
The Business Case for Automated Software Engineering

Tim Menzies
Oussama Elrawas

Lane Dept. CSEE
West Virginia University, USA

tim@menzies.us
oelrawas@mix.wvu.edu

Jairus Hihn
Martin S. Feather

Jet Propulsion Laboratory
California, USA

jairus.hihn@jpl.nasa.gov
mfeather@.ipl.nasa.gov

Ray Madachy
Barry Boehm

Computer Science Dept.
Uni. Southern California, USA

madachy@usc.edu
boehm@sunset.usc.edu

ABSTRACT
Adoption of advanced automated SE (ASE) tools would be more
favored if a business case could be made that these tools are more
valuable than alternate methods. In theory, software prediction
models can be used to make that case. In practice, thiS is com
plicated by the "local tuning" problem. Normally. predictors for
software effort and defects and threat use local data to tune their
predictions. Such local turung data is often unavailable.

This paper shows that asseSSing the relative merits of different
SE methods need not require precise local tunings. STARI is a
simulated annealer plus a Bayesian post-processor that explores the
space of possible local tunings within software prediction models.
STAR 1 ranks project decisions by their effects on effort and defects
and threats. In experiments with NASA systems. STARI found one
project where ASE were essential for mmimizing effortl defect!
threats; and another project were ASE tools were merely optional.

Categories and Subject Descriptors
1.6 [Learning]: Machine Learning; 0.2.8 [Software Engineer
ing]: Metrics-product metrics, process metrics

Keywords
eoeOMO, eOQUALMO, simulated annealing, Bayes

1. INTRODUCTION
Much current ASE research concerns automatic analysis of source

code or better execution-based testing tools. These tools might, say.
verify formal properties or search for the fewest regression tests
that exercise most of the system. Some of these tools are ready for
industrial use; e.g, SPIN [15] or JPF [14], just to name a few.

Recently, the authors were asked to make the business case for
introducing some of these new ASE tools into large NASA projects.
This case proved difficult to make, due to an anti-automation bias
and the local tunmg problem.

TIns research was conducted at West Vuguua Umverslty, Univenty of
Southern California, and NASA's Jet Propulsion Laboratory undec a NASA
sutH:ontracL Reference herein to any specific commercial product, pro
cess, or service by trade name, trademark, manufacturer, or otherwise, does
not conshtute or imply Its endorsement by the UDited States GovernmenL
Pennission to make dlgJlal or hard copies of all or pan of this work for
personal or classroom use IS granted Without fee provided that copies are
not made or distributed for profit or commercJal advantage and that copies
bear tJus nohce and the full Cltabon on the first page. To copy otheTWJse, to
republish, to post on servers or to redistribute to liSts, reqUIreS prior specific
permission andlor a fee.
Submitted to ASE '07 Atlanta, Georgia, USA
Copyright 200X ACM X-XXXXX-XX-X/XXIXX .. $5.00.

The anti-automation bias was seen at an leSE 2007 panel. Tim
Lister (a co-author of Peopleware [8]) commented that "SOCIOlogy
beats technology in terms of successfully completing projects" - a
notion endorsed by the other panelists. That is, software project
managers should focus less on new ASE tools and more on manag
ing the sociology aspects of thell" team (e.g. decrease staff turnover).

Figure 1 offers some support for this bias. This figure shows
the known relative productivity effects of changing project features.
According to this figure, the benefits of automatic tools (ranked
number mne m the list) can be equaled or bettered via other means
(e.g. any item 1 to 8 or any pair of Items 10 to 22).

Note that this support for the anti-automation bias is based solely
on the development effort; i.e. Figure 1 is blind to the impact of new
ASE tools in reducing defects and any other threals to the success
of the project. A complete business case should therefore study
predictors for effort and detects and threats using, for example:

• The eOQUALMO defect predictor [3, p254-268];
• The eOeOMO effort predictor [3, p29-57);
• The THREAT predictor for effort & schedule overrun [3,

284-291).

Such a study is complicated by the local tuning problem. These
predictors are most accurate after they have been tuned to local data
(see §6). Unfortunately, the data reqwred for local tJming is difficult
to obtain, especially across multiple organizations [22]. This is

features
Personnel/team capability
Product comple,lUty
Tune constramt
Reqwred software reliability
Mulb-site development
Doc. match to life cycle
Personnel CODtmIDty

Applicabons expeneuce
Use of software tools
Platform volatility
Storage constraint
Process manmty
Language & tools expenence
Reqwred deY. schedule
Data base SIZe

Platform expenencc
AIcb. & nsk resolUbon
Preccdentedness
Developed forn:use
Team cohesIOn
Development mode
Development ftexlbibty

relative wClgbI
3.53
2.38
1.63_
1.54_
1.53_
1.52_
I.SI_
1.51_
1.50_
1.49_
146_
143_
1.43_
1.43_
1.42_
1.40_
1.39_
1.33_
1.31_
1.29_
1.32_
1.26_

Figure 1: Relative effects on development effort. Data from a
regression ana1ysis of 161 projects [2].

due to the business sensItivIty associated WIth the data as well as
differences in how the metrics are defined. collected and archived.
In many cases the required data has not been archived at all. For
example, after two years we were only able to add 7 records to our
NASA wIde software cost metrics repository.

The premise of this paper is that. in terms of ranktng different
methods, a precise local tuning is not required. Based on research
daong back to 1981 [11, we assert that the space of possible tunings
is well known. This space can be explored to find features that
minimize effort. defects, and threats.

To test that premise, we built the STAR I algorithm. STAR I uses
a simulated annealer to sample the space of possible local tunings
within COCOMO, COQUALMO and THREAT. A standard SA of
fers constraints to all variables. STARI, on the other hand, uses a
Bayesian method to rank those constraints according to how well
they reduce effort! defects/ threats. Superfluous details can hence
deleted and the algorithm can return a minimal set of project decI
sions that most reduce effort and defects and threats.

The genera1 contributions of this paper, hence, are:

• A novel search engine for sampling, then pruning a space of
options within a model.

• A novel combination of effort/defect/threat prediction mod
els. Previously, these three models have been analyzed one
at a time or in pairs [24,26].

• A new solution to the local tuning problem: while waiting
for local tuning data (which may never arnve), seek stable
conclusions over the set of possible tunings.

• A demonstration that the relative merits of different project
decisions can be assessed without speCIfic local tuning data.

More specifically, using STARI we we found situations where
new ASE tools were optional for one NASA systems but essentUlI
for another (measured m terms of reducmg effort and defects and
threats). Also, we did not find an either/or situatton where we had
to choose, as suggested by LIster, between sociology and technol
ogy. When ASE tools were useful, they were useful in combination
with the sociological features.

