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Abstract 

 
Unmanned planetary landers to date have landed 

"blind"; that is, without the benefit of onboard landing 
hazard detection and avoidance systems. This 
constrains landing site selection to very benign terrain, 
which in turn constrains the scientific agenda of 
missions. The state of the art Entry, Descent, and 
Landing (EDL) technology can land a spacecraft on 
Mars somewhere within a 20-100km landing ellipse.  
Landing ellipses are very likely to contain hazards 
such as craters, discontinuities, steep slopes, and large 
rocks, than can cause mission-fatal damage. We 
briefly review sensor options for landing hazard 
detection and identify a perception approach based on 
stereo vision and shadow analysis that addresses the 
broadest set of missions. Our approach fuses stereo 
vision and monocular shadow-based rock detection to 
maximize spacecraft safety. We summarize 
performance models for slope estimation and rock 
detection within this approach and validate those 
models experimentally. Instantiating our model of rock 
detection reliability for Mars predicts that this 
approach can reduce the probability of failed landing 
by at least a factor of 4 in any given terrain. We also 
describe a rock detector/ mapper applied to large 
high-resolution images from the Mars Reconnaissance 
Orbiter (MRO) for landing site characterization and 
selection for Mars  missions.  
 
1. Introduction 
 

Landing site selection procedures in planetary 
exploration use all available remote sensing data to 
characterize the safety of potential sites before landing 
is attempted. With cameras now in orbit around Mars 
and planned to orbit Earth’s Moon, it is possible to 
map all landing hazards larger than a few meters 
across. Planned precision navigation capabilities will 
allow avoiding such hazards based only on orbital 
mapping. However, slopes on the scale of a lander 

(e.g. < 6 m across) and rocks that could be fatal to a 
lander (eg. < 3 m in diameter and > 50 cm tall) may 
not be detected from orbit. Many sites of scientific 
interest on Mars, in the lunar highlands, and on other 
moons and asteroids have rock distributions high 
enough to create a landing failure probability of 
several percent for blind landers. In contrast, the Mars 
Science Laboratory (MSL) lander/rover in 
development for a 2009 launch will accept a landing 
failure probability due to rock impalement of only 
0.25%. For a blind landing, this rules out well over 
half the surface of the planet. Recent imaging from the 
HiRISE camera on the Mars Reconnaissance Orbiter 
(MRO) for Phoenix mission landing site selection 
revealed high boulder concentrations near Mar’s North 
Pole, areas previously considered benign for a lander. 
Therefore, increasing the accessible surface area 
requires even higher resolution orbital imagery and/or 
onboard landing hazard detection (HD) and avoidance 
capabilities. 

Sensors options for HD have been studied for many 
years, including lidar, radar, and passive imaging [1,2]. 
Lidar and radar are attractive because they are direct 
ranging sensors applicable at relatively high altitudes. 
However, many factors make passive imaging 
attractive, including a shorter development cycle, 
potential for smaller size, lower power consumption 
and lower cost [2]. Landers typically carry descent 
cameras for scientific imaging that could also be used 
for HD. A navigation camera may also be needed at 
high altitude for landmark recognition for precision 
navigation. Such camera can also be used for HD. 

There are still many passive imaging options, 
including use of color, texture, shading, structure from 
motion (SFM), stereo, and visible vs. thermal spectral 
bands. Any selected option also must have a statistical 
model of hazard detection performance that has been 
validated experimentally. The goal of modeling is to 
show that the probability of landing failure is within 
acceptable limits. 

Section 2 examines planetary landing scenarios to 
identify a set of sensor/algorithm alternatives with 
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broadest applicability and to determine nominal sensor 
performance requirements. The conclusion is that 
stereo vision and shadow analysis appear to cover the 
widest set of missions with the least complexity. 
Section 3 summarizes algorithms we have developed 
to date for slope estimation and rock detection with 
these sensing modalities. Section 4 summarizes 
performance modeling and evaluation work for stereo-
based and shadow-based hazard detection. Section 5 
incorporates these results into an overall model of safe 
landing probability with these sensors. This work also 
represents a case study in vision system reliability 
modeling for autonomous navigation that is applicable 
to lidar and may be valuable in other contexts.  
 

2. Landing Scenarios and Sensor Options 
 

Mars is one of the most challenging places to do 
landing hazard detection because the rapid descent 
affords a short time for hazard detection and because 
the atmosphere constraints when sensing can be done 
and also reduces image contrast. Thus we use a Mars 
landing scenario as a design driver, since solutions that 
work from Mars should apply to most target bodies.  

