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In order to explore Titan, a moon of Saturn, airships must be able to traverse the 
atmosphere autonomously.  To achieve this, an accurate model and accurate control of the 
vehicle must be developed so that it is understood how the airship will react to specific sets of 
control inputs.  This paper explains how longitudinal aircraft stability derivatives can be 
used with airship parameters to create a linear model of the airship solely by combining 
geometric and aerodynamic airship data.  This method does not require system 
identification of the vehicle. All of the required data can be derived from computational fluid 
dynamics and wind tunnel testing.  This alternate method of developing dynamic airship 
models will reduce time and cost. Results are compared to other stable airship dynamic 
models to validate the methods.  Future work will address a lateral airship model using the 
same methods.    

Nomenclature 

aircrafta   = aircraft a matrix with masses 

airshipa   = airship a matrix with masses 

ba,    = Semi-major and semi-minor axis of an ellipsoid (m) 

zx aa ,    = Center of Gravity Coordinates With Respect to Center Of Volume (m) in body frame 

zx bb ,    = Center of Buoyancy Coordinates With Respect to Center Of Volume (m) in body frame 
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c     = Mean Aerodynamic Chord (m) 
d     = Diameter of largest cross section of airship (m) 

zyx ddd ,,  = X, Y, and Z distances between the line connecting the two engines thrust lines and the OZ axis,  
OXZ plane, and OXY plane, respectively (m) in body frame 

e     =  Eccentricity  
,if    = Forces contributing to Coriolis effects (N) 

g     = Acceleration Due to Gravity (m/s2)

',, 21 kkk   = Lamb’s inertia ratios for movement along OX, OY and rotation about OY 
l     = Length of airship (m) 

tl     = Tail moment arm (m) 
m     = Mass of airship (kg) 

aircraftm   = Mass matrix of aircraft 

airshipm   = Mass matrix of airship 

zyx mmm ,,  = Apparent Masses (kg) 
rqp ,,   = Airship Angular Velocities about the X, Y, and Z axis (rad/s) 
rqp ��� ,,   = Airship Angular Accelerations about the X, Y, and Z axis (rad/s2)

u     = Control Input Vector 
wvu ,,   = Airship Translational Velocities in the X, Y, and Z directions (m/s) 
wvu ��� ,,   = Airship Translational Accelerations in the X, Y, and Z directions (m/s2)

x     = State Vector 
A     = Aerodynamic Force Vector 

44�A    = A Matrix for State-Space Representation 

aircraftA   = Aircraft A matrix without mass terms 

airshipA   = Airship A matrix without mass terms 

ZYX AAA ,,  = Aerodynamic Total Force about OX, OY, and OZ axes (N) 

NML AAA ,,  = Aerodynamic Total Moment about OX, OY, and OZ axes (N) 

B     = Buoyancy Force Acting at the Center of Volume (N) 

24�B    = B Matrix for State-Space Representation 

0DC    = Zero-lift drag Coefficient  

�DC    = Coefficient of the change in drag w.r.t. angle of attack 

uDC    = Coefficient of the change in drag w.r.t. forward velocity u

LC    = Coefficient of lift 

0LC    = Coefficient of lift at zero angle of attack 

�LC    = Coefficient of the change in lift w.r.t. angle of attack 

tLC
�

   = Coefficient of the change in lift w.r.t. tail angle of attack 

uLC    = Coefficient of the change in lift w.r.t. forward velocity u

�MC    = Coefficient of pitching moment w.r.t. angle of attack 

eMC
�

   = Coefficient of pitching moment w.r.t. elevator angle 
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qMC    = Coefficient of change in pitching moment w.r.t. pitching velocity q

uMC    = Coefficient of change in pitching moment w.r.t. forward velocity u

eZC
�

   = Coefficient of change in normal force w.r.t. elevator angle 

qZC    = Coefficient of change in normal force w.r.t. pitching velocity q

dF    = Dynamic Force vector

G     = Gravitational and Buoyant Force vector

zyx III ,,   = Moments of Inertia about the X, Y, Z axes (kg�m2)

yzxzxy III ,,  = Products of Inertia about OX, OY, OZ (kg�m2)

zyx JJJ ,,  = Apparent Moments of Inertia about the X, Y, Z axes (kg�m2)

yzxzxy JJJ ,,  =  Apparent Products of Inertia about OZ, OY, and OX (kg�m2)
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,,,,,,,,  = Virtual Inertia Terms (kg�m2)
M    = Mass Matrix 

aM    = Mach number 

eM    =  Trim pitching moment (N�m) 

uM
�

   = Change in pitching moment w.r.t. forward velocity u (1/ (m�s))

wM
�

   =  Change in pitching moment w.r.t. vertical velocity w (1/ (m�s))

qM
�

�

   = Change in pitching moment w.r.t. pitching velocity q (1/s) 

eM �

�

   = Change in pitching moment w.r.t. change in elevator angle (1/s2)

tM �

P
   = Change in pitching moment w.r.t. change in thrust (1/s2)