The rest of this paper documents the COCOMO, COQUALMO,
and THREAT models, along WIth the STARI algorithm. STARI is
then applied to two NASA case studies. This will be followed by
notes on external Validity and related work.,

2. DEFINITIONS
Before we can assess the relative merits of new ASE tools versus

other methods, we must first define "new ASE tools" and "other
methods". Such a definition can be achieved via the ontology of
COCOMO. COQUALMO. and THREAT, shown in Figure 2. This
figure lists a variety of project features with the range {very low,
low, nominal, high, very high, extremely high} or

{vi = 1,1 = 2,n = 3,h = 4,vh = 5,xh = 6}

Lister's sociological features occur many times within Figure 2.
For example, team refers to the sociology within a development
team and its cohesiveness while peon refers to the staff turnover rate
within a project. Also listed in Figure 2 are factors like acap, pcap
representing analyst and programmer capabilities (respectively).

As to technological features, new ASE tools appear as execution
based testing tools and automated analysis. Chulani [9] defines the
top half of automated analysis as:

4 (high): intermediate-level module and inter-module code syn
tax and semantic analysis. Simple requirements/design view
consistency checking.

5 (very high): More elaborate requirements/design view con
sistency checking. Basic distributed-processing and tempo
ral analysis, model checking, symbolic execution.

6 (extremely high): Formalizedl specification and verification.
Advanced distributed processing and temporal analysis. model
checkmg. symbolic executton.

The upper half of execution-based testing and tools is:

4 (high): Well-defined test sequence tailored to organization
(acceptance I alpha I beta I flight I etc.) test. Basic test cov
erage tools. test support system.

5 (very high): More advanced test tools, test data preparation,
basic test oracle support, distributed monitoring and analysis,
assertion checktng. Metrics-based test process management.

6 (extremely hIgh): HIghly advanced tools for test oracles, dts
tributed monitoring and analysis, assertton checking Integra
tion of automated analysis and test tools. Model-based test
process management.

A review of recent proceedings of the IEEE ASE conferences
suggests that a range of five or six in the above features includes the
kind of "new ASE tools" explored at this venue. Hence, to compare
"new ASE tools" to "other methods", we will try to reduce effort
and defects and threats using just

automated analysis E {5,6} V
execution-based testing and tools E {5,6}

or "other methods" (i.e. other ranges of Figure 2).

3. THE MODELS
This section describes our predictors (for full details, see [25]).

Each description includes notes on the space of known tunings
within that model. In the sequel. STAR I will explore that space.

3.1 Effort Prediction with COCOMO
COCOMO predicts development effort in calendar months where

one month is 152 hours (and includes development and manage
ment hours). In COCOMO. the scale factors SF. of Figure 2 ef
fect effort exponentially (on KSLOC, i.e. Thousand Source Lines
of Code) while effon multipliers EM, effect effort linearly:

months = a * (K SLOc(HO Ol·E~=l SF.») * (ij EM)) (I)

where KSLOC is estimated directly or computed from a function
point analysis; SF, and EM, are the scale factors; effon multipli
ers of Figure 2; and a and b are domain-specific parameters. In our
NASA data, these ranges

(3.72 ~ a ~ 9.18) /\ (0.88 ~ b ~ 1.09) (2)

With the effort multipliers, off-nominal ranges (Le. {vl=l, 1=2,
h=4, vh=5, xh=6}) change the prediction by some amount. In the
special case of the nominal range (i.e. {n=3}), that amount is one;
i.e. the nominal range make no change to the prediction. Hence,
these ranges can be modeled as a straight line y = mx + b passing
through the point {x,y}={3, I}. Such a line has a y-intercept of
b = 1 - 3m. Substituting this value of b into y = mx + b yields:

'<Ix E {1..6} EM, = ma(x - 3) + 1 (3)

where ma denotes the effect of effort multiplier a on ejJon.
The effort multipliers form into two sets:

IConsistency-checkable pre- conditions and post-conditions, but
not necessarily mathematical theorems.

Delirubon Low·end - { 1.2} MedIUm = {3.4 } H1g&end= {S.6}

Defect removal features
exCCutiOD- all procedures and tools used for testing none bas,c testing at UOIt! mtegratlonl sys· advanced test ora/ces. assertion
based tesbng terns level. baSIC IeSI data management checlang. model·based IeSbng
automated eg code analyzers. cODSlStency and syntax cbeckmg WIth compiler CompIler extensIons for statiC code formalIzed speclficabon and vert1i·
analysIS b'aceabllllY cbeckers. etc analySIs. BaSIC reqwrements and de· cation. model checking. symbohc

sIgn cODSlslency. traceability checlang. execUbon. preIpost condttion cbecks
peer revIeWS all peer group revtew actiVIties none well-defined sequence of preperabon. formal roles plues extenstye revIew

mformal assIgnment of revu:wer roles. cbeckhstsl root cause analySIs. cont·
IIDnmtal follow·up nual revtews. statlSbcal process con·

trol. user lOyolyement integrated
WIth life cycle

Scale factors'
Oex development DeXlbthty develupment process ngorously some gUldelmes. wluch can be relaxed only general goals defined

defined
pmat process matunty CMMlevell CMMIevel3 CMMievel5
prec precedentedness we have never built tbts land of somewhat new thoroughly flUDlltar

software before
resl 8JCllItecture or ruk resolunon few Interfaces defined or few nsk most mterfaces defined or most nsks all mterfaces defined or all nsks

elimmated eliminated eliminated
team team COhesIon very dtfficult mteraCbons basIcally co-operative seamless mteracbons

Effort multipliers
acap analyst capabIlity worst 15% 55% best 10%
acxp applicatiOns expenence 2 months I year 6 years
cplx product complelUty e.g. sllDple readlwnte stalements e.g use of sllDple tnterface widgets e.g performance-cntical emDecldecl

systems
data database SIze (DB bytes/SLOe) 10 100 1000
docu documentabon many hfe-cycle pbases not doeu· extensIve reporung for eacb hfe-

mooted cycle pbase
ltex language ana tool·set expenence 2montbs I year 6 years
pcap programmer capaI>t.l1ty worst 15% 55% best 10%
peon personnel contIDmty 48% 12% 3%

(% mmover per year)
plex p1atfonn expenence 2 months I year 6 years
pvol platform yolatlhty J..tL'm.On.~. ~",on~ .;WC~"

j~eqv.encTl of "maJor cha.nge.)
~ ~ ~

(re uenc 0 ",,,"or c an ell

rely reqwred rehabtllty errors are shgbt mconvOOJence errors are easily recoVeraDle errors can riSk buman hfe
rI\SC reqwrecl reuse none multiple program multiple product Imes
seed dtctated development deadhnes moved to 75% of Ibe no change deadhnes moved back to 160% of

scbedule original estimate ongmal esttmale
site mulb,slte development some contact: phone. mati someematl mteractlve multi-medIa
stor reqwred % of available RAM N/A 50% 95%
bme reqwrecl % of available CPU N/A 50% 95%
tool use of software tools edtt,code,clebug mtegrated with hte cycle

Figure 2: Features in COCOMO, COQUALMO, aDd THREAT.