The descent sequence designed for the upcoming 
MSL mission provides a well-defined reference 
scenario. This includes a lateral divert maneuver 
starting about 1.2 km above ground level (AGL) and 
ending about 100 m AGL to get clear of the parachute; 
the lateral movement covers about 25% of the starting 
altitude. Doing precise terrain relative navigation 
(TRN) by map matching before this point will allow 
such a maneuver to be targeted to avoid large hazards 
known from orbital reconnaissance, such as craters up 
to ~ 100-200 m in diameter [3]. Detecting small scale 
hazards before or during this maneuver is impractical 
for several reasons: (1) it would be expensive because 
it would require very high sensor angular resolution 
over a wide field of regard, (2) it would require very 
accurate navigation to guarantee avoiding all small 
scale hazards from more than 1 km away, and (3) 
during the maneuver the high spacecraft attitude rates 
would make it difficult to obtain low smear, high SNR 
terrain images aimed at the right place(s) on the 
ground. At the end of this divert, descent is vertical 
and relatively slow, so HD is possible at this point to 
enable a second maneuver of 1-2 lander diameters to 
avoid small-scale hazards, such as rocks. Thus, 
performing HD at or below ~100 m AGL appears to be 
most practical for MSL-like missions. 

With descent imagery, color, texture, and shape 
from shading are not promising for HD for a variety of 
reasons, including results from prior missions that 

show negligible color variation on asteroid Eros [5] 
and the impracticality of getting metric slope and rock 
size information with sufficient accuracy from texture 
and shading. Contrast in thermal imagery can 
discriminate rocks from soil over part of the diurnal 
cycle [6]. However, to minimize cost we would like 
HD and landmark matching to use the same camera; 
since the vast majority and the highest resolution 
orbital mapping imagery is visible spectrum, this is a 
disadvantage to using thermal imagery for HD. 

Shadows can be used to recognize hazardous rocks 
from altitudes of 1 km or more [2], but this does not 
enable slope estimation. SFM can enable slope and 
rock detection if maneuvers are practical that give 
adequate parallax and enable aiming the camera at the 
landing site from two or more locations on the descent 
trajectory. This may be practical for missions to small 
bodies, like comets and asteroids, but it is costly and 
difficult for large bodies, like Mars. Binocular stereo 
baselines of ~1 m or more appear to be feasible for 
most landers and can enable slope and rock detection 
at altitudes up to about 100 m. Given that this fits the 
challenging reference mission scenario described 
above, stereo vision is our primary approach. Shadow 
analysis can augment rock detection for small 
incremental runtime cost and can significantly increase 
rock detection altitude for missions where that is 
needed, so we include shadows in our approach. Based 
on our current knowledge of hazard densities around 
the solar system, this approach is applicable to most or 
all lander missions. As we discuss below, the speed, 
reliability, and hardware maturity of this approach 
makes it a candidate for missions in about five years.  

 Interest remains in lidar for HD, particularly for 
robotic landers in permanently dark regions of the 
lunar poles and for crewed landers; however, it appears 
lidar is further from maturity for lander applications. 
The HD algorithms and performance modeling we 
apply to range data from stereo are applicable to lidar 
as well. 

 
 

3. Hazard Detection Algorithms 
 

We have developed three vision algorithms for the 
small scale hazard detection: (1) Stereo-based slope 
estimation; (2) shadow-based rock detection and (3) 
stereo-based rock detection.  This section briefly 
summarizes the algorithms; the following section 
describes their performance. 

Figure 1 shows a dataset used in many of our 
experiments. The stereo rig included two 1600x1200 
cameras with a 1 m baseline and 22o x 18o FOV lenses. 
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At least 30 images were collected every 10m from 10m 
to 100m “altitude.” Ground truth range data and Sun 
angles were also collected. 

  
3.1 Stereo-based Slope Estimation 
 

 We use a real-time stereo algorithm that uses five 
overlapping correlation windows (SAD5) to produce 
high range data [7]. We have also implemented this 
algorithm in field programmable gate arrays (FPGAs) 
and expect to be able to make it operate on 1024x1024 
pixel imagery at 10 frames/second (fps) or more. 
Figure 2 illustrates a stereo result applied to the wall 
data at 40 m altitude. 

