
1

AUTOMATIC CODE GENERATION FOR INSTRUMENT FLIGHT SOFTWARE

Kiri L. Wagstaff, Edward Benowitz, DJ Byrne, Ken Peters, and Garth Watney

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA,
Email: <firstname.lastname>@jpl.nasa.gov

ABSTRACT

Automatic code generation can be used to convert soft-
ware state diagrams into executable code, enabling a mo-
del-based approach to software design and development.
The primary benefits of this process are reduced devel-
opment time and continuous consistency between the sys-
tem design (statechart) and its implementation. We used
model-based design and code generation to produce soft-
ware for the Electra UHF radios that is functionally equiv-
alent to software that will be used by the Mars Reconnais-
sance Orbiter (MRO) and the Mars Science Laboratory
to communicate with each other. The resulting software
passed all of the relevant MRO flight software tests, and
the project provides a useful case study for future work
in model-based software development for flight software
systems.

1. INTRODUCTION

A key challenge in flight software development is the
need for high-reliability software that often must be pro-
duced in limited development time. Automatic code gen-
eration techniques can address these exact concerns, as
they enforce standard programming practices and pro-
duce consistent code (both self-consistent and consistent
with required coding style). Past JPL space missions such
as Deep Space 1 [1] and Deep Impact [2] have used some
automatic code generation to specify the desired behavior
of their fault protection subsystems. However, the major-
ity of flight software is still developed and written manu-
ally.

We have applied model-based design and code genera-
tion to produce software for a communications protocol,
in which the system must handle both local and remote
directives (events). The Proximity-1 protocol [3] is cur-
rently being used by the Mars Exploration Rovers to com-
municate with the Mars Odyssey orbiter, and it has been
adopted as the standard for future Mars missions such as
the Mars Science Laboratory (MSL), the next rover mis-
sion to Mars. In particular, the Mars Reconnaissance Or-

biter (MRO), which is currently in Mars orbit, will use
this protocol to communicate with MSL after it lands, in
2010. At the beginning of this project, MRO already had
the basic Proximity-1 functionality running on its Elec-
tra UHF radio. However, it required a software update
to add the ability to initiate and respond to communica-
tions change requests (e.g., new data rate or transmit fre-
quency). Since this functionality had already been imple-
mented for MSL, mission developers began work to adapt
the MSL implementation for use on MRO. In parallel, we
designed statecharts for the hailing and communications
change parts of the Proximity-1 protocol. We then used
the JPL Autocoder to convert the diagrams into C code,
packaged the code into a library, integrated it into the
flight software, and ran the resulting code through a series
of MRO flight software tests. Although our implementa-
tion was not ultimately used for the MRO flight software
update, it successfully replicated the system functionality,
and the statecharts have provided the basis for an imple-
mentation of the entire Proximity-1 protocol, currently in
progress.

This paper contributes a description of how model-based
design and code generation can be used to good effect
in flight software systems. Using the Proximity-1 expe-
rience as a case study, we also highlight the benefits ob-
tained from this development approach. As a result, we
advocate the use of model-based design and code gener-
ation to focus human time on the design of the system
and leave implementation details to a deterministic, well
understood process.

2. AUTOMATIC CODE GENERATION

2.1. Model-Based Software Development

In model-based engineering, the model is an integral part
of the software development process. Component inter-
action can be captured in UML Sequence diagrams, while
dynamic behavior can be captured in UML Statechart
diagrams. A statechart contains rectangles, represent-
ing states, and arrows that represent transitions between



2

Requirements

The initial state of 
the system is S1.  If 
E1 occurs, then the 
system is in S2.  E2 
and E3 can cause a 
transition to S3 and 
S4, respectively. ...

Statechart

C Code

QSTATE S2(QEvent const *e) {

 switch (e->sig) {

  case E2: Q_TRAN(S3); return 0;

  case E3: Q_TRAN(S4); return 0;

 }

}

S1 S2 S3

S4 S5

E1 E2

E3

E4 E5

Figure 1. The process of translating system requirements
into a statechart that can be converted into C code. The
resulting statechart can reveal places in the requirements
that require further specification.

states, annotated with the event that causes the transition
to occur. Each state can specify actions that are taken
on entry or exit. Transitions can also specify guards that
restrict the contexts in which the transition will occur.