L The positive effort EM features, with slopes m;i, that are
proportional to effort. These features are: cpix. data, docu.
pvol, rely, ruse, stor, and time.

2. The negative effort EM features, with slopes m;;:, are in
versely proportional to effort. These features are acap, apex,
ltex, pcap, peon. plex. sced , site, tooL

Based on prior work [2], we can describe the space of known tun
ings for COCOMO effort multipliers to be

(0.073 ~ m;i ~ 0.21)" (-0.178 ~ m;;: ~ -0.078) (4)

Similarly, using experience from 161 projects [2], we can say that
the space of known tunings for the COCOMO scale factors (prec,
flex, resl,team, pmat) are:

'rIx E {1..6} SF, = mb(x - 6)" (-1.56 ~ mb ~ -1.014) (5)

where mb denotes the effect of scale factor b on effort.
Note that the above ranges for the slopes were obtained by find

ing the average slope for each COCOMO attribute for both effort
multipliers and scale factors over the range of values of that at
tribute.

3.2 Defect Prediction with COQUALMO
COQUALMO has two core models, used three ways:

• The defect introduction model IS similar to Equation 1; Le.
settings to Figme 2's effort multipliers and scale factors map
to predictions about number of defects.

• The defect removal model represents how various tasks (peer
review, execution-based testing, and automatic analysis) de
crease the introduction of defects.

• The above two models are repeated three times for defects
introduction & removal for requirements, design, or coding.

COQUALMO follows the same convention as COCOMO for the
effort multipliers; Le. nominal values (n = 3) add nothing to the
predicted number of defects. As above, COQUALMO is:

'rIx E {1..6} EM, = me(x - 3) + 1

where me denotes the effect of c on defect introduction.
The effort multipliers and scale factors form two sets:

(6)

L The positive defect features, with slopes mt, that are pr0-

portional to the estimated introduced defects. These features
are flex, data, ruse, cplx, time, stor, and pvoL

rely- relY= re y- rely_ re y-
very low norrunal !ugb very
low !ugh

sced= very low 0 0 0 I 2
sced= low 0 0 0 0 I
seed- norrunal 0 0 0 0 0
seed=!ugb 0 0 0 0 0
seed= very hlgn 0 0 0 0 0

Figure 3: An example mk table

2. The negative defect features. with slopes m;;. that are 10-

versely proportional to the estunated introduced defects. These
features are acap. peap. peon. apex. plex, ltex. tool. site, sced,
prec, resi. team, pmat. rely. and docu.

The space of tunings for defect introductng features are·

{
0 :5 mt :5 0.112

reqmrements -0.183:5 m; :5 -0.035

{
0 < mt < 0.14

deS1gn -0.208:5 m;;-:5 -0.048

{
0 < mt < 0 140

codmg -0.19:5 m;;-:5 -0053

The space of tunings for defect removal features are:

"Ix E {1..6} SF, = md(x - 1)
reqmrements: 008:5 md :5 0.14

design: 0.1:5 md :5 0.156
codmg: 0.11:5 md :5 0.176

where md denotes the effect of d on defect removal.

(7)

(8)

3.3 THREAT: Predicting Effort and Schedu1e
Overrun

The THREAT model returns a heuristic estimate of the threat
of a schedule over run in the project. This estimation model is
dependent upon the COCOMO effort multipliers

Internally, THREAT contains dozens of tables of the fonn of
Figure 3. Each such table adds some "threat" value to the over
all project risk when multiplied by the effort multiplier values of
the corresponding COCOMO attributes. There are six major cate
gories: schedule. product. personnel, process. platfonn and reuse.
After the threat for each category is calculated. the sum is nonnal
ized to produce the final threat rating.

Figure 3 can be represented as an exponentially decaying func
tion that peaks in one corner of the risk table at a value of two. All
the tables peak at either a value of two or four. Since this model is
heuristic in nature, the exact height of the peak is not certain. When
we perfonn Monte Carlo simulations over THREAT, we vary the
height of the peak by a random factor 0.5 ~ x ~ 1 if the peak is
four, and 0.5 ~ x ~ 1.5 if the peak is two.

4. SEARCH ALGORITHMS
Having defined the internal space of our models, we now search

it A simulated annealer is used to sample that space and a back
select algorithm is used to rank feature ranges according to how
well they reduce effortl defects! threats.

4.1 Simulated Annealing
Monte Carlo algorithms randomly sample the space of possi

ble controllable model states. A Metropolis Monte Carlo algo
rithm [27] creates new states by small mutations to some current

funct~on sa(kmax)
s :~ so; e :- E(s) II In,tial state, energy.
sb :~ 5; eb :- e II In~t~al -best- solut~on

k :- 0 II Energy evaluat,on count.
wh,le k < kmax and e > emax II Loop

sn :- neighbour(s) II P'ck some neighbour.
en :- E(sn) II Compute ,ts energy.
if en < eb then II Is this a new best?

sb :- sn; eb :- en II Yes, save it.
if random() < PIe, en, temp(k/kmax))
then s :- sn; e :- en II Maybe jump

k :- k + 1 II One more evaluat,on done
return sb II Return best

Figure 4: SA pseudo-code: a new solution sn (with new energy
en) replaces the current solution if (a) it bas a lower energy or
(b) the acceptance predicate P endorses it. Only in the case of
(a) shouJd the new solution replaces the current best solution.

state. If a new state is "bener" (as assessed via an energy function).
it becomes the new currem state used for future mutations. Oth
erwise, a Boltzmann acceptance criteria is used toprobabilisticalJy
deCide to assess the new state: the worse the new state, the less
likely that it becomes the new current state. The algorithm is silent
on the mutation mechanism. For our experiments, we freeze ~ of
the features and randomly select ranges for the rest

In 1983, Kirkpatrick et.el. [20] proposed a modification that was
inspired by a procedure used to make the strongest possible glass.
Initially, glass is heated to allow atoms to move freely. The tem
perature is then slowly lowered such that the atoms can find the
stablest configuration with lowest energy. A simulated annealing
(SA) algorithm adds a "temperature" variable to the Boltzmann ac
cept criteria such that. at high temperatures. it is more likely that the
algorithm will jump to a new worst current state. This allows the
algorithm to jump out of local minima while sampling the space of
options. As the temperature cools, such jumps become less hkely
and the algorithm reverts to a simple hill climber.