 The slope estimation algorithm uses the stereo 
range data to produce a slope estimate by robust plane 
fitting. The algorithm has been tested with data that 
simulates “altitudes” up to 100m to produce slope error 
vs. latitude assessments relative to lander scale slopes. 
For plane fitting we first perform a least median square 
fit that includes the rocks on the surface, repeating the 
process for multiple triplets of points. If the median of 
the squared plane error is a minimum, we keep these 
points. Next we discard points far from the plane and 
apply a least squared fit to the remaining points to 
obtain the slope estimate. Figure 3 shows an example 
of plane fitting (red) applied to the wall range data 
(white) at 30m and at 70m. 

 
3.2 Stereo-based Rock Detection 

 
We first apply SAD5 stereo to obtain an elevation 

map and underlying surface plane. Then we apply rock 
detection in four steps (see Figure. 4): 

 
1. Threshold the residuals from a robust plane fit. 
2. The regions over the 1 threshold are extracted. 

Then we estimate the deviation from the plane fit.  
3. Extract potential rocks from connected components 
and discard noise regions. 
4. Estimate rock height and position by averaging the 
25 highest range points in each region to reduce noise 
in the estimates. 

 

 
Figure 1. The wall dataset with ground truth 
used to evaluate stereo-based slope and 
rock detection and to supplement evaluation 
of shadow-based rock detection. 
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Figure 2. Sample SAD5 stereo vision range 
imaging results. Upper right: brick wall with 
synthetic rocks viewed from 40 m distance. 
Upper left: false color range image; red is 
closest and magenta is furthest. The overlaid 
rectangle shows the area used to evaluate 
plane fitting for slope estimation. Bottom: 3D 
rendering from below. The numbers above 
the rocks denote their true height in cm. 
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Figure 4. Stereo-based rock detection: 1) 
Robust plane fit to range data. 2) Threshold 
fit residuals at 1 above surface plane. 3) 
Extract connected rock points. 4) Remove 
noise regions and estimate rock size and 
position.

30m

70m

30m30m

70m70m
 

Figure 3. Surface plane fit applied to 3D 
stereo range data  for two different altitudes. 
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3.3 Shadow-based Rock Detection 
 
The ability to detect rock hazards at much higher 

altitudes than stereo can enable early detection of rocks 
in the scale of the lander and thus enables early 
assessment of hazards and diverts operations with 
reduced effects on the fuel budget. A possible target 
mega-pixel sensor (12o FOV) images a 1m diameter 
rock in 5 pixels at 1000 m, enables such early for rock 
hazard detection. The cues to the presence of rocks are 
the shadows they cast. Given a suitable range of 
illumination angles, shadow saliency and imager 
resolution this relatively straightforward vision task 
has become very useful to detect and map individual 
rocks. 

The shadow-based rock detection algorithm has 
been described in detail in [2,3]. It consists of four 
steps, illustrated in Figure 5: 
1. Image acquisition and parameters, e.g. Sun angles, 
shadow sensitivity and contrast estimate, ground 
sampling distance (GSD).  
2. Shadow Segmentation. Shadows are segmented by 
applying a modified Maximum Entropy Thresholding 
(gMET) algorithm [2] that analyzes the histogram of a 
gamma-modified version of the input image to 
determine the threshold applied. 
3. Shadow Analysis. The aim here is to represent 
shadow regions as a percept; we fit a “best-ellipse” [2] 
to the shadow regions that are larger than five 5 pixels. 
Shadows may be blended and merged. The real-time 
system does not attempt to segment the shadows 
individually but the rock mapper described later does. 
4. Rock Modeling. A circular cross-section model (see 
Figure 5) is sufficient for our purposes. The parameters 
of the shadow ellipses combined with the Sun angle 
and GSD information to estimate shadow length and 
width, and rock model diameter, height and location.  

 
4. Hazard Detection Performance 

 
4.1 Slope Error Analysis 

The slope uncertainty model incorporates the 
following six factors (see Figure 6.) The stereo 
baseline (dX), the surface plane with  respect to left 

camera, focal length (f), the correlation matching error, 
the size of  measured surface patch, and the number of 
pixels on the surface plane. The mathematical details 
are given in [4a]. The 1 slope error plots for the 10m 
to 100m span (see Figure 7) show that for the wall 
surface (5.6m by 2.8m) the slope error is smaller than 
3o for 1 at 100 m. The analytical model predicts that 
for a wall twice as large, the slope error would be 
smaller than 1.5o at 100m.  