Using established coding templates, these statechart mod-
els can be automatically mapped into the application code
by means of a statechart Autocoder tool. Rather than
treating statecharts as just part of the design documenta-
tion, they can be maintained along with the source code,
subject to the same level of scrutiny and review. In ad-
dition to providing increased visibility into the actual de-
sign of the system, joint reviews of the statechart by sys-
tem engineers and software engineers can quickly iden-
tify loosely worded or misunderstood requirements, and
provide an opportunity to correct them. Figure 1 repre-
sents this process graphically.

2.2. The JPL Autocoder

The first JPL mission to use auto-coding with statecharts
was Deep Space 1 (1998–2001), a mission designed to
demonstrate advanced technology such as ion propulsion,
autonomous navigation, onboard reactive planning, and
others [1]. Matlab’s Stateflow tool1 was used to design
and generate code for the fault protection subsystem. State-
flow was also used to generate fault protection code for
Deep Impact, which studied the results of an artificial im-
pactor striking comet Tempel 1 in 2005 [2].

After evaluating these experiences, JPL decided to imple-
ment its own lightweight model-based code generation
tool to provide the following advances over Stateflow: 1)
a non-proprietary file format in which the statecharts are
stored, 2) precise control over which programming con-
structs are used, to ensure adherence with flight software

1http://www.mathworks.com/products/stateflow/

requirements, and 3) the ability to plug in different front-
end statechart drawing tools and different back-end out-
put modules. For example, each mission can impose its
own coding standards that should be applied in the code
being generated. As noted below, the code generator can
also output other forms of code, such as a model repre-
sentation that can be used by a model-checking tool. The
resulting JPL Autocoder was used to model and gener-
ate code for the fault protection subsystem of the Space
Interferometry Mission (SIM) [4].

C/C++ Output. The JPL Autocoder [5] takes in state-
charts encoded in UML files and can produce C or C++
code. Development on the Autocoder began in 2004, and
the Autocoder itself is currently classified as NASA Class
B (mission critical) code. Statechart features supported
by the Autocoder include: composite states, events, ac-
tions, signals, guards, junctions, orthogonal regions, ini-
tial states, and deep history states. The Autocoder expects
as input UML consistent with that produced by the Mag-
icDraw2 visual UML modeling tool.

The generated C/C++ code uses the standard statechart
translations provided by the Quantum Framework [6]. Each
state is represented as a method that takes the triggering
event in as an input parameter. The body of the method is
a switch statement that, based on the event, dictates the
resulting behavior (execute an action, transition to an-
other state, etc.). The Autocoder generates code for all
components of the statechart as well as inserting calls to
external methods that implement low-level actions.

Python Simulator Output. The Autocoder can also pro-
duce a Python graphical interface to the generated code
using the Tkinter package, which is built on Tcl/Tk. The
entire model can then be executed in simulation, with an
interactive interface in which the user clicks on buttons to
send events to the state machine. The developer can con-
duct a series of behavioral tests to confirm that the model,
and the generated code, respond as expected and that they
match the specification. In this way, many design errors
can be caught and corrected prior to integration with a
larger codebase or conducting hardware tests. An exam-
ple of this kind of benefit is given in Section 4.4.

Promela Model Output. Finally, the Autocoder can pro-
duce a Promela representation of the statechart for use
with automated verification tools. Promela is the lan-
guage used to represent models that can be checked by
the SPIN tool [7]. SPIN was designed to detect software
defects in concurrent system designs, which is ideal for
complex statecharts with concurrent regions. SPIN can
also perform reachability and other useful analyses of the
model. One of the barriers preventing more widespread
use of model verification tools such as SPIN is the large
amount of manual effort that must be invested to create
an accurate model of the system and re-invested each time
the system is modified or updated. The Autocoder greatly
reduces this burden by providing an up-to-date Promela
model each time the statechart changes and code genera-
tion is re-done.