With SA, bener solutions have lower "energy" so the fitness
function E is defined such that E ~ 0 and lower values are better.
For our purposes, we model effort (E f) as the distance to the origin
of the 3-D space With defects (De) and threats (Th):

(9)

Here x is a normalized value 0 < z-m,n(z) _< 1. Hence. , - maz(z) mln(z)
our energy ranges 0 ~ E ~ 1 and lower energies are better.

The acceptance criteria P for a new state is defined using the
current temperature T, the energy of the current solution (e), and
the energy of the new mutation (en):

pee, en, T) = e(e-en)/T (10)

T is defined to decrease as the stnlulator loops through k = 1 ... kmax
iterations. We use T = e-lOOok/k",a,".

Two advantages of SA are their impiemenkltion simplicity and
their ability to handle non-linear models:

• Implementation simplicity: Figure 4 illustrates the simplicity
of the algorithm. Memory IS only required for one current
solution (s), one new solution (sn) and one best solution (sb)
that stores the best solution seen at any time in the simulation.

• Non-linear models: Previously [7, II], we have applied SA to
non-linear JPL requirements models where minimizing the
cost of project mitigations can decrease the number of re
quirements achieved by that project. Hence, decreasing both

300

250

200
iii:

CD
150 0:::

~
100

50

0
400,000 700,000 1,000,000

Cost

Figure 5: Processing a JPL requirements model.

~
CD
C
~
W

0.1 ~--r---r---r----:
best --

001

0.001

k (number of simulations)

Fignre 6: Dots & lines are SA output from current & best solu
tion (respectively) after k simulations.

the cost and achieved requirements is a non-linear problem
that must trade between minimizing cost and increasing re
quirements coverage. The top-left line of Figure 5 divides
the behavior of the JPL requirements models before and af
ter simulated annealing. As shown below the line, iDitial
Monte Carlo sampling of the possible mitigations lead to a
large range of costs and benefits. Simulated annealing found
a set of mitigations that lead to the small cloud of solutions
above the line. Compared to the initial samples, these new
solutions had decreased cost, increased benefit (number of
requirements covered), and decreased variance (shrank the
space of solutions).

Two disadvantages of SA algorithms are their incompleteness and
the complexity of their solutions:

• Incompleteness: In our domain, we have some evidence that
the incomplete nature of the heuristic SA search is not a ma
jor problem. Figure 6 shows a sample run of our SA tool
running on our prediction models for K = 10,000 simula
tions. As k increases for 1. .. 10,000, it becomes less and
less likely that a better best has been missed. Hence, we run
our simulations for ten times the period it takes for best to
stabilize (at k :::: 1000).

• Solution complexity: Simulated annealers offer constraints
to all controllable features. Often this is an over-constramed
solution since, in many domains, a repeated empirical result
is afeature subset selection effect; i.e. models that constrain
M variables perform just as well, or better, than models that

constrain N vanables (M « N) [12,21]. For example, Ko
havi [21] studied some machine learners to find that using
just 19% of the available features increased prediction ac
curacy by just 2.14% (on average). For another example,
when feature subset selectIOn was applied to the JPL require
ments model of Figure 5, we found that up to ~-rds of the
features can be left unconstrained, Without effecting the con
clusions [II].

In terms of the goal of this paper, exploring feature subset se
lection is very important. Before we can remove non-essential fea
tures, we must first rank them according to their effectiveness. As
we shall see, this ranking will be insightful to the task of assessing
the relative value of new ASE tools and other methods for reducing
effort! defects! threats.

4.2 Support-Based Bayesian Ranking
STARI ranks the features ranges seen in K runs of a simulated

annealer by dividing the K runs into:

• Best: those aSSOCiated with the BEST% solutions (i.e. those
with the BEST% least energy);

• And the rest (i.e. the other 100-BEST% of solutions).

It then computes the probability that a range is found in best. using
Bayes' Theorem. Informally, the theorem says next = old * new
i e. what we'll believe next comes from how new evidence effects
old beliefs. More formally:

P(HIE) = P(EIH)P(H) / P(E) (II)

i.e. using evidence E and a prior probability P(H) for hypothesis
H E {best, rest}. The theorem calculate a posteriori probability
P(HIE). Simple Bayes classifiers are often called "nitive" since
they assume mdependence of each feature. While this assumption
Simplifies the implementation (frequency counts are required only
for each feature), it is possible that correlated events are missed by
this "nitive" approach. Domingos and Pazzani show theoretically
that the mdependence assumption is a problem in a vanishingly
small percent of cases [10]. This explains the repeated empirical
result that, on average, seemingly naive Bayes classifiers perform
as well as other seemingly more sophisticated schemes (e.g. see
Table I in [10]).

When applying the theorem, likelihoods are computed from ob
served frequencies, then normalize to create probabilities (this nor
malization cancels out P(E) in Equation II, so it need not be com
puted). For example, after K = 10,000 runs divided into 1,000
lowest 10% best solutions and 9,000 rest, the range rely = vh
might appears 10 times in the best solutions, but only 5 times in
the rest. Hence:

E (reply = vh)

P(best) 1000/10000 = 0 1

P(rest) 9000/10000 = 0 9

freq(EJbest) 10/1000 = 0 01

freq(Elrest) 5/9000 = 0.00056

hke(bestJE) freq(EJbest) P(best) = 0 001

hke(restJE) freq(EJrest) . P(rest) = 0 000504

P(bestIE)
hke(bestJE)

(12) = 0.66
hke(bestl E) + hke(restIE)

Previously [6] we have found that Equation 12 is a poor ranking
heuristic since it IS distracted by low frequency evidence. For ex
ample, note how the probability of E belonging to the best class is
moderately high even though Its support is very low; i.e. P(best I E) =
0.66 but freq(Elbest) = 0.01.

To avoid such unreliable low frequency evidence, we augment
Equation 12 with a support term, Support should mcrease as the
frequency of a range mcreases, i.e. hke(xlbest) is a valid support
measure. STARI hence ranks ranges via

P{bestIE) * support{bestIE) = l'ke{xlbest) + lIke{xlrest) (13)

4.3 The STARt Algorithm
To apply Equation 13, STARI runs in six phases. In tenns of

standard machine learning theory, step 1 generates a traimng set;
steps 2.3.4 do some generalization; and step 5 tests the learned the
ory on data not seen during training.

1. SAMPLE: To sample the ranges from the models. STARI runs
the simulated annealer KI = 10,000 times.

2.. DISCRETlZE: The data seen in the KI samples is then dis
cretized into D = 10 bins. Discretization converts a con
tInuous range into a histogram with n break points bl ••• bn

where ('IIi < j : b, :S b]). After discretization. many obser
vations can fall into the same range between b, and b,+1 at
frequency counts c.. This study used equal width discretiza
tion; i.e.

