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ABSTRACT 
Adoption of advanced automated SE (ASE) tools would be more 
favored if a business case could be made that these tools are more 
valuable than alternate methods. In theory, software prediction 
models can be used to make that case. In practice, thiS is com­
plicated by the "local tuning" problem. Normally. predictors for 
software effort and defects and threat use local data to tune their 
predictions. Such local turung data is often unavailable. 

This paper shows that asseSSing the relative merits of different 
SE methods need not require precise local tunings. STARI is a 
simulated annealer plus a Bayesian post-processor that explores the 
space of possible local tunings within software prediction models. 
STAR 1 ranks project decisions by their effects on effort and defects 
and threats. In experiments with NASA systems. STARI found one 
project where ASE were essential for mmimizing effortl defect! 
threats; and another project were ASE tools were merely optional. 

Categories and Subject Descriptors 
1.6 [Learning]: Machine Learning; 0.2.8 [Software Engineer­
ing]: Metrics-product metrics, process metrics 

Keywords 
eoeOMO, eOQUALMO, simulated annealing, Bayes 

1. INTRODUCTION 
Much current ASE research concerns automatic analysis of source 

code or better execution-based testing tools. These tools might, say. 
verify formal properties or search for the fewest regression tests 
that exercise most of the system. Some of these tools are ready for 
industrial use; e.g, SPIN [15] or JPF [14], just to name a few. 

Recently, the authors were asked to make the business case for 
introducing some of these new ASE tools into large NASA projects. 
This case proved difficult to make, due to an anti-automation bias 
and the local tunmg problem. 

TIns research was conducted at West Vuguua Umverslty, Univenty of 
Southern California, and NASA's Jet Propulsion Laboratory undec a NASA 
sutH:ontracL Reference herein to any specific commercial product, pro­
cess, or service by trade name, trademark, manufacturer, or otherwise, does 
not conshtute or imply Its endorsement by the UDited States GovernmenL 
Pennission to make dlgJlal or hard copies of all or pan of this work for 
personal or classroom use IS granted Without fee provided that copies are 
not made or distributed for profit or commercJal advantage and that copies 
bear tJus nohce and the full Cltabon on the first page. To copy otheTWJse, to 
republish, to post on servers or to redistribute to liSts, reqUIreS prior specific 
permission andlor a fee. 
Submitted to ASE '07 Atlanta, Georgia, USA 
Copyright 200X ACM X-XXXXX-XX-X/XXIXX .. $5.00. 

The anti-automation bias was seen at an leSE 2007 panel. Tim 
Lister (a co-author of Peopleware [8]) commented that "SOCIOlogy 
beats technology in terms of successfully completing projects" - a 
notion endorsed by the other panelists. That is, software project 
managers should focus less on new ASE tools and more on manag­
ing the sociology aspects of thell" team (e.g. decrease staff turnover). 

Figure 1 offers some support for this bias. This figure shows 
the known relative productivity effects of changing project features. 
According to this figure, the benefits of automatic tools (ranked 
number mne m the list) can be equaled or bettered via other means 
(e.g. any item 1 to 8 or any pair of Items 10 to 22). 

Note that this support for the anti-automation bias is based solely 
on the development effort; i.e. Figure 1 is blind to the impact of new 
ASE tools in reducing defects and any other threals to the success 
of the project. A complete business case should therefore study 
predictors for effort and detects and threats using, for example: 

• The eOQUALMO defect predictor [3, p254-268]; 
• The eOeOMO effort predictor [3, p29-57); 
• The THREAT predictor for effort & schedule overrun [3, 

284-291). 

Such a study is complicated by the local tuning problem. These 
predictors are most accurate after they have been tuned to local data 
(see §6). Unfortunately, the data reqwred for local tJming is difficult 
to obtain, especially across multiple organizations [22]. This is 
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Figure 1: Relative effects on development effort. Data from a 
regression ana1ysis of 161 projects [2]. 



due to the business sensItivIty associated WIth the data as well as 
differences in how the metrics are defined. collected and archived. 
In many cases the required data has not been archived at all. For 
example, after two years we were only able to add 7 records to our 
NASA wIde software cost metrics repository. 

The premise of this paper is that. in terms of ranktng different 
methods, a precise local tuning is not required. Based on research 
daong back to 1981 [11, we assert that the space of possible tunings 
is well known. This space can be explored to find features that 
minimize effort. defects, and threats. 

To test that premise, we built the STAR I algorithm. STAR I uses 
a simulated annealer to sample the space of possible local tunings 
within COCOMO, COQUALMO and THREAT. A standard SA of­
fers constraints to all variables. STARI, on the other hand, uses a 
Bayesian method to rank those constraints according to how well 
they reduce effort! defects/ threats. Superfluous details can hence 
deleted and the algorithm can return a minimal set of project decI­
sions that most reduce effort and defects and threats. 

The genera1 contributions of this paper, hence, are: 

• A novel search engine for sampling, then pruning a space of 
options within a model. 

• A novel combination of effort/defect/threat prediction mod­
els. Previously, these three models have been analyzed one 
at a time or in pairs [24,26]. 

• A new solution to the local tuning problem: while waiting 
for local tuning data (which may never arnve), seek stable 
conclusions over the set of possible tunings. 

• A demonstration that the relative merits of different project 
decisions can be assessed without speCIfic local tuning data. 