2http://www.magicdraw.com/



3

Each of these output products (C/C++ code, Python model,
and Promela model) are generated from the same origi-
nal source, which is the UML statechart. Therefore, each
time the statechart changes and the code is regenerated,
it naturally propagates to all three outputs. As a result,
the documentation (statechart) is always up to date with
respect to the implementation, the simulation, and the
model verification tools.

3. ELECTRA RADIO FLIGHT SOFTWARE

The Electra UHF radio is an advanced telecommunica-
tions and navigation subsystem for Mars missions, pro-
viding (among other features) communication among space-
craft at Mars using the Proximity-1 protocol [3]. The
Electra hardware and its class B (mission critical) soft-
ware were designed at JPL using relatively traditional
processes. In particular, the Proximity-1 implementation
was hand-coded by software engineers who had studied
the protocol specification document to be able to translate
the document’s text and diagrams into operational source
code. The resultant software was used to run test pro-
cedures which had also been hand-written by engineers
familiar with the protocol specification, to verify that the
specification was met. In this project, we sought to de-
termine the benefits of implementing some of the same
functionality using a model-based approach instead.

The Proximity-1 Space Data Link Protocol [3] is an inter-
national CCSDS standard for relatively short-range com-
munication, such as between rovers and orbiters at the
same planet, or between multiple orbiters at the same
planet. Since the range is short, the signal strength is not
expected to be extremely weak and time delays are fairly
short. Since communication may often be blocked by the
planet, the protocol expects relatively short, independent
communication sessions. Hence, automatic communica-
tion establishment (hailing) is an important part of the
protocol, as is the ability to adjust parameters (such as
data rate) as the distance changes between the spacecraft
during a session. We focused on both of these primary
capabilities in our study.

The concept of a state machine is commonly used in sys-
tem specifications because it naturally captures the idea
of system state and specifies how state should change as
a result of different events. However, there is no stan-
dard convention for how these diagrams are produced. A
state transition diagram that captures the full-duplex op-
erational behavior is included in the Proximity-1 spec-
ification (Figure 2). We distinguish between this kind
of informal diagrams and statecharts, which have a well
defined syntax and consistent notation and can therefore
provide the basis for an automated translation from de-
sign (diagram) to code (implementation).

S1 - Inactive

S2 – Waiting for Hail

E2: Set Mode 

Connecting-T

E9:Valid Transfer Frame 

received

E1: Set Mode 

Connecting -L

E3:Hail Directives

Received

S45 – Terminating Tail

S42 – Radiate Acquisition Idle

S41 – Radiate Carrier Only

E10: Carrier Only 

Duration Timeout

E11: Acquisition Idle 

Duration Timeout

E26:Tail_Idle_Duration 

Timeout

E12: Local Comm Change

“Modify Transmitter and

Receiver operating values”

E21: LNMD E22: RNMD 

E23: RNMD E24: LNMD 

“Modify Transmitter values. 

Set Persistence=off”

“Set Persistence=on”

E25: No Frames

Pending

HAIL SEQUENCE

S31 – Start Hail Action

S32 – Send Hail Acquisition

S33 – Send Hail Directives

S34 – Send Hail Tail

S35 – Wait for Hail Response

E4:Carrier Only 

Duration Timeout

E5:Acquisition Idle 

Duration Timeout

E7:Tail  Idle

Duration Timeout

E6:Output FIFO = empty

(HAIL Radiated)

E8:Hail Wait 

Duration 

Timeout

E17:Valid  

Frame

Received

E13: Remote 

Comm Change

E20:Tail Idle

Duration

Timeout 

No Frames Pending

E19:Output

FIFO = empty

E16:Bit Lock = False

E18:

Persistence 

Wait Time 

Timeout

S48 - Comm Change in Data Services 

“Modify  Receiver 

operating values”

E14:No 

Frames

Pending

E15: (Comm

Change 

Sent)

X=2

X=0

X=5

X=4S40 – Data Services

Y=4

Y=5

Remote Request Local Request

Z=0

Z=1

Y=3

Y=2

Y=1

Key:  = Caller State

= Responder State

Figure 2. Figure 6-1 from the Proximity-1 specification,
showing full-duplex operations [3]. The Hailing state-
chart in Figure 3 covers the top half of this figure, and
the block in the lower right is captured by the Communi-
cations Change statechart in Figure 4.