3. Cl..4.SS1FY: The ranges are then classified into those seen 10

BEST% best or rest.

4. RANK: The ranges are then ranked in increasing order by their
probability*support (Equation 13) of appeanng in the best
outcomes;

5. PRUNE: STARI then runs K2 experiments with the models
where the top ranked ranges LX ranges are pre-set and the
remaining ranges can be selected at random. In terms of the
business case for automated sofrware engineering tools. this
step is crucial since It would rank new ASE tools alongside
other methods.

6. REPORT: STARI returns the LX ranges that produce the least
effon, defects. and threats.

To run our experiments. we had to apply our engineering judg
ment to set the parameters:

KI = 10,000, K2 = 10,000, D = 10, BEST = 10

Initially. we planned experiments that varied these parameters. as
well as trying other discretization policies. However. our initial
results were so promising (see below) that we are not currently mo
tivated to explore other parameter settings (such an exploration is
planned for future work).

s. EXPERIMENTS
STARI was tested on the two case studies of Figure 7:

• OSP: The Orbital Space Plane GNe prototype (a 1990s NASA
system). OSP was an early prototype for OSP2.

• OSP2: the guidance and navigation control system of a cur-
rent NASA launch vehicle. under development

In Figure 7. values arejixed while ranges represent a space of op
tions. In the sequel. this observation will be Important: OSP2 con
strains most of its features to fixed values while OSP allows more
variation in feature ranges.

ranges values
project feature low IUgh feature serung

prec I 2 data 3
OSP: flex 2 5 pvol 2

Orbttal resl I 3 rely 5
space team 2 3 peap 3
plane prnaI I 4 plex 3

stor 3 5 SIte 3
ruse 2 4
docu 2 4
acap 2 3
peon 2 3
apex 2 3
llex 2 4
1001 2 3
seed I 3
cplx 5 6
KSLOC 75 125
prec 3 5 Hex 3

OSPZ prnaI 4 5 resl 4
doeu 3 4 team 3
It ex 2 5 ume 3
seed 2 4 slOr 3
KSLOC 75 125 data 4

pvcl 3
ruse 4
rely 5
acap 4
peap 3
peon 3
apex 4
plex 4
1001 5
eplx 4
SIte 6

F"JgUre 7: Two case studies.

SA was run K I times and ranges not mentioned 10 Figure 7 se
lected at random from Equations 2.4.5,7.8 and §3.3. The selected
controllable ranges were ranked with Equation 13:

• By controllable features. we mean the kinds of changes a
project manager could make to her project; i.e. Figure 2.

• Uncontrollable features are features like the correlation be
tween, say. analyst capability and development effort; i.e. the
internal model parameters of Equations 2,4,5.7.8 and §3.3.

The list at the bottom of Figure 8 shows how Equation 13 ranked
OSP project decisions. These ranks correspond to the X-axis of the
plots at the top of that figure. "Median" plots the 50% percentile
of the defectl effortl threat values seen after imposing ranges LX
(and selecting all other ranges at random). "Spread" shows the
75%-50% percentile range. These plots are V-shaped:

• On the left-hand-side of each plot. poor results were seen
after applying too few constraints. That is. models perform
poorly if we do not control them enough.

• On the right-hand-side of each plot. poor results were also
seen. In terms of Equation 13. these are the ranges with
low support and low probability of belonging to best class.
Hence. it is not surprising that applying these superfluous
constraints was counter-productive .

The ranges from new ASE tools (see the "6" symbol) are ranked
at X=31. 37. 40. 41. These rankings can assessed using the mini
mum points in the median plots:

• At X ~ 15 effort and threat are at their global minimums
while defects is at a local minimum.

• The global minimum for defects can be see at X = 33. At
this point. defects are 30% less than at X = 15. However.

co
'Ii ,.
c

~
UJ

co

~
.J;:
I-

3000
2500
2000
1500
1000
500

0
0 10 20 30 40 50 60 70

0 10 20

!~~-l
0 10 20 30 40 50 60 70

X feature = range
I acap-3
2 cp!x=S
3 tool =3
4 apex = 3
S peon=3
6 ruse=2
7 l1IIIe=3
8 doeu=2
9 11",,=4

10 pre<: = 2
11 team = 3
12 stor = 3
13 resl=3
14 seed=3
IS pmat=4
16 team = 2
17 pre<: = I
18 11",,=5
19 seed=2
20 pmat= 3
21 peon =2
22 stor = 4
23 1Iex.=4
24 apex = 2
2S docu = 3
26 lrex = 3
27 res! = 2
28 1001 = 2
29 ume=4
30 ruse = 3
31 exCCUUon IesbDg aDd tools = 6 ~ ~
32 peer reviews = S
33 res! = I
~ cp!x=6
3S peer revieWS = 6
36 aulmDal£d analysis = 2
37 eucutioo teslUlg and tools = 5 ~.
38 acap= 2
39 pmat= 2
40 aolDlDaled analysis = S ~~
41 automated analysis = 6 ~.

42-62 not sbown (for space reasons)

F"JgUI'e 8: OSP results

this lower defect level is achieved via doubhng effort from
1000 to 2000. months.

Figure 8 shows that OSP needs some tool support. The third
highest ranked range (X=3) is for tool = 3; i.e. medium range tool
use, This corresponds to some support for edit, code, and debug
moderately integrated with processes and methods and reuse.

350
300 ., 250

1i 200

~ 150
100
50

0
0

700
600 median --
500 ---+---

~ 400 ,g
300 UJ
200
100

0
0 5 10 15 20 25 30 35

07.----r----~--_,----~----r_--_r--~
06 ____ ~I\
05 ,+,
04 +' '
g~ ++ \ ! " ... I I I I

O~--~~~~--~--~~--~--~----~

median --
SfJiead =r--

o 5 10 15 20 25 30 35

X feature = range
I oeu=3
2 pmal=S
3 Ilex=S
4 pmal=4
5 seed=3
6 prec=S
7 docu=4
8 Irex=4
9 prec=4

10 seed = 2
11 aotomaled analysIS = 6 ~~
12 sced=4
13 pre<: = 3
14 execUbon IeSbDg and tools = S ~~
15 exec1lll0n IeSbDg and tools = 6 ~~
16 peer reviewS = 4
17 automated analysis = 4
18 peer revIeWS = S
19 execution IeSbDg aDd tools = 4
20 peer revIeWs = 2
21 antoma1ed analYSIS = S ~~
22 peer reviewS = 6
23 peer reviews = 3
24 execUbon IesbDg and lools = 2
2S 1rex=3
26 antomaled analYSIs = 3
27 antomaled analysIS = 2
28 execUbon IeSting and tools = 1
29 execUbon IesbDg aDd tools = 3
30 peer reviews = 1
31 aulOmaIed analysIS = 1
32 ltex=2

Figure 9: OSPl results.