    = Propulsion Force Vector 
Q     = Flight dynamic pressure (N/m2)
S     = Surface area of lifting surface (m2)

tS     = Tail surface area (m2)

eT     =  Trim equilibrium thrust (N) 

0,, TTT ps   = Starboard, Port, and Total thrusts (N) 

ee WU ,

��

  = Trim velocities in the X and Z direction (m/s) 

WVU �,,   = Linear Translational Axial, Side, and Normal Acceleration Perturbations (m/s2)

HV
Vol

   = Horizontal tail volume ratio 
   = Volume of airship (m3)

W     = Weight of Airship Acting at the Center of Mass (N) 

uX
�

�

   = Change in X force w.r.t. forward velocity u (1/s) 

wX
�

   =  Change in X force w.r.t. vertical velocity w (1/s) 

qX    = Change in X force w.r.t. pitching velocity q (1/s) 
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eX �

�

   = Change in X force w.r.t. change in elevator angle (1/s) 

tX �

�

   = Change in X force w.r.t. change in thrust (1/s) 
ZYX ,,   = Axial, Side and Normal Forces (N) 

eee ZYX ,,  = Trim axial aerodynamic force in the X, Y, and Z directions (N) 

qwprvqu ZZYYYXX �
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,,,,,,  = Virtual Masses (kg)  

uZ
�

   = Change in Z force w.r.t forward velocity u (1/s) 

wZ
�

   =  Change in Z force w.r.t. vertical velocity w (1/s) 

qZ
�

   = Change in Z force w.r.t. pitching velocity q (1/s) 

eZ �

�

   = Change in Z force w.r.t. change in elevator angle (1/s) 

tZ �

�

   = Change in Z force w.r.t. change in thrust (1/s) 

�� ,    = Numerical calculations for Lamb’s constants 

tre ��� ,,   = Elevator, Rudder, and Tail Surface Deflection Angles (rad) 

ij�     = Elements of the Directional Cosine Matrix 
	     = Tail efficiency 

     = Density of surrounding air (kg/m3)

�� ,,   = Pitch, Roll, and Yaw Angles of Airship (rad) 

e     = Trim pitch angle (rad) 
�     = Flap effectiveness 

ps �� ,   =  Starboard and Port Thrust Angle (rad) 

I. Introduction
HE search for inhabitable planets that have the capability to sustain life is a major element that drives space 
exploration.  There are two Mars Exploration Rovers (MER) currently active on the surface of Mars (Spirit and 

Opportunity) with a third rover under development, the Mars Science Laboratory (MSL) rover. All of these robotic 
systems have the goal of determining if water exists or existed on the surface since its presence is usually indicative 
of life.  Another celestial body that has similar characteristics to Earth and could potentially support life is Titan, a 
moon of Saturn.  Titan is significantly further from Earth than Mars, increasing the difficulty, cost, and time that will 
have to be spent to send a mission to its surface.  It is very important that any robotic system sent there is able to 
explore as much of the planet as possible. 

T

 On Titan there are two mediums by which a vehicle could travel: ground and air.  Currently, there is more 
experience and information on lander and rover technology.  Landers provide high-resolution data and results from 
on-board science tools, but only for a single site.  Rovers provide similar information, but are able to move from site 
to site based on scientific interest in the 2D world.  These ground-based explorers return valuable data, but are 
limited by the distancd they can travel. Aerial systems can utilize the wind fields and minimize the energy needed to 
explore greater distances and areas that a rover or lander cannot reach. In addition, Titan’s surface temperature is 
estimated to be 93°K which would require a rover to traverse complex icy terrain, which is a very significant 
challenge for current rover systems. Titan has a high atmospheric density of 5.3 kg/m^3 at low altitudes which is 
almost 4.5 times that of Earth. This dense atmosphere enables aerial travel and allows aerial vehicles to carry 
science instrument payloads of significant size.  
 Of the feasible air vehicles, such as airplanes, gliders, balloons, helicopters and airships7, only a few meet the 
necessary criteria to operate on Titan. Due to the 2.6 hour communication delay between Earth and Titan, the aerial 
vehicle will require a large amount of autonomy to stay aloft while awaiting subsequent commands.  For vehicles 
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such as powered fixed-wing aircraft and gliders, high speeds need to be maintained to continue flight, resulting in 
continuous forward movement.  This is challenging because the position of the vehicle is constantly changing while 
it is waiting for commands from Earth.  Hovering is advantageous in this respect, which helicopters, airships, and 
balloons can all achieve. However, helium-filled balloons have no position or orientation control and are taken 
wherever the winds lead them. Montgolfiere (Hot-Air) balloons are limited in their maneuverability by only having 
vertical velocity and altitude control. Montgolfiere balloons rely on using wind fields for navigation, but still lack 
the orientation control seen in airships15. However, in the powered flight comparison of helicopters and aircraft to 
airships, helicopters and aircraft expend significantly more energy maintaining flight. Consequently, the low power 
requirement for level flight is the key reason airships are often proposed as the best method for Titan exploration2.