4. RESULTS

4.1. Proximity-1 Hailing and CommChange State-
charts

We converted two key elements of the Proximity-1 Data
Link Sublayer specification [3] into statecharts. First,
we modeled the hailing process, obtaining the statechart
shown in Figure 3. At any time, the system can be in
one of the distinct substates within the larger “Hailing”
state. When the radio is not attempting to hail, it is in
S01 Inactive3. From that state, local directives can
trigger SetTransmit or SetListen events, which
cause the system to transition to S31 StartHail (caller)
or S02 WaitForHail (responder), respectively. If the
radio is in S31 StartHail, it takes actions to initi-
ate a link with another radio, and it tracks the number
of hailing attempts it has made (using COUNTER.hail
lifetime count). Actions such as mp hail setup
carrier() are low-level behaviors not modeled ex-
plicitly by the statechart; instead, they are ”device-driver”
methods already implemented in the Electra codebase that
the statechart leverages.

3The numbers prepended to the state names refer to state numbers

found in the specification [3] for easy reference.



4

Figure 3. Proximity-1 Hailing statechart, composed of 11 states, 20 transitions, and 10 actions.

If the radio is in S02 WaitFor Hail, it does noth-
ing until it receives a set of hail directives from another
radio (HailDirRecd event) or, if the hail bypass
parameter is true, it receives a valid frame of any sort
(ValidFrameRecd). The latter allows for Proximity-1
Simplex mode, where a radio either transmits or receives
(but not both), and no hail directives are used. It also
allows for a mode of operation where the Proximity-1
protocol is not actually used at all (raw data communi-
cation), which is not part of the protocol but which was a
requirement of the Electra radio software.

Note the strong resemblance between this statechart and
the informal diagram shown in Figure 2. Although the
existing paper-based diagram provided a good starting
point, converting it into an operational statechart exposed
some limitations and incompletely specified behavior. For
example, the Proximity-1 specification indicates that the
caller should only respond to valid frames received from
the responder when the caller is in state S35 WaitFor
HailResponse. During testing, we developed a more
robust version of the protocol that permitted the caller to
respond to any valid frame received from the responder
even if it was in S34 SendHailTail or S33 Send
HailDir. Enclosing all three states in a single larger
state, and specifying the ValidFrameRecd event as a
trigger, was a simple update using this design process.

The second statechart that we created models the system
behavior when a change in the communications param-
eters (frequency, bit rate) is requested by either radio in
the link (see Figure 4). A communications change can be
requested by the local radio (generating a LocalComm
Change event) or received as a request from the remote
radio (a RemoteCommChange event).

A local request is handled as follows. The radio waits
for the queue of pending frames to empty, then sends a
Remote Communications Change Directive (RCCD) to
the other radio. Once its FIFO queue empties, the radio
waits for the communications link to be lost (modeled as
a BitLockFalse event), indicating that the other radio
has changed its parameters. If this does not happen be-
fore a specified amount of time, the radio loops back to
WaitForEmpty and re-sends the RCCD. It will do this
a maximum of TIMEOUT.commchange.lifetime
times before giving up. If BitLockFalse occurs, the
radio updates its local receive parameters, waits for a valid
frame to be received from the other radio, and then up-
dates its own transmit parameters. At that point, the two
radios can resume regular communications.

A remote request, received on the link by the local radio,
is handled as follows. The radio waits for its local FIFO
queue to empty, pauses, and then updates its transmit and
receive parameters. It transitions to RadiateCarrier



5

Figure 4. Proximity-1 Communications Change statechart, composed of 12 states, 17 transitions, and 8 actions.

and then RadiateAcqIdle to permit the remote re-
questor to receive a valid frame and update its own pa-
rameters, and the two radios can then resume their ses-
sion.