However, Figure 8 makes only a weak business case for more
extensive tool support. Automated a7llJlysis is ranked at positions
40,41 and is not required to reach the minimums of the Figure 8
plots. On the other hand, if management has the budget to support
the X=33 effort, then using extremely high range execution-based
testing and tools is strongly recommended

Clearly, if the project is cost-adverse, then methods other than
new ASE tools are recommended However, the OSP business
users should be aware of the consequences of this policy. Applying
only decisions X = 1..15 will produce a product costing half of
the previous recommendation, but with 30% more defects.

While new ASE tools are optio7llJl for OSP, they are essentiDl for
OSP2. Figure 9 shows the OSP2 results. Minimum defects were

achieved at X=17 vIa a combination of:

• technical features: project decisions from the range 1 ~
X ~ 17use three of our four new ASE tools (see X=ll,14,15).

• and sociological features such as docu. use of documenta
tion; pmat, process maturity; ltex, language & tool expe
nence; and controlling seed schedule pressure and the prec
precedentedness of the project.

Hence, the argument quoted in the Introduction that "socIOlogy
beats technology" should be corrected to "sometimes. socIology
can use more technology". For example, In Figure 9, only soci
ological features are applied for 1 ~ X ~ 10. Observe how, at
X=ll, the largest drop In defects was achieved after applymg ex
tremely high range automated analysis.

Two other noteworthy features of Figure 9 are:

• The U-shapes seen in all the OSP results of FIgure 8 only
appears in OSP2's defect plot. The medIan effort and threat
curves for OSP2 are essentially flat. As seen In Figure 7,
OSP2 constrains more features than OSp. Hence, at least for
OSP2 effort and threats, STAR I could not change those me
dian values.

• On the other hand, the flatness of the effort and threats plots
means that they are stable across a WIde range of project set
tings and mternal variations to the prediction models. For
example, according to this study, the effort for OSP2 has
50% to 75% range of 600 to 900 person months (median plus
spread). Such stabilIty is very useful for project planning.

6. EXTERNAL VALIDITY
One benefits of STARl's analysis is a reduction In sampling bias.

Conclusions reached from predIction models tuned to local data are
biased by that tuning. The conclusions reached here, on the other
hand, are stable over a large space of possible tuning biases.

Another issue is model bias. The above conclusions are drawn
from the internal space of some software prediction models. Clearly,
if those predictions models are wrong, then these conclusions are
also wrong, For example, the reader might believe that this analysis
has overlooked the impact of features nat mentioned in Figure 2.

One rrutigation for this risk IS to use the best available models.
The models used here have been extensIvely validated:

• Chulani et.a1. [4] reports a one study with a Bayesian tuning
algorithm using 161 projects. After tuning, a cross-validation
study showed that COCOMO produced effort estimates that
are within 30% of the actuals, 69% of the time.

• Studies WIth the COCOMO-81 project database have shown
that the THREAT index correlates with well with the "l<0~~~.
(KOSI= thousand of delivered source lines of code). This
result is consistent with the the base premise of THREAT;
i.e. bad management can delay software deliVery.

• COQUALMO was developed using extensive feedback from
the COCOMO affiliates group. This group comprises dozens
of companies, that have donated 161 data sets, that meet each
year to discuss improvements to the current set of models2

•

Another threat to external validity are the biases of the authors.
Given the intended publication venue, and the authors' hIstory of
publishing on automatic SE tools, perhaps this study is inherently
biased in favor of new ASE tools.

To enable other researchers to question our biases, we take care
to make our case studies fully reproducible. Reproducibility IS an

2http ://sunset.usc.edu/events/2006/CIIForum/

Important methodological principle in other disciplines since It al
lows a community to confirm, refute. or even improve prior reSUlts.
In our view. in the field of software engineering, there are all too
few examples of reproduced •. and extended, results. Accordingly,
an appendix to thIS paper details how to install and nm the software
required to repeat the OSP&OSP2 case studies. Such reproducibil
Ity allows other researchers to check if our advocacy of automated
tools biases our conclusions.

Yet another threat to external validity is our evaluation bias.
Tacit in Equation 9 is an assumption that redJJctions in threat. effort,
and defects are of equal value. This may not be the case, especially
for safety critical software where reducing defects has top pnority,
regardless of the cost.

Having documented this problem, we now ignore it. This paper
has shown that there exists at least one evaluation bias under which
ASE tools are essenual to at least one project For this paper, that
will suffice.

The final threat to external validity IS STARI's search bias. There
are 2N poSSIble combinations of N ranges but STARl's PRUNE
operator only explores N of them. Hence, in theory, the rankings
of Figure 8 and Figure 9 may not accurately reflect the true relative
effectiveness of the ranges.

There IS some theoretical and empirical evidence that this search
bias is not a major Issue. Clark has conducted a theoretical study
concluding that Equation 13 offers the wrong rankings in a very
small percent of cases [6]. To check his theory, Clark ran numerous
experiments comparing (a) the estimated "best" combinations of
ranges found by Equation 13 and the (b) actual best combinations
found by generating combinations, then trying each one against the
training data. In all those expenments, Clark only found one minor
case where rankmg(a) oF rankmg(b).

Dark's results explains the U-shape seen in the above plots. If
the rankings of Equation 13 were accurate then, initially, perfor
mance should Improve as an increasing number of effective ranges
are applied. Eventually we run out of the effective ranges and start
applying ranges with low probability and support of belonging to
the best class. After that point, performance should degrade. In the
IDIddle of these two extremes would be a low energy valley where
the most effective constraints have been applied. Such U-shape
performance plots were seen m Figure 8 and Figure 9.

Clark's analysis is too long to present here. However, a small
simulation illustrates his style of argument. STARl's PRUNE 0p

erator ranks N ranges in the order 1,2, 3 .. N. Consider a greedy
search that returns the first 1, 2, 3 ... X ~ N of these ranges. Such
a search grows X till some superset 1.. Y performs worse the subset
LX (X < Y). For this greedy search to be optimal, then longer
combinations l..Y can't be more effective than shorter combina
tions LX.

This condition can be checked via SImulation. Consider the case
of N = 100 ranges classified into 1000 best cases and 9000 rest
cases; i.e. P(best) = 10%, and P(rest) = 90%. A simula
tor can randomly generates N=IOO pairs {a, b} for F(albest) and
F(alrest) (respectively) where

l~a~1000"I~b~9000

After Equation 13 ranks the pairs, the simulator picks two combi
nations LX and 1.. Y where 1 ~ X < Y ~ 100. According
to Equation 12, 98% of time, the shorter combination has a higher
probability than the longer one of being best. That is, STARl's
linear search over Equation l3's rankings I to N will not miss in
teresting combinations.

