Force Limited Vibration Testing

Dr. Terry Scharton (Retired)
Apex, NC

Dr. Kurng Y. Chang
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California
Part I (Scharton) -- Rationale and Theory

- Introduction and Historical Perspective

- Force Limiting Rationale

- Derivation of Force Limits

- Force Limits Validation from Flight Measurements
Part II (Chang) - - Instrumentation and Testing

- Test Instrumentation and Supporting Equipment
- Force Limited Random Vibration Test Procedure
- Force Limited Test Lessons Learned
- Examples of Force Limited Vibration Testing
Introduction and Historical Perspective

- The history of the vibration over-test problem, impedance simulation work, and previous force control efforts will be summarized.

- Problems with response limiting and accelerometer measurements of the static C.G. acceleration will be discussed.

- The practice of enveloping the field acceleration spectra and the consequences of ignoring the vibration absorber effect at test item resonances will be described.
A two degree-of-freedom coupled vibration system vs. a single degree-of-freedom base excitation case will be used to demonstrate the differences in the responses (with or without force limiting) due to external force or base excitation.
Derivation of Force Limits

- The concept of effective mass will be explored from both theoretical and empirical viewpoints.

- Two methods of deriving force limits using simple and complex two degree-of-freedom models will be described.

- Furthermore, a simple, semi-empirical method that requires only the acceleration specification and data from a low level pretest to determine the apparent mass of the test items will also be presented.
The prediction of force limits from the above methods will be illustrated by comparisons with analytical models and with interface force data measured at equipment interfaces in ground tests and from actual flight measurements.

The NASA Handbook on force limited vibration testing NASA-HDBK-7004B will be discussed and presented to the participants. The handbook is available at: http://standards.jpl.nasa.gov/jpl-nasa/
Goal of Vibration Testing

➢ The primary goal of vibration tests of aerospace hardware is to identify problems that, if not remedied, would result in flight failures.

➢ This goal can only be met by implementing a realistic (flight-like) test with a specified positive margin. In most cases, the goal is not well served by traditional acceleration-controlled vibration tests that indeed screen out flight failures, but in addition may cause failures that would not occur in flight.

➢ The penalty of over testing is manifested in design and performance compromises, as well as in the high costs and schedule overruns associated with recovering from artificial test failures.
It has been known for 30 years that the major cause of over testing in aerospace vibration tests is associated with the infinite mechanical impedance of the shaker and the standard practice of controlling the input acceleration to the frequency envelope of the flight data. This approach results in artificially high shaker forces and responses at the resonance frequencies of the test item.

To alleviate this problem it has become common practice to limit the acceleration responses in the test to those predicted for flight, but this approach is very dependent on the analysis that the test is supposed to validate. Another difficulty with response limiting is that it requires placing accelerometers on the test item at many critical locations, some of which are often inaccessible.
Advent of Force Limiting

- The advent of piezoelectric triaxial force gages has made possible an alternative, improved vibration-testing approach based on measuring and limiting the reaction force between the shaker and test item.
- Piezoelectric force gages are robust, relatively easy to install between the test item and shaker, and require the same signal conditioning as piezoelectric accelerometers commonly used in vibration testing.
- Also vibration test controllers now provide the capability to limit the measured forces and thereby notch the input acceleration in real time.
- To take advantage of this new capability to measure and control shaker force, a rationale for predicting the flight-limit forces has been developed, validated with flight measurements, and applied to many flight projects during the past fifteen years.
- Force limited vibration tests are conducted routinely at the Jet Propulsion Laboratory (JPL) and also at several other NASA Centers, Government laboratories, and many aerospace contractors.
Basic Equations (1)