In this case, the statechart deviates to a larger extent from
the diagram shown in Figure 2. This is due to the fact that
the Figure 2 diagram less closely matches regular state-
chart semantics. For example, there is no defined way to
reach state “Z=0”, and no way to exit from the “Y=1,2,3”
loop. The overall semantics and functionality of the pro-
tocol have been preserved and formalized in the statechart
of Figure 4.

These diagrams went through several iterations before
converging to the final versions shown in Figures 3 and 4.
The ability to work in an efficient model–simulate–update
loop permitted us to quickly reach the final diagrams.

4.2. Integration with MRO Flight Software

Once the diagrams were complete, we used the JPL Au-
tocoder to produce C code implementing their function-
ality. Each state becomes a distinct method that takes
in a pointer to a structure representing the current state
of the system and a pointer to the next event that oc-
curs. Figure 5 shows an example of the code generated
for the S01 Inactive state from the Hailing statechart
(Figure 3). The main body of the method is composed
of a switch statement that determines what will happen
next, based on the contents of the next event (e->sig).
Two of the possible events are pre-defined events in the
Quantum Framework: Q ENTRY SIG and Q EXIT SIG

which correspond to entry and exit events for that state.
The other two events defined are SetListen and Set
Transmit, as defined in the discussion of Figure 3. For
these events, the Q TRANmacro from the Quantum Frame-
work permits the method to signal that the system should
transition from the Inactive state to a new state.

The JPL Autocoder converted each statechart into a .c file
that contains one method to model each state, as well as
a .h header file containing the necessary method declara-
tions. Table 1 shows the source lines of code generated
for each statechart; the counts were generated by David
A. Wheeler’s open-source ’SLOCCount’ program4. In
general, the auto-generated code tends to be longer than
the original manual implementation, although exact quan-
titative comparisons are difficult since the original imple-
mentation of hailing also covered some functionality not
modeled in our statechart (such as half-duplex communi-
cation), and there was no existing implementation of the
communications change functionality to which we could
compare.

The auto-generated code is longer because it includes ref-
erences to the Quantum Framework and automatically
logs each transition (e.g., LogEvent log(stateName)
statements in Figure 5). However, since it is all generated
automatically, the increase in length does not require ad-
ditional effort. In fact, it further enhances the reliability
of the code, since there is no possibility for a logging
statement to be accidentally omitted during implementa-
tion; everything is included. There is also an option pro-
vided by the Autocoder that suppresses the logging in-
structions, to improve the runtime efficiency of the code.

4http://www.dwheeler.com/sloccount



6

QSTATE Prox1_Inactive(
Prox1 *me, QEvent const *e) {

char stateName[256];
strcpy(stateName, me->objName);
strcat(stateName, " Inactive");
switch (e->sig) {
case Q_ENTRY_SIG:
me->mystate = PROX1_INACTIVE;
strcat(stateName, " ENTRY");
LogEvent_log(stateName);
Prox1Impl_mac_go_inactive(me->impl);
return 0;

case Q_EXIT_SIG:
strcat(stateName, " EXIT");
LogEvent_log(stateName);
return 0;

case SetListen:
strcat(stateName, " SetListen");
LogEvent_log(stateName);
Q_TRAN(Prox1_WaitForHail);
return 0;

case SetTransmit:
strcat(stateName, " SetTransmit");
LogEvent_log(stateName);
if (Prox1Impl_hail_bypass(me->impl)) {
Q_TRAN(Prox1_RadiateCarrier);

}
else {
Q_TRAN(Prox1_StartHail);

}
return 0;

}
return (QSTATE)QHsm_top;

}

Figure 5. C code automatically generated for the state
S01 Inactive in the Hailing statechart (Figure 3).