Autonomous airship control requires a good understanding of the vehicle’s dynamics. There are many 
parameters in a nonlinear airship dynamic model that are unique to lighter-than-air vehicles and are difficult to 
estimate, such as buoyant forces, virtual mass, and inertia terms. The development of linear dynamic airship models 
has always required either the use of numerical methods to linearize a mathematical nonlinear model, or extensive 
flight data to enable the use of system identification methods. The significance of the model described in this paper 
is that it relies on merging the estimation techniques for dynamic stability derivatives found in the aircraft literature1

with the linearized dynamic equations of motion for an Airship3. This paper demonstrates that with a reliable 
estimate of the airship aerodynamics obtained using CFD software or wind tunnel testing, and an accurate geometric 
model, it is possible to develop a parameterized linear longitudinal airship dynamic model.  

II. History of Airship Dynamic Modeling 
The difficulty in modeling airships arises from the different geometries, compositions, and projected flight 

patterns that are not native to conventional aircraft.  Airships are lighter-than-air aerial vehicles having unique 
properties that affect their dynamics including the effects of buoyant forces and the virtual mass and inertias. 
Additionally, the center of volume is far from the center of mass causing the system to act as a pendulum, oscillating 
unnecessarily if the system is not controlled properly.  The variety of operations that the airship must perform also 
presents difficulties in creating a dynamic model of the ship, since it must be able to hover, take off/land, 
ascend/descend, perform high and low speed travel, and traverse long distances. 

There is a history of research that addresses the problem of airship dynamic modeling to determine its stability.  
Stability derivatives were used to create linear equations to analyze the ZR-1 and ZR-4 heavy lifting airships, in both 
linear and nonlinear operating regimes9 10.  In the nonlinear realm, a comprehensive study on stability in airships was 
performed on the YEZ-2A airship for set trim conditions4.  Results using a linear model have also been achieved by 
using the ADAMS 12.0 modeling software which allows Simulink interface, animation, and automatic equation of 
motion implementation2. The Jet Propulsion Laboratory is also developing a nonlinear airship model based on using 
the Darts/DSENDS program11.   

Linear models of the airship have also been created.  Tischler used onboard frequency sweeps to excite the 
airship, and recorded the resulting responses to model the airship12.  A state space linearized longitudinal model was 
created by the AURORA team by estimating the aerodynamic coefficients and refining them with system 
identification.  A detailed discussion on how the equations of motion for an airship are linearized is given in Cook, 
who adapted the mathematical model for a body submersed in fluid3.  The method used was the small perturbations 
method, as detailed in Section IV.   

III. JPL Titan Aerobot Program Background 

A. Mission Background 
The Titan Explorer mission, as outlined by the solar system exploration roadmap6, is intended to take a closer 

look at Titan, and is proposed to be one of NASA’s flagship missions during the second decade of the 21st century.  
The Titan aerobot will follow the Cassini and Huygens missions, building upon their observations.  The mobility of 
the aerobot will allow for larger coverage areas, sub-haze layer exploration, collecting data on lower atmosphere 
winds, clouds, and precipitation, and in situ measurements of ices and organic materials at the surface to assess 
prebiotic/protobiotic chemistry. Obtaining the data from Titan would be performed in a fashion analogous to the 
acquisition of a sea floor sample by a submersible. The science goal for the mission would be the characterization of 
these organic and inorganic materials and determination of the origin of the diverse landforms identified in Huygens 
visual images and Cassini radar data.  