More specifically, using STARI we we found situations where 
new ASE tools were optional for one NASA systems but essentUlI 
for another (measured m terms of reducmg effort and defects and 
threats). Also, we did not find an either/or situatton where we had 
to choose, as suggested by LIster, between sociology and technol­
ogy. When ASE tools were useful, they were useful in combination 
with the sociological features. 

The rest of this paper documents the COCOMO, COQUALMO, 
and THREAT models, along WIth the STARI algorithm. STARI is 
then applied to two NASA case studies. This will be followed by 
notes on external Validity and related work., 

2. DEFINITIONS 
Before we can assess the relative merits of new ASE tools versus 

other methods, we must first define "new ASE tools" and "other 
methods". Such a definition can be achieved via the ontology of 
COCOMO. COQUALMO. and THREAT, shown in Figure 2. This 
figure lists a variety of project features with the range {very low, 
low, nominal, high, very high, extremely high} or 

{vi = 1,1 = 2,n = 3,h = 4,vh = 5,xh = 6} 

Lister's sociological features occur many times within Figure 2. 
For example, team refers to the sociology within a development 
team and its cohesiveness while peon refers to the staff turnover rate 
within a project. Also listed in Figure 2 are factors like acap, pcap 
representing analyst and programmer capabilities (respectively). 

As to technological features, new ASE tools appear as execution­
based testing tools and automated analysis. Chulani [9] defines the 
top half of automated analysis as: 

4 (high): intermediate-level module and inter-module code syn­
tax and semantic analysis. Simple requirements/design view 
consistency checking. 

5 (very high): More elaborate requirements/design view con­
sistency checking. Basic distributed-processing and tempo­
ral analysis, model checking, symbolic execution. 

6 (extremely high): Formalizedl specification and verification. 
Advanced distributed processing and temporal analysis. model 
checkmg. symbolic executton. 

The upper half of execution-based testing and tools is: 

4 (high): Well-defined test sequence tailored to organization 
(acceptance I alpha I beta I flight I etc.) test. Basic test cov­
erage tools. test support system. 

5 (very high): More advanced test tools, test data preparation, 
basic test oracle support, distributed monitoring and analysis, 
assertion checktng. Metrics-based test process management. 

6 (extremely hIgh): HIghly advanced tools for test oracles, dts­
tributed monitoring and analysis, assertton checking Integra­
tion of automated analysis and test tools. Model-based test 
process management. 

A review of recent proceedings of the IEEE ASE conferences 
suggests that a range of five or six in the above features includes the 
kind of "new ASE tools" explored at this venue. Hence, to compare 
"new ASE tools" to "other methods", we will try to reduce effort 
and defects and threats using just 

automated analysis E {5,6} V 
execution-based testing and tools E {5,6} 

or "other methods" (i.e. other ranges of Figure 2). 

3. THE MODELS 
This section describes our predictors (for full details, see [25]). 

Each description includes notes on the space of known tunings 
within that model. In the sequel. STAR I will explore that space. 

3.1 Effort Prediction with COCOMO 
COCOMO predicts development effort in calendar months where 

one month is 152 hours (and includes development and manage­
ment hours). In COCOMO. the scale factors SF. of Figure 2 ef­
fect effort exponentially (on KSLOC, i.e. Thousand Source Lines 
of Code) while effon multipliers EM, effect effort linearly: 

months = a * (K SLOc(HO Ol·E~=l SF.») * (ij EM)) (I) 

where KSLOC is estimated directly or computed from a function 
point analysis; SF, and EM, are the scale factors; effon multipli­
ers of Figure 2; and a and b are domain-specific parameters. In our 
NASA data, these ranges 

(3.72 ~ a ~ 9.18) /\ (0.88 ~ b ~ 1.09) (2) 

With the effort multipliers, off-nominal ranges (Le. {vl=l, 1=2, 
h=4, vh=5, xh=6}) change the prediction by some amount. In the 
special case of the nominal range (i.e. {n=3}), that amount is one; 
i.e. the nominal range make no change to the prediction. Hence, 
these ranges can be modeled as a straight line y = mx + b passing 
through the point {x,y}={3, I}. Such a line has a y-intercept of 
b = 1 - 3m. Substituting this value of b into y = mx + b yields: 

'<Ix E {1..6} EM, = ma(x - 3) + 1 (3) 

where ma denotes the effect of effort multiplier a on ejJon. 
The effort multipliers form into two sets: 

IConsistency-checkable pre- conditions and post-conditions, but 
not necessarily mathematical theorems. 
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Figure 2: Features in COCOMO, COQUALMO, aDd THREAT. 

L The positive effort EM features, with slopes m;i, that are 
proportional to effort. These features are: cpix. data, docu. 
pvol, rely, ruse, stor, and time. 

2. The negative effort EM features, with slopes m;;:, are in­
versely proportional to effort. These features are acap, apex, 
ltex, pcap, peon. plex. sced , site, tooL 

Based on prior work [2], we can describe the space of known tun­
ings for COCOMO effort multipliers to be 

(0.073 ~ m;i ~ 0.21)" (-0.178 ~ m;;: ~ -0.078) (4) 

Similarly, using experience from 161 projects [2], we can say that 
the space of known tunings for the COCOMO scale factors (prec, 
flex, resl,team, pmat) are: 

'rIx E {1..6} SF, = mb(x - 6)" (-1.56 ~ mb ~ -1.014) (5) 

where mb denotes the effect of scale factor b on effort. 
Note that the above ranges for the slopes were obtained by find­

ing the average slope for each COCOMO attribute for both effort 
multipliers and scale factors over the range of values of that at­
tribute. 