 
4.2 Stereo-based Rock Detection 

We have developed a model for rock detection and 
false alarm probabilities for the rock wall dataset 
specifically and compare the model to experimental 
results; in Section 5, we extend this to an overall 
model for the probability of a successful landing given 
a more general distribution of rock sizes at the landing 
site. 

Our detection and false alarm models are based on 
Gaussian models of uncertainty in estimated rock 
heights above the nominal ground surface. To derive 

1 2 3 41 2 3 4

 
Figure 5. Sample results for shadow-based 
rock detection. 1) Input image. 2) Shadow 
regions. 3) Shadow analysis. 4) Rock 
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Figure 6. Stereo-based surface slope 
estimation model.

 
Figure 7. Surface slope estimation errors 
comparison between the analytical model 
and the experimental study.  
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these, we consider two more parameters for HD, 
illustrated in Figure 8. The first one denotes the lander 
rock tolerance T. A rock taller than T could cause a 
mission failure. The second one is the HD algorithm 
threshold t, used to decide whether a detected rock is a 
hazard. Given the uncertainty in rock height 
estimation, t is set below T to minimize missed 
detection of true hazards at the expense of an increased 
false alarm rate. An appropriate setting for t is then that 
which minimizes the probability of mission failure. 

 
The height uncertainty model treats rock height 

estimation as zero mean Gaussian with range 
uncertainty (σ). In theory: 

dX

kivFOVd 


2


 

where d is the range in meters to the ground 
surface, ivFOV is the angular resolution of the sensor 
in mrad. k is the pixel precision, and dX is the stereo 
baseline in meters. The model uses a fixed number of 
range points on the ground surface as clutter, also 
represented by a zero mean Gaussian. The probability 
of detection, Pd, and the false alarm rate (FAR) are 
computed by integrating the tails of the Gaussian 
distributions. The experimental results using the wall 
data set and the analytical model are shown in Figure 
9. Note that below 60 meters “altitude” stereo-based 
HD has almost perfect detection. 

4.3 Shadow-based Rock Detection 
We have tested shadow-based rock detection with 

aerial images of a rock field on Mars Hill in Death 
Valley, California. A small portion of one such image 
was shown earlier in Figure 3. The dataset does not 
have rock height ground truth, but it includes seven 
different sun incidence angles between 30o and 70o off 
nadir. We manually registered these images and 
constructed ground truth of 136 rock footprints by 
outlining rocks in one image. We averaged the 
detection and false alarm rates for the 136 reference 
rocks with diameters greater than 5 pixels over the 
seven sun incidence angles of the same location 
(shown in Figure 5.) The plots shown in Figure 10 
summarize the results. The overall probability of 
detecting rocks with diameters ≥ 5 pixels was 85% 
with an average of 3 false alarms per image. Perfect 
performance (100% detection with no false alarms) 
was achieved for rocks ≥ 25 pixels in diameter. These 
results are useful to choose the camera field of view 
and operating altitude to achieve a desired level of 
reliability. For example, if hazardous rocks have 
diameters >= 1 m, operation is at at 200m altitude, and 
a performance equivalent to the 25 pixel diameter case 
in Figure 9 is desired, the camera angular resolution 
must be 0.2 millirads/pixel. 

Since true rock height was not available with this 
dataset a number of experiments were conducted using 
the wall dataset.  Figure 11 shows a result for a 
simulated wall image at 400m distance. The GSD for 
this image is 11.2cm and the RMSE of the difference 
between the measured height (magenta bars) and actual 
rock heights (cyan bars) is 1.8cm, i.e. 5.4% of the 
average true height (33cm) of the rocks. 

 
Figure 9. Hazard detection and false alarm 
rate comparison between analytical and 
experimental results from the wall dataset.  

 
Figure 10. Shadow-based rock detection. 
Average detection for seven different sun 
angles. Shadow regions are >= 5 pixels. 