The challenges in gathering data from Titan include the very cold temperatures (~ 93K) and long earth 
communication time which will demand special consideration for the design, material selection, mechanisms, 
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electronics, and advanced autonomy. While there are many challenges for this mission, an airship is well suited for 
the task due to Titan’s high atmospheric density at the surface and the very low surface winds.

B. JPL Test Bed 
The prototype aerobot test bed developed at the Jet Propulsion Laboratory (JPL) is based on an Airspeed Airship 

AS-800B, which can be seen below in Fig. 1.  The airship specifications are: length of 11 m, diameter of 2.5 m, total 
volume of 34 m3, two 2.3 kW (3 hp) 23 cm3 (1.08 cubic inch) nitro methane fuel engines, double catenary gondola 
suspension, control surfaces in an “X” configuration, maximum speed of 13 m/s (25 kts), maximum ceiling of 500 
m, average mission endurance of 60 minutes, static lift payload of 12 kg, and dynamic lift payload of up to 16 kg.  
The avionics and communication systems are 
installed in the gondola.

The aerobot avionics system is built around a 
dual PC-104+ computer architecture.  One of the 
PC-104+ stacks is used for navigation and flight 
control, while the other is dedicated to image 
processing.  The navigation stack also has a serial 
board interface to the navigation sensors and 
pan/tilt unit, a timer/counter board for reading 
pulse width modulated (PWM) signals from a 
human safety pilot and generating PWM signals 
based upon control surface commands from the 
avoidance software, and an IEEE 1394 board for 
sending commands to, and reading image data 
from, the navigation and science cameras.  The perception processor is dedicated to image processing and image-
based motion estimation (IBME).  Wireless serial modems provide data/control telemetry to the ground station.  The 
safety pilot can always reassert “pilot override” control over the aerobot.   

The navigation sensors currently consist of an Inertial Measurement Unit (IMU) which provides angular rates 
and linear accelerations, a compass/inclinometer which provides yaw, roll, and pitch angles, and a differential GPS 
(DGPS) for absolute 3D position.  The vision sensors include two down-looking navigation cameras, one with a 
360� x 180� field of view (FOV) and another with a narrower FOV.  Additionally, we plan to integrate a laser 
altimeter (surface relative altitude), a barometric altimeter (absolute altitude against reference point), an ultrasonic 
anemometer (3D wind speed), and a science camera mounted on a pan/tilt unit. 

The ground station is composed of a laptop, a graphics user interface to the vehicle, wireless data and video 
links, video monitors and VCRs, and a differential GPS (DGPS) base station that provides differential corrections to 
the GPS receiver onboard the aerobot. This provides vehicle 3D position estimates accurate to several centimeters.  
Field tests of the JPL aerobot are conducted at the Southern California Logistics Airport in Victorville, CA.  Initial 
flights were teleoperated to allow extensive testing of the onboard avionics and data acquisition systems.11

Figure 1: JPL Aerobot 

C. Davis Model/Work 
At the University of California at Davis, a nonlinear airship model has been created which builds upon many of 

the past airship models14.  This model is comprised of parameterized physical elements, allowing for the model to 
easily accommodate the geometries and characteristics of other airships.  These elements include the ellipsoidal hull, 
gondola, power unit, two vector thrusters, four tail rotors, and four fins.  With this model, which was created in 
ADAMS software, UC Davis and JPL have conducted experiments investigating the effects of mass placement and 
sudden net-buoyancy changes on the behavior of flight controllability of the Titan aerobot14.

D. Darts/Dsends work 
To test the numerical models created at JPL, a simulation environment has been created for the Titan aerobot to 

use.  This environment allows flight algorithms and control techniques to be tested before they are implemented on 
the physical airship, saving both money and time.  The simulation has been validated under Earth conditions 
allowing it to then be used to predict the performance of JPL’s airship on Titan.  This environment is based on a 
spacecraft simulation created by the DARTS/Dshell tool7.  The Dynamics Algorithms for Real-Time Simulation 
(DARTS) is a real-time flexible-body, mulitbody dynamics package developed at JPL. The Darts shell (Dshell) tool 
integrates reusable hardware and environmental models with the DARTS program.  This aircraft simulator takes into 
account aerodynamics, mass properties, buoyancy, kinematics, dynamics, control surfaces, simulated sensors, terrain 
models, and much more.  The models are parameterized to allow for varying airships to be tested, and the simulator 
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can determine model parameters through system identification.  The simulation can be run with or without a GUI13.
The model is also is the basis for the Dynamics Simulator for Entry Descent and Surface landing (DSENDS) entry, 
descent, and landing simulation11.   