3.2 Defect Prediction with COQUALMO 
COQUALMO has two core models, used three ways: 

• The defect introduction model IS similar to Equation 1; Le. 
settings to Figme 2's effort multipliers and scale factors map 
to predictions about number of defects. 

• The defect removal model represents how various tasks (peer 
review, execution-based testing, and automatic analysis) de­
crease the introduction of defects. 

• The above two models are repeated three times for defects 
introduction & removal for requirements, design, or coding. 

COQUALMO follows the same convention as COCOMO for the 
effort multipliers; Le. nominal values (n = 3) add nothing to the 
predicted number of defects. As above, COQUALMO is: 

'rIx E {1..6} EM, = me(x - 3) + 1 

where me denotes the effect of c on defect introduction. 
The effort multipliers and scale factors form two sets: 

(6) 

L The positive defect features, with slopes mt, that are pr0-

portional to the estimated introduced defects. These features 
are flex, data, ruse, cplx, time, stor, and pvoL 



rely- relY= re y- rely_ re y-
very low norrunal !ugb very 
low !ugh 

sced= very low 0 0 0 I 2 
sced= low 0 0 0 0 I 
seed- norrunal 0 0 0 0 0 
seed=!ugb 0 0 0 0 0 
seed= very hlgn 0 0 0 0 0 

Figure 3: An example mk table 

2. The negative defect features. with slopes m;;. that are 10-

versely proportional to the estunated introduced defects. These 
features are acap. peap. peon. apex. plex, ltex. tool. site, sced, 
prec, resi. team, pmat. rely. and docu. 

The space of tunings for defect introductng features are· 

{ 
0 :5 mt :5 0.112 

reqmrements -0.183:5 m; :5 -0.035 

{ 
0 < mt < 0.14 

deS1gn -0.208:5 m;;-:5 -0.048 

{ 
0 < mt < 0 140 

codmg -0.19:5 m;;-:5 -0053 

The space of tunings for defect removal features are: 

"Ix E {1..6} SF, = md(x - 1) 
reqmrements: 008:5 md :5 0.14 

design: 0.1:5 md :5 0.156 
codmg: 0.11:5 md :5 0.176 

where md denotes the effect of d on defect removal. 

(7) 

(8) 

3.3 THREAT: Predicting Effort and Schedu1e 
Overrun 

The THREAT model returns a heuristic estimate of the threat 
of a schedule over run in the project. This estimation model is 
dependent upon the COCOMO effort multipliers 

Internally, THREAT contains dozens of tables of the fonn of 
Figure 3. Each such table adds some "threat" value to the over­
all project risk when multiplied by the effort multiplier values of 
the corresponding COCOMO attributes. There are six major cate­
gories: schedule. product. personnel, process. platfonn and reuse. 
After the threat for each category is calculated. the sum is nonnal­
ized to produce the final threat rating. 

Figure 3 can be represented as an exponentially decaying func­
tion that peaks in one corner of the risk table at a value of two. All 
the tables peak at either a value of two or four. Since this model is 
heuristic in nature, the exact height of the peak is not certain. When 
we perfonn Monte Carlo simulations over THREAT, we vary the 
height of the peak by a random factor 0.5 ~ x ~ 1 if the peak is 
four, and 0.5 ~ x ~ 1.5 if the peak is two. 

4. SEARCH ALGORITHMS 
Having defined the internal space of our models, we now search 

it A simulated annealer is used to sample that space and a back 
select algorithm is used to rank feature ranges according to how 
well they reduce effortl defects! threats. 

4.1 Simulated Annealing 
Monte Carlo algorithms randomly sample the space of possi­

ble controllable model states. A Metropolis Monte Carlo algo­
rithm [27] creates new states by small mutations to some current 

funct~on sa(kmax) 
s :~ so; e :- E(s) II In,tial state, energy. 
sb :~ 5; eb :- e II In~t~al -best- solut~on 

k :- 0 II Energy evaluat,on count. 
wh,le k < kmax and e > emax II Loop 

sn :- neighbour(s) II P'ck some neighbour. 
en :- E(sn) II Compute ,ts energy. 
if en < eb then II Is this a new best? 

sb :- sn; eb :- en II Yes, save it. 
if random() < PIe, en, temp(k/kmax)) 
then s :- sn; e :- en II Maybe jump 

k :- k + 1 II One more evaluat,on done 
return sb II Return best 

Figure 4: SA pseudo-code: a new solution sn (with new energy 
en) replaces the current solution if (a) it bas a lower energy or 
(b) the acceptance predicate P endorses it. Only in the case of 
(a) shouJd the new solution replaces the current best solution. 

state. If a new state is "bener" (as assessed via an energy function). 
it becomes the new currem state used for future mutations. Oth­
erwise, a Boltzmann acceptance criteria is used toprobabilisticalJy 
deCide to assess the new state: the worse the new state, the less 
likely that it becomes the new current state. The algorithm is silent 
on the mutation mechanism. For our experiments, we freeze ~ of 
the features and randomly select ranges for the rest 

In 1983, Kirkpatrick et.el. [20] proposed a modification that was 
inspired by a procedure used to make the strongest possible glass. 
Initially, glass is heated to allow atoms to move freely. The tem­
perature is then slowly lowered such that the atoms can find the 
stablest configuration with lowest energy. A simulated annealing 
(SA) algorithm adds a "temperature" variable to the Boltzmann ac­
cept criteria such that. at high temperatures. it is more likely that the 
algorithm will jump to a new worst current state. This allows the 
algorithm to jump out of local minima while sampling the space of 
options. As the temperature cools, such jumps become less hkely 
and the algorithm reverts to a simple hill climber. 