Once the Autocoder had produced the C implementation
of the statecharts, we packaged it up as a library and in-
tegrated it with the regular Electra flight software. Each
place in the flight software that previously modeled hail-
ing or communications change functionality was replaced
with a call into our library. In general, original hand-
coded switch statements (often one or two dozen lines of
code) were replaced by one-line function calls to gener-
ate events for the autocoded state machine. This promises
to make the code much more maintainable, since adjust-
ing the state machine is easier and less error-prone in
the statechart than in hand-coded switch statements scat-
tered throughout the software. In fact, a great deal of the
original development effort involved making sure that the
proper states appeared in all necessary switch statements
and no improper ones. It is usually comparatively simple
to determine when to generate an event for the autocoded
state machine, since the events (if well designed) map
into natural occurrences in the system.

We also had to integrate the Quantum Framework into
our system, so it could process the events and state transi-

Table 1. Source Lines of Code produced by the JPL Au-
tocoder for each statechart.

SLOC
Statechart .c .h

Hailing 324 43
Communications Change 310 42

tions. The activities we modeled here had large time con-
stants (tenths of seconds), so we used a simple but slow
method of creating a new task that would periodically
wake up and process the events. Our future implemen-
tation of the complete Proximity-1 protocol will require
a tighter and faster integration with the real-time operat-
ing system, but the Quantum Framework is designed for
use in real-time environments and supports more efficient
integration methods [6].

4.3. MRO Flight Software Tests

We tested the integrated flight software, which contained
our autogenerated Proximity-1 hailing and communica-
tions change library, on the MRO hardware testbed. There
was an existing set of flight software tests developed for
testing the Proximity-1 behavior of the Electra radios, and
we applied each of the relevant tests to our version of the
flight software. Table 2 shows the result of each of the
five tests we performed; all of the tests passed. This re-
sult demonstrated that the automatically generated code
correctly provided the desired communications function-
ality.

As noted in Section 4.1, during the course of these tests
we discovered that, due to the timing behavior of the ac-
tual hardware, we needed to modify the Hailing state-
chart to permit the receipt of a valid frame to complete
the hailing handshake even if the system was not yet in
state S35 WaitForHailResp. This was the only up-
date we found as a result of the tests. The majority of
defects or design problems had already been identified
during reviews of the statechart itself and by running the
statechart in simulation. That is, 93% of the 15 tracked
defects were detected, and corrected, prior to running on
the hardware.

Table 2. MRO flight software test results using auto-
generated C code based on the Proximity-1 hailing and
communications change statecharts.

Test Name Pass/Fail Date
Prox-1 Basic Comm. P 5/18/07
Prox-1 Hailing Process P 6/4/07
Prox-1 Simplex P 6/7/07
Relay Raw Data Comm. P 6/7/07
Communications Change P 4/22/07



7

4.4. Impact on Missions

One goal of this project was to identify ways in which
model-based software development could be used by cur-
rent and future mission flight software projects. Three
such avenues bore fruit: the use of autocoding in future
MSL flight software development, the use of the state-
chart simulator to communicate and identify design dif-
ferences, and a follow-on project in which we will design
statecharts for a full Proximity-1 reference implementa-
tion.

The MSL mission has supported model-based design for
some time. In the course of this project, MSL flight soft-
ware developers began using automatic code generation
in several software modules. To date, they are using a
simplified version of the JPL Autocoder that does not de-
pend on the Quantum Framework. This version is called
SMAC (State Machine Auto-Coder).

As mentioned in Section 2.2, one of the three types of
output that the JPL Autocoder provides is a Python GUI
that permits interactive testing of the model and gener-
ated code. During a Preliminary Design Review of the
MSL rover landing radar behavior, this Python simula-
tor was used to catch, and later resolve, divergent design
interpretations by designers and implementers. By identi-
fying the discrepancy early on, the mission saved money
and time that would have been needed to detect, and cor-
rect, an error later once the software was implemented.

Finally, given the successful demonstration with the hail-
ing and communications change parts of the Proximity-1
protocol, we are now proceeding with a full reference im-
plementation of Proximity-1 that will also model the data
exchange part of the protocol, half-duplex communica-
tions, etc. This reference implementation will be used in
the JPL Protocol Testlab as a standard against which cur-
rent and future radios that implement the protocol can be
tested.