7. RELATED WORK
This report is somewhat at odds WIth a standard IEEE ASE pa

per. For example, there many reports at this conference of IDnova
tive tools that find defects missed by other methods Such reports
offer strong support for the utility of new ASE tools. However, note
that they assess the new ASE tools soley in terms of defect detec
tion. In the paper, on the other hand, we have tried to assess new
ASE tools in the terms of multiple success cnteria (defect removal,
effort. threats).

This paper was motivated by a lack of results regarding the rela
tive merits of new ASE tools versus different methods. To be fair,
apart from Figure I, the general software engineering literature is
weak on the relative merits of any set of methods. We recently
reviewed the (approx) 100 V&V methods offered by the SE Iiter
ature3. While some evidence was offered for the value of general
techniques4 there was very little precise evidence on the ments of
a particular tool. Further, there was almost no compansons of the
relative effectiveness of pairs of methods applied to the same task.

Lacking results from the literature, we turned to model-based
methods. This work is an example of the Harman's search-based
software engineering (SBSE) paradigm [5,13] where SE acttvities
are recast as optImization problems. STARI searches COCOMO
family software prediction models. Numerous alternate models
have been developed by the software prediction and modeling com
munity5. Some of these are speCIalized models are built to serve
the needs of a particular software development organizanon. The
COCOMO family of models, on the other hand, were built to gen
eralize across the community of the COCOMO affiliates.

Historically, this work was inspired by Josephson and Chan
drasekaran's work on exploration of large design spaces [18]. In
1999, Josephson reviewed our earliest prototype, which was taking
too long to terminate. His proposed solution, (try some stochastic
sampling) eventually grew IDto STARI.

We have recently become aware that STARI's Bayesian rank
ing methods is analogous to Ruinstein's cross-entropy method [28].
Cross-entropy is applied during simulated annealing to speed up
convergence to best solutions (by avoiding rare events). In future
work, we will explore more the connection of our Bayesian ranking
to cross-entropy.

Prior related work by this team includes:

• The TARI minimal contrast set learner, reported at ASE 2000,
explored a Monte Carlo simulations of the COCOMO and
THREAT models [26].

• TAR2 [23], an optimized version of TAR1, was applied at
ASE 2002 [24] and RE'02 [II] to different software predic
tion models.

This paper reports numerous improvements over this prior work:

• Previously, we worked on a single prediction model or pairs
of predictive models. This paper IS the first to study effort
and defects and threats in one combined analysis.

• This prior work did not adjust the parameters internal to the
prediction model. This new work. on the other hand, makes
extensive adjustments to those parameters.

• Previously, our learners connnented on just a small subset of
the ranges. This new work ranks all the ranges, allow man
agers to perfonn their own detailed analysis of the relative
effects of different project decisions.

3WaIlace and Fujii's definitions of V &V [29]; the IEEE 2004 stan
dard on V & V [16]; NASA's recommended V & V practices [17]
4E.g. improving software maturity decreases rework [19]
Shttp://www.~csp-conferences.org/icsp2007/

• This new learner runs much faster than the pnor work. STAR I
generated the OSP and OSP2 results in less than a minute. A
similar range ranking, by TAR I , would requtre an overnight
run [26]. TAR2 (and a later version, TAR3) run much faster
but even those optimized systems would require 20 to 30
mIDutes to generate featttre range ranktngs.

• Not only does STARI search faster but it explores a larger
space. As 'far as we know, this is the first report of an exten
SIve exploration of the space of tunings internal to COCOMO
family prediction models.

8. DISCUSSION
We defined "new ASE tools" to be:

automated analysis E {5,6} V

execution-based testing and tools E {5,6}

Making the busIDess case for new ASE tools is complicated by
an anti-automation bias ("sociology beats technology") and insuf
ficient data for local tuning of prediction models.

We hypothesized that precise local tunings are not required to
assess the relative merits of new ASE tools over other methods
The space of tunings IS well known- we just need to find what
conclusions are stable within that space. SImulated annealing was
used to sample that space and generate a set of 10% best and 90%
rest solutions The N ranges in those solutions were ranked using
a support based Bayesian method. Experiments were performed
where the top X ~ N ranged ranges were set and COCOMO,
COQUALMO, and THREAT were allowed to randomly select the
remaining ranges.

By varying the size of X, it was possible to find project deci
sIons that most minimized effort! defect! threat. Inspecting those
decisions for two NASA systems, we found that new ASE tools
were optional tn one (OSP) and essential in the other (OSP2).

Any generalIZation based on just two case studies should be treated
with caution. The follow observations should therefore be checked
on other projects:

• Recall that (a) OSP was an early prototype for OSP2 and
that (b) new ASE tools were optional for OSP but essential
for OSP2. That is, project maturity may be a selector for the
successful use of new ASE tools.

• In Figure 8 and Figttre 9, only very high and extremely high
range automated analysis or execution-based testing and tools
were used to minimize effort or defects or threats. Lower
range usage of these tools was never useful That is, when
using new ASE tools, use them thoroughly or nat at all.

• In our case studies augmenting sociological decisions with
new ASE tools can lead to the greatest reduction in effort!
defects! threats. That is sociology does !1!!!. beat technology
and technology can compliment sociology.

• When this study could make the business case for new ASE
tools, a pre-condition for that case was the inclusion of soci
ological decisions (e.g. about process maturity and sched
ule pressure) along with the new ASE tools. Hence ASE
researchers need to study both software development tech
nology and sociology.

Our conclusions are project-specific but the method of generating
them IS general to any project that can be described in terms of
the Figure 2 table. An appendix of this paper describes how to
download, install, and use STARI to find the most important fea
ture ranges that reduce effort I defects I threats for projects.

9. REFERENCES
[I] B. Boehm. Software Engineering Economics. Prennce Hall, 1981.
[2] B. Boehm. Safe and sunple software cost analysIs. IEEE Software.

pages 14-17. September/October 2000. Available from
http://www.computer.org/certificat10n/beta/
Boehm_Safe .pdf.

[3] B. Boehm. E. HoroWItz. R. Madachy. D. Relfer. B. K. Oark,
B. Sleece. A. W. Brown. S. Chulani. and C. Abts. Software Cost
Estimation with Cocomo II. Prentice Hall. 2000.

[4] S. Chulani. B. Boehm. and B. Steece. Bayesian analysIs of empuical
software engineenng cost models. IEEE Transaction on Software
EngineenlUng. 25(4). July/August 1999.