With SA, bener solutions have lower "energy" so the fitness 
function E is defined such that E ~ 0 and lower values are better. 
For our purposes, we model effort (E f) as the distance to the origin 
of the 3-D space With defects (De) and threats (Th): 

(9) 

Here x is a normalized value 0 < z-m,n(z) _< 1. Hence. , - maz(z) mln(z) 
our energy ranges 0 ~ E ~ 1 and lower energies are better. 

The acceptance criteria P for a new state is defined using the 
current temperature T, the energy of the current solution (e), and 
the energy of the new mutation (en): 

pee, en, T) = e(e-en)/T (10) 

T is defined to decrease as the stnlulator loops through k = 1 ... kmax 
iterations. We use T = e-lOOok/k",a,". 

Two advantages of SA are their impiemenkltion simplicity and 
their ability to handle non-linear models: 

• Implementation simplicity: Figure 4 illustrates the simplicity 
of the algorithm. Memory IS only required for one current 
solution (s), one new solution (sn) and one best solution (sb) 
that stores the best solution seen at any time in the simulation. 

• Non-linear models: Previously [7, II], we have applied SA to 
non-linear JPL requirements models where minimizing the 
cost of project mitigations can decrease the number of re­
quirements achieved by that project. Hence, decreasing both 
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the cost and achieved requirements is a non-linear problem 
that must trade between minimizing cost and increasing re­
quirements coverage. The top-left line of Figure 5 divides 
the behavior of the JPL requirements models before and af­
ter simulated annealing. As shown below the line, iDitial 
Monte Carlo sampling of the possible mitigations lead to a 
large range of costs and benefits. Simulated annealing found 
a set of mitigations that lead to the small cloud of solutions 
above the line. Compared to the initial samples, these new 
solutions had decreased cost, increased benefit (number of 
requirements covered), and decreased variance (shrank the 
space of solutions). 

Two disadvantages of SA algorithms are their incompleteness and 
the complexity of their solutions: 

• Incompleteness: In our domain, we have some evidence that 
the incomplete nature of the heuristic SA search is not a ma­
jor problem. Figure 6 shows a sample run of our SA tool 
running on our prediction models for K = 10,000 simula­
tions. As k increases for 1. .. 10,000, it becomes less and 
less likely that a better best has been missed. Hence, we run 
our simulations for ten times the period it takes for best to 
stabilize (at k :::: 1000). 

• Solution complexity: Simulated annealers offer constraints 
to all controllable features. Often this is an over-constramed 
solution since, in many domains, a repeated empirical result 
is afeature subset selection effect; i.e. models that constrain 
M variables perform just as well, or better, than models that 

constrain N vanables (M « N) [12,21]. For example, Ko­
havi [21] studied some machine learners to find that using 
just 19% of the available features increased prediction ac­
curacy by just 2.14% (on average). For another example, 
when feature subset selectIOn was applied to the JPL require­
ments model of Figure 5, we found that up to ~-rds of the 
features can be left unconstrained, Without effecting the con­
clusions [II]. 

In terms of the goal of this paper, exploring feature subset se­
lection is very important. Before we can remove non-essential fea­
tures, we must first rank them according to their effectiveness. As 
we shall see, this ranking will be insightful to the task of assessing 
the relative value of new ASE tools and other methods for reducing 
effort! defects! threats. 

4.2 Support-Based Bayesian Ranking 
STARI ranks the features ranges seen in K runs of a simulated 

annealer by dividing the K runs into: 

• Best: those aSSOCiated with the BEST% solutions (i.e. those 
with the BEST% least energy); 

• And the rest (i.e. the other 100-BEST% of solutions). 

It then computes the probability that a range is found in best. using 
Bayes' Theorem. Informally, the theorem says next = old * new 
i e. what we'll believe next comes from how new evidence effects 
old beliefs. More formally: 

P(HIE) = P(EIH)P(H) / P(E) (II) 

i.e. using evidence E and a prior probability P(H) for hypothesis 
H E {best, rest}. The theorem calculate a posteriori probability 
P(HIE). Simple Bayes classifiers are often called "nitive" since 
they assume mdependence of each feature. While this assumption 
Simplifies the implementation (frequency counts are required only 
for each feature), it is possible that correlated events are missed by 
this "nitive" approach. Domingos and Pazzani show theoretically 
that the mdependence assumption is a problem in a vanishingly 
small percent of cases [10]. This explains the repeated empirical 
result that, on average, seemingly naive Bayes classifiers perform 
as well as other seemingly more sophisticated schemes (e.g. see 
Table I in [10]). 

When applying the theorem, likelihoods are computed from ob­
served frequencies, then normalize to create probabilities (this nor­
malization cancels out P(E) in Equation II, so it need not be com­
puted). For example, after K = 10,000 runs divided into 1,000 
lowest 10% best solutions and 9,000 rest, the range rely = vh 
might appears 10 times in the best solutions, but only 5 times in 
the rest. Hence: 

E (reply = vh) 

P(best) 1000/10000 = 0 1 

P(rest) 9000/10000 = 0 9 

freq(EJbest) 10/1000 = 0 01 

freq(Elrest) 5/9000 = 0.00056 

hke(bestJE) freq( EJbest) P(best) = 0 001 

hke(restJE) freq(EJrest) . P(rest) = 0 000504 

P(bestIE) 
hke(bestJE) 

(12) = 0.66 
hke(bestl E) + hke(restIE) 

Previously [6] we have found that Equation 12 is a poor ranking 
heuristic since it IS distracted by low frequency evidence. For ex­
ample, note how the probability of E belonging to the best class is 
moderately high even though Its support is very low; i.e. P( best I E) = 
0.66 but freq(Elbest) = 0.01. 