IV. Airship Dynamics 
This section will show how to develop an airship longitudinal analytical linearized model using a new approach 

called the Common “a” method.  The process begins with the nonlinear equations of motion for an airship. The 
equations are linearized into longitudinal and lateral decoupled models. The longitudinal equations are arranged in 
state-space form, and then employ aircraft stability derivatives and reasonable assumptions to populate the 
longitudinal linear airship model equations, which creates a sound and stable linear longitudinal airship dynamic 
model. 

A. Nonlinear Equations of Motion 
This section describes the method used to create a nonlinear airship model beginning by defining the general 

mass and inertial properties of the airship.  The method below is taken from Gomes’ thesis4 and the equations are 
taken from Khoury and Gillett’s book Airship Technology3.

1.  Virtual mass effects 

Axial force component   = UXU
U
X

u
��

�

�

��
�
�

                        )1(

Side force component   = VYV
V
Y

v
��

�

�

��
�
�

               )2(

Normal force component  = WZW
W
Z

w
��

�

�

��
�
�

               )3(

2.  Components of apparent mass 

.
uxm m X

�

� �                        )4(
.
vym m Y
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� �                        )5(

.
wzm m Z
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� �                        )6(

3.  Apparent moments of inertia 
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px xJ I L

�

� �                        )7(
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� �                        )9(

4.  Apparent products of inertia 
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p                                )10(
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rpxz xz xzJ I N I L

� �

� � � �                            )11(
. .
r qyz yz yzJ I M I N

� �

� � � �                    )12(

Since the Airship is symmetric about the x-z plane: 

0xy yzJ J� �                           )13(

The 6 DOF equations of motion are developed using the Newton-Euler method for each degree of freedom. 
These equations have been simplified based on the assumed symmetry of a geometrically ideal airship and after 
some manipulation can be presented in the form of:
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where, 

�M  6x6 Mass matrix  
�dF  6x1 matrix Dynamics Force vector 

�A  6x1 matrix Aerodynamics vector 
�G  6x1 matrix Gravitational and Buoyancy vector 
�P  6x1 matrix Propulsion vector 

The Mass matrix M  including simplifications due to vehicle geometry, is shown below 
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The Dynamics Force Vector is shown below with simplifications due to symmetry about the XZ plane.   dF

� T
d fffffF 54321� �                   )16(

where, 
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� �� �rparqamrvmwqmf zxyz ������ 22
1
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The Aerodynamics Vector A is shown below and its terms are traditionally defined through wind tunnel tests. 
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Since our linear airship dynamic model is only longitudinal and has a cross-shaped fin orientation at the rear, the 
rudder control input has no effect on the dynamics. Therefore, all r�  terms are omitted.  The Gravity and Buoyancy 
vector is shown below with simplifications due to symmetry about the XZ plane. G
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 where, 
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� � � �exxx BbmgaWa �� ��� cossin32

          
The Propul ctor is defined through the geometry of the airship, and is shown below.   

where, 

sion ve

� �T            propproppropproppropprop NMLZYXP � )19(

X ppssprop TT �� coscos ��

0�propY

ppssprop TTZ �� sinsin ���
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� � � �sxszspxpzpprop ddTddTM ���� sincossincos ����
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e assumption is made that thrust is controlled symmetrically and synchronously such that the port and 
3

Th
starboard forces are equal .  This allows for 

TTT ��          0sp )20(
0�� sp ��

sp TT �
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sing Eq. 14 with the now defined terms, the resulting matrix can be calculated and will be linearized in the next 
b

d Longitudinal State-Space Dynamic Model 
rbance theory is applied. Small-disturbance theory is 

gi

�Y 0��� propproppropprop NLZ )21(

0TX prop �

zprop dTM 0�

U
su section.   

B. Linearize
In order to linearize the previous equations, small distu

discussed in greater detail in Nelson1. The assumption that the longitudinal and lateral equations can be decoupled, 
or separated, is made allowing the longitudinal equations to be developed separately, as presented below. The 
method used is taken from Khoury and Gillett3.   

Linearized Longitudinal Equations of Motion: 
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The linearized axial force equation (Eq. 22) is derived from the nonlinear axial force components in Eq. 14. The 
aerodynamic, buoyant, gravitational, control surface, and propulsive force contributions have been implemented 
directly into Eq. 21. 
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The linearized normal force equation (Eq. 23) is derived from the nonlinear normal force components in Eq. 14. The 
aerodynamic, buoyant, gravitational, control surface, and propulsive force contributions have been implemented 
directly into Eq. 23 
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The linearized pitching moment equation (Eq. 24) is derived from the nonlinear pitching moment components in Eq. 
14. The aerodynamic, buoyant, gravitational, control surface, and propulsive moment contributions have been 
implemented directly into Eq. 24.  To further simplify the longitudinal equations, trim conditions can be applied.  
Trim conditions assume that the airship is in equilibrium, causing all perturbation variables to reduce to zero.  This 
assumption results in the following equations. 

