response to each question.  The 
examinee could look for references from either 
documentations or other MDOT members within a period 
of time. The examinee that did not answer ninety percent 
of the questions correctly was required to take the test 
again. The test was performed by the GDSAs on the 
MDOT team. It is taken in the MER operations area. 
 
Five new MDOT members have been through this 
program. They all passed the test within two months.  
They had learned where to look for procedures and 
instructions within the MER environment during their 
training. And their technical GDSA related skills have 
been sharpened. As a result, they are qualified to support 
the mission.  As we know, personnel rotation is a natural 
process on a lengthy mission. Effective training enables 
our team to keep up with the pace of change, hence to 
become more responsive to this dynamic environment.  
  
With all of this activity it may seem like we are doing a 
lot and are in more than one location at a time.  Truth is 
we are in more than one place at a time.  Here is how we 
accomplish this. 

 
Walking Laptop 

 
One typical day at work, while being preoccupied in 
reading project e-mail, a loud ring tone from a 
deployment engineer’s cell phone startled him.  It was a 
member of the testbed crew, “We are doing a hardware 
compatibility test and can not see the command echo on 
the ground. Can you come over?” he asked. “I will be 
there in about five minutes,” our deployment engineer 
replied as he closed the monitor screen of his laptop, 
grabbing it he ran out of the meeting room… 
 
This is a familiar scenario for a member of our team. We 
are meant to be everywhere primarily because we need to: 
A) address GDS issues during real time operations; B) 
attend formal and informal meetings; C) help project 
users and subsystem developers. 
 
A.  Addressing GDS issues 
In the testbed, ATLO and operations, we represent GDS. 
Any GDS real time and near real time anomalies, come to 
us first. We gather first hand evidence of failures, perform 
trouble-shooting, and make decisions to provide a work 



 10

around, or pass a problem along to the subsystem 
developers. 
 
B. Attending meetings 
We attend project GDS meetings to provide technical 
details to ensure GDS design, processes and schedules 
make sense. At the same time, we acquire essential 
information from those meetings. The Mars Science 
Laboratory (MSL) mission is in the stage of integrating 
spacecraft instruments in the system testbed, as well as 
early ATLO preparation and deployment.  A new and 
developing GDS is being deployed to the testbed for 
operation. Because using these new services and 
subsystems there is a learning process.  Not only do we 
have to go to GDS system level meetings, but subsystem 
level meetings also. These meetings can be anywhere.  It 
might be in the MSL project area, which is about a seven-
minute walk from our offices. It might be in a public 
conference room in our building, or somewhere else. It 
might even be at a remote site, such as at the Cape. 
 
C. Helping project users and subsystem developers 
Currently for MSL, project users and subsystem 
developers are scattered around the JPL campus. 
Sometimes, we visit their offices to help project users 
solve GDS related problems, or provide subsystem 
developers project specific information. This face-to-face 
interaction in general can speed up the problem 
solving/development process.  
 
Constantly multi-tasking and working from place to place, 
we must be skillful in time management as it is a big 
challenge for us. To save time, laptops become our best 
friends. We bring our laptops everywhere we go. During a 
meeting, we can take notes on our laptops; update our 
process documents and procedures if any changes occur; 

during a long design discussion, when the topic is 
irrelevant to us, we sometimes utilize the time for a script 
development or modification.  Since conference rooms 
have wireless network coverage, we can also respond to 
users’ requests via email during the meeting. For instance, 
the Simulation Support Equipment (SSE) team has just 
delivered a new command and telemetry dictionary set 
and needed us to make it available for testbed use. They 
notify us via email.  Upon reading it, we remotely logged 
onto a project workstation via our laptop to complete the 
deployment process.  When we are in a testbed in support 
of a test, if all the workstations are occupied, we can use 
our laptop to read online the testbed activity reports, fill 
out online anomaly reports, even remotely log onto a 
testbed workstation to monitor a test run. 
 
As deployment engineers, we need to be wherever we are 
needed, fast.  Providing timely responses and solutions, 
enables us to form close relationships with the GDS, and 
with its users and developers. A laptop cannot walk itself. 
We make it a walking laptop.   
 
 
A key component for a responsive Ground Data System is 
responsive people that are able to hear the heartbeat of a 
project's needs and respond to its ever-changing 
requirements. 
 
 
 
Acknowledgements: 
The research described in this paper was carried out at the 
Jet Propulsion Laboratory, California Institute of 
Technology, under a contract with the National 
Aeronautics and Space Administration.

 