To avoid such unreliable low frequency evidence, we augment 
Equation 12 with a support term, Support should mcrease as the 
frequency of a range mcreases, i.e. hke(xlbest) is a valid support 
measure. STARI hence ranks ranges via 

P{bestIE) * support{bestIE) = l'ke{xlbest) + lIke{xlrest) (13) 

4.3 The STARt Algorithm 
To apply Equation 13, STARI runs in six phases. In tenns of 

standard machine learning theory, step 1 generates a traimng set; 
steps 2.3.4 do some generalization; and step 5 tests the learned the­
ory on data not seen during training. 

1. SAMPLE: To sample the ranges from the models. STARI runs 
the simulated annealer KI = 10,000 times. 

2.. DISCRETlZE: The data seen in the KI samples is then dis­
cretized into D = 10 bins. Discretization converts a con­
tInuous range into a histogram with n break points bl ••• bn 

where ('IIi < j : b, :S b]). After discretization. many obser­
vations can fall into the same range between b, and b,+1 at 
frequency counts c.. This study used equal width discretiza­
tion; i.e. 

3. Cl..4.SS1FY: The ranges are then classified into those seen 10 

BEST% best or rest. 

4. RANK: The ranges are then ranked in increasing order by their 
probability*support (Equation 13) of appeanng in the best 
outcomes; 

5. PRUNE: STARI then runs K2 experiments with the models 
where the top ranked ranges LX ranges are pre-set and the 
remaining ranges can be selected at random. In terms of the 
business case for automated sofrware engineering tools. this 
step is crucial since It would rank new ASE tools alongside 
other methods. 

6. REPORT: STARI returns the LX ranges that produce the least 
effon, defects. and threats. 

To run our experiments. we had to apply our engineering judg­
ment to set the parameters: 

KI = 10,000, K2 = 10,000, D = 10, BEST = 10 

Initially. we planned experiments that varied these parameters. as 
well as trying other discretization policies. However. our initial 
results were so promising (see below) that we are not currently mo­
tivated to explore other parameter settings (such an exploration is 
planned for future work). 

s. EXPERIMENTS 
STARI was tested on the two case studies of Figure 7: 

• OSP: The Orbital Space Plane GNe prototype (a 1990s NASA 
system). OSP was an early prototype for OSP2. 

• OSP2: the guidance and navigation control system of a cur-
rent NASA launch vehicle. under development 

In Figure 7. values arejixed while ranges represent a space of op­
tions. In the sequel. this observation will be Important: OSP2 con­
strains most of its features to fixed values while OSP allows more 
variation in feature ranges. 

ranges values 
project feature low IUgh feature serung 

prec I 2 data 3 
OSP: flex 2 5 pvol 2 

Orbttal resl I 3 rely 5 
space team 2 3 peap 3 
plane prnaI I 4 plex 3 

stor 3 5 SIte 3 
ruse 2 4 
docu 2 4 
acap 2 3 
peon 2 3 
apex 2 3 
llex 2 4 
1001 2 3 
seed I 3 
cplx 5 6 
KSLOC 75 125 
prec 3 5 Hex 3 

OSPZ prnaI 4 5 resl 4 
doeu 3 4 team 3 
It ex 2 5 ume 3 
seed 2 4 slOr 3 
KSLOC 75 125 data 4 

pvcl 3 
ruse 4 
rely 5 
acap 4 
peap 3 
peon 3 
apex 4 
plex 4 
1001 5 
eplx 4 
SIte 6 

F"JgUre 7: Two case studies. 

SA was run K I times and ranges not mentioned 10 Figure 7 se­
lected at random from Equations 2.4.5,7.8 and §3.3. The selected 
controllable ranges were ranked with Equation 13: 

• By controllable features. we mean the kinds of changes a 
project manager could make to her project; i.e. Figure 2. 

• Uncontrollable features are features like the correlation be­
tween, say. analyst capability and development effort; i.e. the 
internal model parameters of Equations 2,4,5.7.8 and §3.3. 

The list at the bottom of Figure 8 shows how Equation 13 ranked 
OSP project decisions. These ranks correspond to the X-axis of the 
plots at the top of that figure. "Median" plots the 50% percentile 
of the defectl effortl threat values seen after imposing ranges LX 
(and selecting all other ranges at random). "Spread" shows the 
75%-50% percentile range. These plots are V-shaped: 

• On the left-hand-side of each plot. poor results were seen 
after applying too few constraints. That is. models perform 
poorly if we do not control them enough. 

• On the right-hand-side of each plot. poor results were also 
seen. In terms of Equation 13. these are the ranges with 
low support and low probability of belonging to best class. 
Hence. it is not surprising that applying these superfluous 
constraints was counter-productive . 

The ranges from new ASE tools (see the "6" symbol) are ranked 
at X=31. 37. 40. 41. These rankings can assessed using the mini­
mum points in the median plots: 

• At X ~ 15 effort and threat are at their global minimums 
while defects is at a local minimum. 