0sin)( ���� eee BmgTX                    )25(
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( )sin ( )cos

e e

e e z z e x x e

Z mg B
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)27(
)26(

To satisfy these equations the thrust , buoyancy force eT B , and center of volume, and are adjusted 
simultaneously until the left hand side equates to the right hand side.  For the model being created, the airship is 

xb zb
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trimmed around an operating point defined by level flight at a given altitude, maintaining a constant forward 
velocity, elevator angle, throttle setting, and vector angle setting.  These trim conditions can then be substituted into 
Eqs. 22, 23, and 24, which is written in state-space form. 

buaxxm ���                        )28(
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Using the state form of Eq. 28, both sides can be left multiplied by the inverse of m, giving, 
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where, 
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 Now having determined the linear state-space dynamic model, the many terms it contains must be defined.  The 
following explanation will address all terms except for the stability derivatives, which are explained in Section C. 
Beginning with the mass matrix m, which has been reproduced below for convenience, all variables are defined 
while their respective descriptions are found in the nomenclature section of this paper.   
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where, 
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The virtual mass and inertia terms above, , , , and  have been individually assessed by Gomes 

who has determined their effects to be negligible4. To define the apparent masses (Eqs. 4-6) the values of and

 are found by using the following equations, all of which are found in Sir Horace Lamb’s  Book 
“Hydrodynamics”5.
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For reference,  and .  It is important to notice that the virtual mass and inertia nomenclature 

closely resembles that of the stability derivatives.  These two should not be confused, as ; virtual terms 
are identified by a dot over the subscripted character. 
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V. The Common “a” Method of Airship Modeling 

  The stability derivatives used to generate the linear model are obtained from Nelson1.  These are used to further 
define the a matrix seen in Eq. 28, which is also reproduced below for convenience. 
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The mass terms in the aircraft stability derivatives are omitted in order to insert the airship mass terms.  This 
happens when the aircraft a matrix is multiplied by the inverse mass matrix of the airship.  Common to most of the 
above derivatives are , , and Q S c . Assumptions made for S  and c are found in the next section, whereas Q  is 
defined below.   

2

2
1

eUQ 
�                       )35(

A. Implementing Stability Derivatives into the Linearized Longitudinal State-Space Dynamic Model 
In order to employ the stability derivatives in the state-space dynamic model, certain assumptions had to be 

made.  These assumptions came from various sources and previous work and are validated below.   
The following longitudinal stability coefficients, while originally based off of an aircraft, are based on Gomes’ 

flight dynamics thesis4. , , , , , and were determined using Gomes’ work,  is 

found in Nelson1, and  and are estimated through XFOIL 2D code and Prandtl lifting line theory, 

respectively.
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 The remaining longitudinal stability coefficients can be derived from equations involving the physical 
parameters of the ship1.   
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The value for is estimated to be zero, since the Mach number is very small at low speeds.   

V

uLC �  is found 
by u 1.sing Figure 2.21 in Nelson 	  is estimated between the values of 0.8 and 1.2 for different configurations of the 
tail.

�

The stability derivative  was set to zero as its effects have been found to be negligible through varying its 
value and comparin

                       

qX
g the system responses.  The following estimations were also made, 

3/2Vol�S )40(
3/1lc                        Vo�

eproduced below for convenience is characterized by changes in the elevator 
ang nd thrust with respect to forces in the X and Z directions and the pitching moment.  The formulas defining 
select variables are found in Nelson1:

)41(

Where 3/2Vol has been estimated as the surface area of the lifting surface for the airship, and 3/1Vol has been 
estimated as the mean aerodynamic chord for the airship. 

The b matrix which has been r
le a
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where, 
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, , , and  control inputs are estimated based on other airship models in literature. The values 
are scaled based on the operating point and trim conditions of the linear model.   
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In summary, the mass-dependent matrix a in (34), which is used extensively in the airship literature3, can be 
populated by stability derivative expressions found in the aircraft literature, This connection between the airship and 
aircraft literatures is new, and is denoted here as the common “a” method of airship modeling. 