5. CONCLUSIONS AND LESSONS LEARNED

The use of model-based design and automatic code gen-
eration has proven to be a useful tool for the generation of
instrument flight software. We used this approach to soft-
ware development to replace and extend parts of an exist-
ing implementation of the Proximity-1 protocol for the
Electra UHF radios used by MRO and MSL. We found
that this development process provided several benefits
over more traditional software development that are par-
ticularly important for critical flight software.

First, the design and the implementation are tightly cou-
pled, so the documentation (design) is always up to date
with respect to the code. The implementation has no op-
portunity to drift away from the original design. Sec-
ond, since the JPL Autocoder produces C/C++, Promela,
and Python output, additional tools can immediately be
brought to bear on the design: the SPIN model checker

can operate on the Promela representation of the system,
and a Python simulator can “run” the statechart and per-
mit immediate testing of the behavior produced as a re-
sult of a specific sequence of events. A large number of
defects can be identified and corrected using these tools,
before the C/C++ code is generated and run on the tar-
get hardware. Third, updates and corrections to the de-
sign can be easily and quickly accomplished; the devel-
oper need only modify the diagram and regenerate the
code. There is no need to hunt for affected regions in the
code and manually update each one. Ultimately, these
benefits can result in reduced development and testing
time and a reduction in software development and main-
tenance costs.

An important consideration when using model-based de-
sign is to determine what aspects of the system should be
explicitly modeled (as states and transitions), as opposed
to having their functionality embedded in a low-level ac-
tion (e.g., mp hail setup carrier() in Figure 3).
Too much detail in a single statechart may obscure the
overall functionality, while too little detail (e.g., model-
ing only an “active” and “inactive” state and pushing all
detail down into actions) may render the statechart con-
tentless. In this case, there is a good distinction between
abstract protocol and concrete hardware, so we chose to
model only the high-level protocol behavior, using ac-
tions to call out to actions that are specific to the under-
lying hardware on which the protocol is running. Not all
systems provide such a natural separation. However, this
is an important separation to make even in more conven-
tional approaches to software development, so a model-
based approach can be helpful in requiring that designers
make that decision.

There are some additional challenges involved in adopt-
ing a model-based development approach. Developing
code in this fashion raises questions about how Quality
Assurance (QA) procedures should be updated as a result.
Code reviews can be made more efficient when an accom-
panying statechart is available, especially one that can be
examined dynamically (in simulation). In addition, af-
ter thorough review and validation of the automatic code
generation tool, review efforts for an individual project
can be focused on the designs (statecharts) rather than
the implementations.

ACKNOWLEDGMENTS

We thank Harald Schone, David Brinza, Abdullah Al-
jabri, and Charles Norton for their continued support for
this work. We also thank Steve Allen for discussions
about Proximity-1 communications change for Electra.
This work was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under contract
with the National Aeronautics and Space Administration.
It was funded by an internal R&TD grant at the Jet Propul-
sion Laboratory.



8

REFERENCES

1. Rouquette, N. F., Neilson, T., and Chen, G. The 13th
technology of Deep Space One. In Proceedings of
the 1999 IEEE Aerospace Conference, pages 477–487,
1999.

2. Barltrop, K., Kan, E., Levison, J., Schira, C., and Ep-
stein, K. Deep Impact: ACS fault tolerance in a comet
critical encounter. Advances in the Astronautical Sci-
ences, 111:111–126, 2002.

3. Proximity-1 spacelink protocol: Data link layer. Tech-
nical Report 211.0-B-4, Consultative Committee for
Space Data Systems (CCSDS), 2006.

4. Marr, J. C. Space Interferometry Mission (SIM):
Overview and current status. In Shao, M., editor, Pro-
ceedings of the SPIE, volume 485, pages 1–15, 2003.

5. Benowitz, E., Clark, K., and Watney, G. Auto-coding
UML statecharts for flight software. In Proceedings of
the 2nd IEEE International Conference on Space Mis-
sion Challenges for Information Technology (SMC-IT),
2006.

6. Samek, M. Practical Statecharts in C/C++. CMP
Books, 2002.

7. Holzmann, G. The SPIN Model Checker. Addison-
Wesley, 2003.