• The global minimum for defects can be see at X = 33. At 
this point. defects are 30% less than at X = 15. However. 
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X feature = range 
I acap-3 
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3 tool =3 
4 apex = 3 
S peon=3 
6 ruse=2 
7 l1IIIe=3 
8 doeu=2 
9 11",,=4 

10 pre<: = 2 
11 team = 3 
12 stor = 3 
13 resl=3 
14 seed=3 
IS pmat=4 
16 team = 2 
17 pre<: = I 
18 11",,=5 
19 seed=2 
20 pmat= 3 
21 peon =2 
22 stor = 4 
23 1Iex.=4 
24 apex = 2 
2S docu = 3 
26 lrex = 3 
27 res! = 2 
28 1001 = 2 
29 ume=4 
30 ruse = 3 
31 exCCUUon IesbDg aDd tools = 6 ~ ~ 
32 peer reviews = S 
33 res! = I 
~ cp!x=6 
3S peer revieWS = 6 
36 aulmDal£d analysis = 2 
37 eucutioo teslUlg and tools = 5 ~. 
38 acap= 2 
39 pmat= 2 
40 aolDlDaled analysis = S ~~ 
41 automated analysis = 6 ~. 

42-62 not sbown (for space reasons) 

F"JgUI'e 8: OSP results 

this lower defect level is achieved via doubhng effort from 
1000 to 2000. months. 

Figure 8 shows that OSP needs some tool support. The third 
highest ranked range (X=3) is for tool = 3; i.e. medium range tool 
use, This corresponds to some support for edit, code, and debug 
moderately integrated with processes and methods and reuse. 
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X feature = range 
I oeu=3 
2 pmal=S 
3 Ilex=S 
4 pmal=4 
5 seed=3 
6 prec=S 
7 docu=4 
8 Irex=4 
9 prec=4 

10 seed = 2 
11 aotomaled analysIS = 6 ~~ 
12 sced=4 
13 pre<: = 3 
14 execUbon IeSbDg and tools = S ~~ 
15 exec1lll0n IeSbDg and tools = 6 ~~ 
16 peer reviewS = 4 
17 automated analysis = 4 
18 peer revIeWS = S 
19 execution IeSbDg aDd tools = 4 
20 peer revIeWs = 2 
21 antoma1ed analYSIS = S ~~ 
22 peer reviewS = 6 
23 peer reviews = 3 
24 execUbon IesbDg and lools = 2 
2S 1rex=3 
26 antomaled analYSIs = 3 
27 antomaled analysIS = 2 
28 execUbon IeSting and tools = 1 
29 execUbon IesbDg aDd tools = 3 
30 peer reviews = 1 
31 aulOmaIed analysIS = 1 
32 ltex=2 

Figure 9: OSPl results. 

However, Figure 8 makes only a weak business case for more 
extensive tool support. Automated a7llJlysis is ranked at positions 
40,41 and is not required to reach the minimums of the Figure 8 
plots. On the other hand, if management has the budget to support 
the X=33 effort, then using extremely high range execution-based 
testing and tools is strongly recommended 

Clearly, if the project is cost-adverse, then methods other than 
new ASE tools are recommended However, the OSP business 
users should be aware of the consequences of this policy. Applying 
only decisions X = 1..15 will produce a product costing half of 
the previous recommendation, but with 30% more defects. 

While new ASE tools are optio7llJl for OSP, they are essentiDl for 
OSP2. Figure 9 shows the OSP2 results. Minimum defects were 



achieved at X=17 vIa a combination of: 

• technical features: project decisions from the range 1 ~ 
X ~ 17use three of our four new ASE tools (see X=ll,14,15). 

• and sociological features such as docu. use of documenta­
tion; pmat, process maturity; ltex, language & tool expe­
nence; and controlling seed schedule pressure and the prec 
precedentedness of the project. 

Hence, the argument quoted in the Introduction that "socIOlogy 
beats technology" should be corrected to "sometimes. socIology 
can use more technology". For example, In Figure 9, only soci­
ological features are applied for 1 ~ X ~ 10. Observe how, at 
X=ll, the largest drop In defects was achieved after applymg ex­
tremely high range automated analysis. 

Two other noteworthy features of Figure 9 are: 

• The U-shapes seen in all the OSP results of FIgure 8 only 
appears in OSP2's defect plot. The medIan effort and threat 
curves for OSP2 are essentially flat. As seen In Figure 7, 
OSP2 constrains more features than OSp. Hence, at least for 
OSP2 effort and threats, STAR I could not change those me­
dian values. 

• On the other hand, the flatness of the effort and threats plots 
means that they are stable across a WIde range of project set­
tings and mternal variations to the prediction models. For 
example, according to this study, the effort for OSP2 has 
50% to 75% range of 600 to 900 person months (median plus 
spread). Such stabilIty is very useful for project planning. 

6. EXTERNAL VALIDITY 
One benefits of STARl's analysis is a reduction In sampling bias. 

Conclusions reached from predIction models tuned to local data are 
biased by that tuning. The conclusions reached here, on the other 
hand, are stable over a large space of possible tuning biases. 

Another issue is model bias. The above conclusions are drawn 
from the internal space of some software prediction models. Clearly, 
if those predictions models are wrong, then these conclusions are 
also wrong, For example, the reader might believe that this analysis 
has overlooked the impact of features nat mentioned in Figure 2. 

One rrutigation for this risk IS to use the best available models. 
The models used here have been extensIvely validated: 

• Chulani et.a1. [4] reports a one study with a Bayesian tuning 
algorithm using 161 projects. After tuning, a cross-validation 
study showed that COCOMO produced effort estimates that 
are within 30% of the actuals, 69% of the time. 