VI. Model Validation and Analysis 
The common “a” method of airship modeling is validated by comparing it to the linear airship models in the 

literature.  A unit analysis is performed, the eigenvalues/characteristic roots are determined and compared to those 
of a stable system, and rectangular pulse and doublet responses of the model are compared to that of a known stable 
system.  

All computations and simulations were completed with Simulink inside of MatLab version 7.4.016.  To validate 
the feasibility of using the aircraft formulas with the airship method, the a matrices (with mass and inertia) of the 
two are compared.  The airship dynamics a matrix3 is compared to the aircraft dynamics a matrix1, and all of the 
aircraft variables are found in the same place in the airship matrix, except that the airship matrix has additional 
variables due to virtual terms.  

A. Dimensional Analysis 
A dimensional analysis is performed to ensure that the linear longitudinal airship model’s a matrix had the same 

units as the linear longitudinal aircraft a matrix since this is the matrix used to determine the stability of the system.
There are additional virtual mass and inertia terms in the airship matrices, and the dimensional analysis of the two 
air vehicles shows that the additional terms do not alter the dimensions.   The analysis begins with the state-space 
equation (Eq. 29) below. 
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 Representing the dimensions of a variable will be achieved using the syntax , where x is the variable 

that will have its dimensions displayed.  The dimensions of 

)dim(x
x� are shown below. 
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 Both the aircraft and the airship have the same state space derivative state vector x� describing their motion, 
and the following will show that the derivative state vector x� of both the aircraft and airship have the same 
dimensions.  In both equations the x state vector and outputs of longitudinal airship and aircraft models have the 
same dimensions, showing that the dimensions of the A matrix of both the aircraft and the airship are similar will 
suffice.  Beginning with the aircraft, 
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The units of the aircraft mass matrix are: 
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Since pitch angle () is the integral of pitch rate (q) in the linearized approximation, only the three primary states 
are considered for this dimensional analysis. Thus, last row and column of the aircraft mass matrix are omitted. The 
same logic is applied to the aircraft a matrix. 

The units of the Aircraft a matrix are: 
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Using Eq. 45 and taking the dimensions of each term, 
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The dimensions of the  dynamics matrix (mass-less) are now known and the dimensions ofaircraftA xAaircraft � are 
equal to those in Eq. 44. Working from the other direction, the Aairship dynamics matrix is described. 
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The units of the airship mass matrix are: 
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 The last row and column of the airship mass matrix are omitted because the 4th state in the longitudinal state 
vector is simply the integration of the 3rd state over time. Since pitch angle () is the integral of pitch rate (q), only 
the three primary states are considered for this dimensional analysis.  
 Since the dimensions of the  matrix is known, using the aircraft A matrix in Eq. 45 instead of 

should yield the same dimensions for as in Eq. 47.  By left multiplying Eq. 50 by , the following 
results: 
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Comparing (47) and (54) it is seen that, 
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 The only difference between these two unit analysis matrices is in the numerical coefficients (2 and 3 vs. 1) that 
scale the matrix elements. This result suggests that the airship a matrix simply has more non-zero elements than the 
strictly diagonal form of an aircraft mass matrix. Since multiple contributions of similar terms do not effect the 
dimensional units of the matrix elements, the aircraft and airship have similar a matrices, and it follows that the 
aircraft and airship have state vectors with the same  dimensions, justifying the use of aircraft stability derivatives to 
determine the  matrix. airshipA
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B. Eigenvalue/Characteristic Root Comparison 

The second check was performed by comparing the eigenvalues of the JPL Aerobot linear dynamic model to 
existing airship models in the literature.  Table 1 summarizes the trim parameters and the main physical attributes of 
the three airships being compared: Gomes’ YEZ-2A airship, the Aurora airship, and the JPL Aerobot airship. 

Table 1:  Geometric Comparison of the YEZ-2A, Aurora, and JPL Aerobot Model 
Length (m) Diameter (m) Mass (kg) Trim Velocity (m/s) 

YEZ-2A 129.5 32 86816 5
Aurora Airship 9 3 20 7.5 

JPL Aerobot Model 11.43 2.4384 42.5 2

The A matrix of the Aurora airship8 was used as a comparison since it closely resembles the JPL Aerobot, and 
eigenvalues were taken from Gomes’ work for the YEZ-2A airship.  The eigenvalues of the Aurora test data, the 
YEZ-2A data, and our model are compared in Table 2 below. 