 

 
Figure 11. Shadow-based rock detection 
from wall dataset simulated to 400m altitude. 
The chart compares true (cyan) to estimated 
(magenta) rock height.
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Figure 8. The lander rock tolerance threshold 
T and the HD algorithm threshold t. 
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 The Mars Reconnaissance Orbiter (MRO) entered 
Mars orbit in the Fall of 2006. Among its instruments 
it carries the High Resolution Image Science 
Experiment (HiRISE) instrument. From an altitude of 
300 km and with an FOV of 1.14o x 0.18o it is capable 
of acquiring image swaths 20,264 pixels across at 0.3 
m/pixel (Figure 12). The swath length is typically 
twice the swath length, thus covering an area 6.2 km x 
12.4 km. The instrument was targeted from December 
2006 to March of 2007 to acquire high resolution 
images overlapping three potential landing sites for the 
Phoenix Mission, scheduled for landing in May of 
2008. The 36 GByte HiRISE dataset (46 images) 
covers an area of approximately 1,500 km2. At this 
resolution and given the favorable sun elevation angles 
(~60o incidence,) the shadow-based rock detection 
algorithm was applied to map large rocks accurately, 
on the order of 1m or larger.  

The rock mapping algorithm, derived from the real-
time HD algorithm described above affords the 
additional computational cost needed for a more 
refined analysis of the shadows detected at the 
available GSD and the processing of the very large 
images. These include analyzing the detected shadow 
regions in more detail to attempt to separate merged 
shadows from adjacent rocks, and analysis of the 
illumination boundary between the rock and its self 
shadow. Certain terrain features in the scale of the 
lander cast shadows comparable to those of rocks.  
Many of these features are elongated and can be 
discerned from the aspect ratio of their shadows but 
some are fragmented features and have sizes consistent 
with large rocks. The analysis of the illumination 
gradient along the illumination terminators, however, 
has been highly successful in discriminating these 
fragments from large rocks. The mapping algorithm 
generates a rock description record (position and size 
of individual shadows and rock models) for an entire 
HiRISE image in a few minutes. Overall, over 10 
million rocks were detected and mapped. Figure 12 
shows one of three 150km x 75km areas designated for 
analysis. 

With such large areas under consideration, we 
expect variations in the terrain. Figure 13 illustrates 
five representative terrain types in the dataset. Four of 
them represent areas away from craters whereas the 
areas near, even filled, craters typically have large 
concentrations of rocks, many of them large boulders. 
Figure 14 illustrates a result of rock detection from a 
small portion of a HiRISE image. The shadows 
detected (>= 5 pixels) are illustrated on the right 
bottom by their approximated ellipses. 

 

 
Figure 12. Candidate landing ellipses and HiRISE image coverage for one area in the Phoenix 
mission. Rocks >1 meter are clearly visible. Images are 20,048 pixels across (6km).  

    
 The boulder on the top left below is 4.6 meters in diameter 

 
Figure 13. terrain types. Top row: polygonal 
(5-10cm relief at edges) with very few rocks, 
Boulder clusters interspersed with boulder-
free polygonal terrain, Low to medium-
density rocks uniformly distributed across 
surface and Rippled terrain with very few 
rocks or rock-free. Bottom: Rocks along 
border of filled-in craters. 

Figure 14. Detail of rock field and shadows 
detected and approximated by ellipses. The 
smallest rock diameter is ~70 cm. 
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Figure 15 illustrates results for an entire HiRISE 
image covering ~6km x 18km. Density and thematic 
maps are derived from the full rock population of 260 
thousand rocks in a straight forward manner at any 
level of granularity. In this example the map cells are 
100m x 100m. The color scale of the density map 
(center) represent number of rocks having diameters 
>= 1m. The color scale of the thematic map (left) 
denotes ranges of rock density related to rock 
abundance. 

For validation we compared automatic detection 

with manual counts from HiRISE sub-images provided 
by Prof. R. Arvidson of Washington University, and 
compared to counts from surface imagery provided by 
M. Golombek of JPL.  Surface counts are from 
previous efforts to derive rock distribution models at 
the landing sites of previous Mars missions, e.g. 
Viking Landers (VL1 and VL2) [9].  For automatic 
counts we used portions of HiRISE images of the 
landing sites. Figure 16 illustrates one such 
comparison for the VL2 landing site. The black and 
red plots are for surface and manual counts 
respectively. The three remaining and overlapping 
plots are for automatic counts. 

5. Safe Landing Probability Model 
 
A great deal of work has been dedicated to Martian 

rock distributions and selecting safe landing sites on 
Mars over the last few years [9].   The distributions 
model (also called rock abundance model), is given in 
terms of the cumulative fractional area covered by 
rocks as a function of rock diameter. Martian rock 
abundance varies from 0% to 40%. The MSL mission 

is targeting to land a rover to the terrain less than 10% 
rock abundance with landing failure probability due to 
rock impalement less than 0.25%.  