• Studies WIth the COCOMO-81 project database have shown 
that the THREAT index correlates with well with the "l<0~~~. 
(KOSI= thousand of delivered source lines of code). This 
result is consistent with the the base premise of THREAT; 
i.e. bad management can delay software deliVery. 

• COQUALMO was developed using extensive feedback from 
the COCOMO affiliates group. This group comprises dozens 
of companies, that have donated 161 data sets, that meet each 
year to discuss improvements to the current set of models2 

• 

Another threat to external validity are the biases of the authors. 
Given the intended publication venue, and the authors' hIstory of 
publishing on automatic SE tools, perhaps this study is inherently 
biased in favor of new ASE tools. 

To enable other researchers to question our biases, we take care 
to make our case studies fully reproducible. Reproducibility IS an 

2http ://sunset.usc.edu/events/2006/CIIForum/ 

Important methodological principle in other disciplines since It al­
lows a community to confirm, refute. or even improve prior reSUlts. 
In our view. in the field of software engineering, there are all too 
few examples of reproduced •. and extended, results. Accordingly, 
an appendix to thIS paper details how to install and nm the software 
required to repeat the OSP&OSP2 case studies. Such reproducibil­
Ity allows other researchers to check if our advocacy of automated 
tools biases our conclusions. 

Yet another threat to external validity is our evaluation bias. 
Tacit in Equation 9 is an assumption that redJJctions in threat. effort, 
and defects are of equal value. This may not be the case, especially 
for safety critical software where reducing defects has top pnority, 
regardless of the cost. 

Having documented this problem, we now ignore it. This paper 
has shown that there exists at least one evaluation bias under which 
ASE tools are essenual to at least one project For this paper, that 
will suffice. 

The final threat to external validity IS STARI's search bias. There 
are 2N poSSIble combinations of N ranges but STARl's PRUNE 
operator only explores N of them. Hence, in theory, the rankings 
of Figure 8 and Figure 9 may not accurately reflect the true relative 
effectiveness of the ranges. 

There IS some theoretical and empirical evidence that this search 
bias is not a major Issue. Clark has conducted a theoretical study 
concluding that Equation 13 offers the wrong rankings in a very 
small percent of cases [6]. To check his theory, Clark ran numerous 
experiments comparing (a) the estimated "best" combinations of 
ranges found by Equation 13 and the (b) actual best combinations 
found by generating combinations, then trying each one against the 
training data. In all those expenments, Clark only found one minor 
case where rankmg(a) oF rankmg(b). 

Dark's results explains the U-shape seen in the above plots. If 
the rankings of Equation 13 were accurate then, initially, perfor­
mance should Improve as an increasing number of effective ranges 
are applied. Eventually we run out of the effective ranges and start 
applying ranges with low probability and support of belonging to 
the best class. After that point, performance should degrade. In the 
IDIddle of these two extremes would be a low energy valley where 
the most effective constraints have been applied. Such U-shape 
performance plots were seen m Figure 8 and Figure 9. 

Clark's analysis is too long to present here. However, a small 
simulation illustrates his style of argument. STARl's PRUNE 0p­

erator ranks N ranges in the order 1,2, 3 .. N. Consider a greedy 
search that returns the first 1, 2, 3 ... X ~ N of these ranges. Such 
a search grows X till some superset 1.. Y performs worse the subset 
LX (X < Y). For this greedy search to be optimal, then longer 
combinations l..Y can't be more effective than shorter combina­
tions LX. 

This condition can be checked via SImulation. Consider the case 
of N = 100 ranges classified into 1000 best cases and 9000 rest 
cases; i.e. P(best) = 10%, and P(rest) = 90%. A simula­
tor can randomly generates N=IOO pairs {a, b} for F(albest) and 
F(alrest) (respectively) where 

l~a~1000"I~b~9000 

After Equation 13 ranks the pairs, the simulator picks two combi­
nations LX and 1.. Y where 1 ~ X < Y ~ 100. According 
to Equation 12, 98% of time, the shorter combination has a higher 
probability than the longer one of being best. That is, STARl's 
linear search over Equation l3's rankings I to N will not miss in­
teresting combinations. 



7. RELATED WORK 
This report is somewhat at odds WIth a standard IEEE ASE pa­

per. For example, there many reports at this conference of IDnova­
tive tools that find defects missed by other methods Such reports 
offer strong support for the utility of new ASE tools. However, note 
that they assess the new ASE tools soley in terms of defect detec­
tion. In the paper, on the other hand, we have tried to assess new 
ASE tools in the terms of multiple success cnteria (defect removal, 
effort. threats). 

This paper was motivated by a lack of results regarding the rela­
tive merits of new ASE tools versus different methods. To be fair, 
apart from Figure I, the general software engineering literature is 
weak on the relative merits of any set of methods. We recently 
reviewed the (approx) 100 V&V methods offered by the SE Iiter­
ature3. While some evidence was offered for the value of general 
techniques4 there was very little precise evidence on the ments of 
a particular tool. Further, there was almost no compansons of the 
relative effectiveness of pairs of methods applied to the same task. 

Lacking results from the literature, we turned to model-based 
methods. This work is an example of the Harman's search-based 
software engineering (SBSE) paradigm [5,13] where SE acttvities 
are recast as optImization problems. STARI searches COCOMO­
family software prediction models. Numerous alternate models 
have been developed by the software prediction and modeling com­
munity5. Some of these are speCIalized models are built to serve 
the needs of a particular software development organizanon. The 
COCOMO family of models, on the other hand, were built to gen­
eralize across the community of the COCOMO affiliates. 