[5] l. Oarlt, J. J. Dolado. M. Harman. R. M. Hierons. B. Jones.
M. Lumkm. B. Mitchell. S. Mancondis. K. Rees. M. Roper. and
M. Shepperd. Reformulaong software engineering as a search
problem. lEE Proceedmgs on Software. 150(3):161-175,2003.
Avadable from http:
Ilwww.brunel.ac.uk/-csstrmh/papers/sbse.ps.

[6] R. Oark. Faster treattnent leammg, Computer SCience, Portland
State Uruverslly. Master's theSIS, 2005.

[7] S. L. Comford, M. S. Feather, J. Dunphy, J. Salcedo, and T. Menzies.
Optunizing spacecraft design opnmization engine development:
Progress and plans. In Proceedings of the IEEE Aerospace
Corrjerence, Big Sky, MonltWl, 2003. Avadable from
http://menz1es.us/pdf/03aero.pdf.

[8] T. DeMarco and T. LIster. Peopleware: producnve projects and
teams. Dorset House PubhshIng Co .. Inc .. New York, NY. USA.
1987.

[9] S. Devnani-Chulam. BayesUln Analysis of Software Cost and Quality
Models. PhD thesiS. 1999. AV81lable on-hoe at
http://c1teseer.1st.psu.edu/
devnan1-chulani99bayes1an.html.

[10] p. Dommgos and M. J. Pazzaru. On the opnmality of the simple
bayesian classifier under zero-one loss. MachUll!. Learning,
29(2-3):103-130,1997.

[II] M. Feather and T. Menzies. Convergmg on the optunal attainment of
requirements. In IEEE Jomt Conference On Requirements
Engineering ICRE'02 and RE'02, 9-13th September, UlUvemty of
Essen, GeTmllllY. 2002. AV81lable from
http://menzies.us/pdf/02re02.pdf.

[12] M. Hall and G. Holmes. Benchmarlung attribute selecnon techniques
for discrete class data rnuung.IEEE Transacnons On Know/edge And
DaJa Engineering, 15(6):1437- 1447,2003. Available from
http://www.cs.waikato.ac.nz/-mhall/
HallHolmesTKDE .pdf.

[13] M. Harman and J. Wegener. Getting results from search-based
approaches to software engmeenng. In ICSE '04: Proceedings of the
26th International Conference on Software Engmeering, pages
728-729, Washington, DC. USA, 2004. IEEE Computer Society.

[14] K. Havelund and T. Pressburger. Model checkmuava programs
using java pathfinder. International Journal on Software Toolsfor
Technology Transfer. 2(4). April 2000. Avmlable from
http://ase.arc.nasa.gov/v1sser/jpf/JPfl.ps.gz.

[15] G. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineenng, 23(5):279-295, May 1997.

[16] IEEE-I0l2. IEEE standard 1012-2004 for software verificaoon and
validaoon, 1998.

[17] B. Jackson, J. Gnggs, K. Costello, and D. Solomon. Systems level
defiDinon oflv&v, 2006. NASA document IW 09-1, last revised
March 16,2006, aV3llab1e on-hoe at http://www .nasa. govl
centers/ivv/pdf/170825main_IVV_09-1.pdf.

[18] J. Josephson. B. Chandrnsekaran, M. Carron, N. Iyer, B. Wasacz, and
G. RlZzom. Exploration of large design spaces: an architecture and
preliminary results. In AAAl '98, 1998. Available from
http://www_cis_oh1o-state.edu/-JJ/Explore.ps.

[19] J. KIDg and M. Diaz. Haw CMM unpacts quality. productivity,
rework, and the bottom hoe. CROSSTALK, March 2002. AV81able
fromhttp://www.stsc.h111.af.mil/crosstalk/
2002/03/diaz .html.

[20] S. Kirkpatnck, C. D. Gelatt, and M. P. Vecchio Optimizanon by
SImulated anneahng. SCience, Number4598, /3 May /983, 220,
4598:671-680, 1983.

[21] R. Kohavi and G. H. John. Wrappers for feature subset selection.
ArtlficiallnteUlgence, 97(1-2)'273-324, 1997.

[22] T. MeDZles, Z. Chen, J. Hlhn. and K. Lum. Selecnng best pracnces
for effon estlmaoon.IEEE Transactions on Software Engmeenng,
November 2006. AV81lable from
http://menz1es.us/pdf/06coseekmo.pdf.

[23] T. MellZlCs and Y. Hu. Dw mmmg for very busy people. In IEEE
Computer, November 2003. Available from
http://menz1es.us/pdf/03tar2.pdf.

[24] T. MeDZles. D. Raffo. S. on Setarnanit, Y Hu, and S. Tootooman.
Model-based tests of tnnsms. In Proceedings of IEEE ASE 2002,
2002. AV81lable from
http://menz1es.us/pdf/02truisms.pdf.

[25] T. Menzies and J. RIchardson. Xomo: Understandmg development
opnoDS for autonomy. In COCOMO forwn, 2005, 2005. Avadable
from
http://menz1es.us/pdf/05xomo_cocomo_forum.pdf.
For more det81ls, see also the longer technical repon
http://menz1es.us/pdf/05xomolOl.pdf.

[26] T. Menzies and E. Smsel. Pracncallarge scale what-If quenes: Case
studies With software nsk assessment. In Proceedings ASE 2000,
2000. Avadable from http://menues . us/pdf/OOase_pdf.

[27] N. Meuopohs, A. Rosenbluth, M. Rosenbluth, A. Teller, and
E. Teller. J. Chern. Phys, 21:1087-1092,1953.

[28] R. Rubinstein and D. Kroese. The Cross-Entropy Method: A Urufied
Approach to Combinatorial Optimization, Monte-Carlo Simulation,
and Machine Learnmg. Spnnger-Veriag, 2004.

[29] D. Wallace and R. FUJIi. Software venficaoon and vahdanon: An
overnew.IEEE Software, pages 10-17, May 1989.

APPENDIX

A. OBTAINING AND USING STARt
These instructions should support a LINUX and CYGWIN m

stall of STAR!. In the event oftechrucaJ difficulties, please contact
the first two authors (Menzies or Elrawas).

bash -1
(, -d ·SHOME/bin" J && mkdir SHOME/b1n
export PATH-"SPATH:SHOME/b1n"
wget http://unbox.org/wisp/tags/STAR/1.O/STAR_1.O.zip
unZ1p STA~l.O.zip
make # requires gee
cd -/STAR
cd eg
./1 I tee osp2.out I less
./2 I tee osp.out I less

To run STARI on projects other than OSP or OSP2:

• Copy and edit one of the projects files in
-/STAR/STAR-projects.

• Note that you will have to edit both a xxanges and x.values
file.

• Then copy and edit (e.g.) - /STAR/eg/l to point to your
edited project details.

End of File