      Table 2:  Eigenvalue Comparison of the YEZ-2A, Aurora, and JPL Aerobot Model 
Mode YEZ-2A4 Aurora Airship8 JPL Aerobot Model  
Surge -0.00565 -0.1426 -0.1198 
Heave -0.0392 -3.7819 -0.1971 

Pendulum Oscillation -0.108 ± 0.264i -0.2838 ± 0.3182i -0.0140 ± 0.0636i 

By studying Table 2 it can be seen that all sets of eigenvalues are negative and since negative roots describe a 
stable system, all systems are stable.  Furthermore, the fact that all models have two negative real roots and two 
negative imaginary roots validates our model.  

The JPL Aerobot airship model exhibits the surge, heave, and pendulum oscillation modes, which are specific to 
airships. Aircraft have two sets of complex poles that characterize the phugoid and short period modes. From the 
eigenvalues for the JPL Aerobot model in Table 2, it is clearly shown that by using aircraft stability derivative 
estimation techniques from Nelson1, it is possible to develop an airship dynamic model that responds correctly and 
exhibits the correct modal behavior. The previous work and information sources that contributed to the development 
of this linear dynamic modeling method for airships is summarized in Figure 2.  

Figure 2:  Block Diagram showing the major information sources that contributed to  
    the development of the JPL Aerobot Linear Dynamic Model 
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C. Model Response Comparison 
To compare our JPL Aerobot model with models from the literature, a Simulink model was created to easily 

generate rectangular pulses and doublet pulses. The open-loop responses from the inputs were plotted using the 
Matlab. The Simulink model was run using a variable step Matlab ODE45 integrator and graphs were created that 
compared the YEZ-2A airship data to our parameterized data.  These two graphs are explained in more detail below.

1. Rectangular Pulse Response 

The YEZ-2A longitudinal model applies a rectangular pulse of -10 degrees for 10 seconds to the airship 
simulation, and collects data for 20 seconds.  These results are shown graphed below in Figure 3 alongside the 
response of the JPL Aerobot parameterized longitudinal linear airship model.   
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Figure 3:  Rectangular Pulse Excitation Response. The YEZ-2A data “u” and “q” data 
 was scaled up by a factor of 20 for plot comparison. 

 Parts of YEZ-2A data have been amplitude scaled to enable the responses of the systems to be easily compared.  
By looking at the data, it is observed that the response of the JPL Aerobot model has the same shape as YEZ-2A 
airship model, except that it reacts slower.  All peaks and valleys observed in YEZ-2A airship model data are 
observed in the JPL Aerobot model, reinforcing our models validity.   

2. Doublet Excitation Response 
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The YEZ-2A dynamic airship model applies a doublet pulse of -15 to 15 degrees over 20 seconds to the model 
airship, and collects data for 200 seconds.  These results are shown graphed below in Figure 4 alongside the 
response of our parameterized longitudinal linear model. 
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Figure 4:  Doublet Excitation Response. The YEZ-2A data “u” and “q” data 
 was scaled up by a factor of 20 for plot comparison. 

 Parts of the YEZ-2A data have been scaled to enable the responses of the systems to be easily compared.  By 
looking at the data, it is observed that the response of the JPL Aerobot has the same shape as YEZ-2A airship, at 
times stabilizing around the same time as YEZ-2A data.  In the graphs for vertical velocity (w) and pitch angle (), 
our model had a lower amplitude.  Again, all peaks and valleys observed in YEZ-2A data are observed in our model, 
reinforcing our model’s validity.   

VI. Conclusion 
A new technique, denoted as the Common “a” method, is introduced for developing a stable parameterized linear 

longitudinal dynamic model of an airship. The main idea is to combine classical aircraft stability derivative methods 
with linear dynamic airship modeling theory. The significance of this is that it does not require any system 
identification to create a linear model, circumventing the expensive and laborious task of performing extensive flight 
experiments. The JPL Aerobot model has been validated by dimensional unit analysis, characteristic roots, and 
response to control input rectangular pulses and doublets. As desired, the JPL Aerobot linear longitudinal airship 
model produces responses similar to known airship models in the literature.   To continue this research, a lateral 
linear dynamic model is under development using the same methods. Once this is complete, a fully parameterized 
linear airship dynamic model can be tuned by using flight data from the JPL Aerobot. This complete linear model 
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can then be used in waypoint navigation, path planning, and autonomous airship control about a specific operating 
point. The linear model can be tuned easily for trim about additional operating points allowing for the development 
of a gain scheduling control system. Looking past these milestones, this model will help enable an airship to 
navigate through the atmosphere of Titan while providing a platform for scientific exploration and experimentation. 
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