Historically, this work was inspired by Josephson and Chan­
drasekaran's work on exploration of large design spaces [18]. In 
1999, Josephson reviewed our earliest prototype, which was taking 
too long to terminate. His proposed solution, (try some stochastic 
sampling) eventually grew IDto STARI. 

We have recently become aware that STARI's Bayesian rank­
ing methods is analogous to Ruinstein's cross-entropy method [28]. 
Cross-entropy is applied during simulated annealing to speed up 
convergence to best solutions (by avoiding rare events). In future 
work, we will explore more the connection of our Bayesian ranking 
to cross-entropy. 

Prior related work by this team includes: 

• The TARI minimal contrast set learner, reported at ASE 2000, 
explored a Monte Carlo simulations of the COCOMO and 
THREAT models [26]. 

• TAR2 [23], an optimized version of TAR1, was applied at 
ASE 2002 [24] and RE'02 [II] to different software predic­
tion models. 

This paper reports numerous improvements over this prior work: 

• Previously, we worked on a single prediction model or pairs 
of predictive models. This paper IS the first to study effort 
and defects and threats in one combined analysis. 

• This prior work did not adjust the parameters internal to the 
prediction model. This new work. on the other hand, makes 
extensive adjustments to those parameters. 

• Previously, our learners connnented on just a small subset of 
the ranges. This new work ranks all the ranges, allow man­
agers to perfonn their own detailed analysis of the relative 
effects of different project decisions. 

3WaIlace and Fujii's definitions of V &V [29]; the IEEE 2004 stan­
dard on V & V [16]; NASA's recommended V & V practices [17] 
4E.g. improving software maturity decreases rework [19] 
Shttp://www.~csp-conferences.org/icsp2007/ 

• This new learner runs much faster than the pnor work. STAR I 
generated the OSP and OSP2 results in less than a minute. A 
similar range ranking, by TAR I , would requtre an overnight 
run [26]. TAR2 (and a later version, TAR3) run much faster 
but even those optimized systems would require 20 to 30 
mIDutes to generate featttre range ranktngs. 

• Not only does STARI search faster but it explores a larger 
space. As 'far as we know, this is the first report of an exten­
SIve exploration of the space of tunings internal to COCOMO 
family prediction models. 

8. DISCUSSION 
We defined "new ASE tools" to be: 

automated analysis E {5,6} V 

execution-based testing and tools E {5,6} 

Making the busIDess case for new ASE tools is complicated by 
an anti-automation bias ("sociology beats technology") and insuf­
ficient data for local tuning of prediction models. 

We hypothesized that precise local tunings are not required to 
assess the relative merits of new ASE tools over other methods 
The space of tunings IS well known- we just need to find what 
conclusions are stable within that space. SImulated annealing was 
used to sample that space and generate a set of 10% best and 90% 
rest solutions The N ranges in those solutions were ranked using 
a support based Bayesian method. Experiments were performed 
where the top X ~ N ranged ranges were set and COCOMO, 
COQUALMO, and THREAT were allowed to randomly select the 
remaining ranges. 

By varying the size of X, it was possible to find project deci­
sIons that most minimized effort! defect! threat. Inspecting those 
decisions for two NASA systems, we found that new ASE tools 
were optional tn one (OSP) and essential in the other (OSP2). 

Any generalIZation based on just two case studies should be treated 
with caution. The follow observations should therefore be checked 
on other projects: 

• Recall that (a) OSP was an early prototype for OSP2 and 
that (b) new ASE tools were optional for OSP but essential 
for OSP2. That is, project maturity may be a selector for the 
successful use of new ASE tools. 

• In Figure 8 and Figttre 9, only very high and extremely high 
range automated analysis or execution-based testing and tools 
were used to minimize effort or defects or threats. Lower 
range usage of these tools was never useful That is, when 
using new ASE tools, use them thoroughly or nat at all. 

• In our case studies augmenting sociological decisions with 
new ASE tools can lead to the greatest reduction in effort! 
defects! threats. That is sociology does !1!!!. beat technology 
and technology can compliment sociology. 

• When this study could make the business case for new ASE 
tools, a pre-condition for that case was the inclusion of soci­
ological decisions (e.g. about process maturity and sched­
ule pressure) along with the new ASE tools. Hence ASE 
researchers need to study both software development tech­
nology and sociology. 

Our conclusions are project-specific but the method of generating 
them IS general to any project that can be described in terms of 
the Figure 2 table. An appendix of this paper describes how to 
download, install, and use STARI to find the most important fea­
ture ranges that reduce effort I defects I threats for projects. 
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APPENDIX 

A. OBTAINING AND USING STARt 
These instructions should support a LINUX and CYGWIN m­

stall of STAR!. In the event oftechrucaJ difficulties, please contact 
the first two authors (Menzies or Elrawas). 

bash -1 
( , -d ·SHOME/bin" J && mkdir SHOME/b1n 
export PATH-"SPATH:SHOME/b1n" 
wget http://unbox.org/wisp/tags/STAR/1.O/STAR_1.O.zip 
unZ1p STA~l.O.zip 
make # requires gee 
cd -/STAR 
cd eg 
./1 I tee osp2.out I less 
./2 I tee osp.out I less 

To run STARI on projects other than OSP or OSP2: 

• Copy and edit one of the projects files in 
-/STAR/STAR-projects. 

• Note that you will have to edit both a xxanges and x.values 
file. 

• Then copy and edit (e.g.) - /STAR/eg/l to point to your 
edited project details. 



End of File 