The model we have developed is suitable for both 
stereo and shadow-based rock detection. Mathematical 
details are given in [4]. Errors are influenced by 
different factors and are assumed to follow Gaussian 
distributions. For example, the shadow-based rock 
detection error varies from 10%, mostly dependent on 
sun aureole effects, to 50% for the worst case rock 
shape, i.e. a hemispherical rock. The range is valid for 
Sun incidence angles between 30o and 70o. 

Referring to Figure 17, the probability of false 
negatives and the probability of false positives are 
given by integrating the tails of the Gaussian 
distribution. The probability of successful HD landing 
is given by the probability that a safe site exists times 
the probability of finding it (details in [4].) 

The analytical model of probability of a successful 
landing provides a tool not only to estimate such 
probabilities but also to compare blind landing to 
landing with hazard detection vision capabilities. 
Figure 18 shows plots of such comparison instantiated 
for MSL mission parameters, i.e., a rock tolerance, or 
mechanical threshold T, of 60cm, and a 4m2 lander 
undercarriage. The stereo HD plot (green) is for a 
sensing altitude of 70m. Note that this prediction is 
consistent with the wall results at 70m observed in the 
error propagation model described in Section 4 (Figure 

 
Figure 15. The HiRISE image (right) covers 
an area 6km across x 18km. The color-coded 
density map (center) represents number of 
rocks >= 1m in hectare cells. The thematic 
map (left) encodes density related to rock 
abundance and cumulative fractional area 
(CFA, [9]) covered by rocks. 

 
Figure 16. Validation of automatic rock 
detection. VL2 is at center of image. The 
plots represent rock distributions. The 
automatic counts follow very well the 
exponential distribution model in [9].

 
Figure 17. Uncertainty in the diameter (or 
height) of a detected rock is modeled by a 
Gaussian distribution, T represents the 
lander hazard threshold  and t represents the 
HAD algorithm hazard threshold.  
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9) for the wall dataset. The safe landing probability 
predictions applied to shadow-based detection are also 
illustrated in Figure 19. The blue plot corresponds to 
the 5.4% height errors from the wall dataset at a 
simulated 400m altitude (see also Figure 11.) The red 
plot corresponds to a worst-case shape idealized 
hemispherical rocks illuminated by a 50o Sun 
incidence angle, and assumes that 30% of rocks are 
pyramidal, i.e., not detected because they do not cast 
shadows. Note however the doubling of rock 
abundance for a given level of safety. The MSL 
probability goal is at 0.9975%. 

 
6. Conclusion 

We used a Mars landing scenario as an extreme 
case of a fast, near-vertical descent to motivate sensor 
selection for landing hazard detection. This and 
considerations of minimizing mass, power, and volume 
while maximizing relevance to other missions led us to 
conclude that stereo vision and shadow analysis with 
descent cameras appear to be the smallest sensor suite 
with the widest applicability, given the state of 
development of sensor alternatives today. We then 
outlined algorithms we have developed to date to 
detect slope hazards with stereo vision and rock 
hazards with stereo vision and shadow analysis. We 
derived analytical performance models for these based 
on Gaussian noise models, compared the prediction of 
those models to experimental data, and found 
reasonably good agreement. This implies that the 
models are useful for predicting performance of these 
functions in operational scenarios. Therefore, we then 
embedded the hazard detection performance models in 
a model for the probability of landing safely, given 

parameterized models of lander rock tolerance, lander 
area, and parameterized rock size/frequency 
distributions fit to Mars and terrestrial data. When this 
model is instantiated for parameters of the MSL 
mission, it predicts that even very conservative 
assumptions about the performance of the vision 
system will reduce the probability of a failed landing 
by at least a factor of four compared to a blind landing 
for any rock abundance. Conversely, for the level of 
safety desired by MSL, it predicts that the vision 
system would allow access to roughly triple the 
fraction of the planet as a blind landing. This would 
represent a major improvement in access to sites of 
scientific value for a small increase in sensor payload. 
Analogous benefits should accrue to missions to other 
bodies in the solar system. 
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Figure 18. Landing with HD capability 
compared to blind landing (black plot) 
instantiated for MSL parameters. The 
success probability is the product of the 
probability of no detections and the 
probability of no missed detections. The 
green plot predicts stereo-based probability 
with sensing from 70m altitude. The blue plot 
is for shadow-based detection from the wall 
simulated 400m altitude. The red plot is for 
shadow based idealized hemispherical rocks 
at 50o incidence illumination.   