Vibration test specifications are generally based on free interface acceleration spectra and do not account for any influence of the attached payload. Scharton et al. have derived a theoretical basis for limiting vibration test levels using Norton’s and Thevinin’s equivalence theorems. The basis for limiting or notching vibration test levels is expressed by equation 1:

\[\frac{A}{A_0} + \frac{F}{F_0} = 1 \]

where \(A_0 \) is the free interface acceleration and \(F_0 \) is the blocked force. The blocked force can be computed as the product of \(A_0 \) and the effective interface impedance. In the case of random vibration, \(A_0, F_0 \) are represented by power spectral densities. The blocked force spectral density is then computed
Basic Equations (2)

For sinusoidal testing, the interface force is expressed as a scaled value of A. \(F = Z_{P/L} \times A \). The notched input acceleration that satisfies equation 1 can then be calculated:

\[
A = \left[\frac{Z_{I/F}}{Z_{I/F} + Z_{P/L}} \right] A_0
\]

The magnitude of the notch can be calculated, in dB as:

\[
\text{Magnitude of Notch (dB)} = 20 \times \log \left[\frac{Z_{I/F}}{Z_{I/F} + Z_{P/L}} \right]
\]
References on the Foundation of Force Limiting (1)

Force Limit Specifications

- Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface.

- In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification.

- Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments.

- Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test data.
Semi-empirical Force Limits (Sine)

The semi-empirical approach to deriving force limits is based on the extrapolation of interface force data for similar mounting structure and test items. A general form for a semi-empirical force limit for sine or transient tests follows from Reference 4.

\[
F_s = C \cdot M_o \cdot A_s \quad , \quad f < f_o
\]

\[
F_s = C \cdot M_o \cdot A_s \cdot (f_o/f) \quad , \quad f \geq f_o
\]

(1a)

where \(F_s\) is the amplitude of the force limit, \(C\) is a dimensionless constant which depends on the configuration, \(M_o\) is the total mass of the payload (test item), \(A_s\) is the amplitude of the acceleration specification, \(f\) is frequency, and \(f_o\) is the frequency of the primary mode, i.e. the mode with the greatest effective mass.
Semi-empirical Force Limits (Random)

The form of Equation (1a) appropriate for random vibration tests is:

\[
S_{FF} = C^2 M_o^2 S_{AA} \quad , \quad f < f_o
\]

\[
S_{FF} = C^2 M_o^2 S_{AA} (f_o/f)^2 \quad , \quad f \geq f_o
\]

(1b)

where \(S_{FF} \) is the force spectral density and \(S_{AA} \) is the acceleration spectral density.

Comparing Equation (1b) with Figure 2, which is discussed in detail in Section 5.1.1, it may be apparent that \(C^2 \) is equivalent to the ordinate in Figure 2, and that the constant \(C \) replaces the quality factor \(Q \) of the isolated payload system.

The factor \((f_o/f) \) has been included in Equations (1a) and (1b) to reflect the decrease in the payload residual mass with frequency. Sometimes it is appropriate to adjust the exponent of this factor to fit experimental measurements of the apparent mass of the test item.
Figure 1- Simple Two-Degree-of-Freedom System (TDFS)
Figure 2 -- Basic Force Limiting Result (Simple TDFS)
Complex Two-Degree-of-Freedom System (TDFS)

ASPARAGUS PATCH MODEL OF SOURCE OR LOAD

PARAMETERS:

- $a_n = \frac{m_n}{M_n}$
- $w_n = (K_n/m_n)^{1/2}$
- $Q_n = \left(\frac{K_n}{m_n}\right)^{1/2}C_n$

RESIDUAL AND MODAL MASS MODEL OF SOURCE OR LOAD

COUPLED TDF S RESIDUAL AND MODAL MASS MODEL

22nd Aerospace Testing Seminar, March 21, 2005
Governing Equations for Basic Force Limiting Result (Simple TDFS)

The force limit is calculated for the TDFS in Figure 1 with different masses for the source and the payload oscillators. For this TDFS, the maximum response of the payload and therefore the maximum interface force occur when the uncoupled resonance frequency of the payload equals that of the source. For this case, the characteristic equation is that of a classical dynamic absorber, from Reference 8:

\[
(\frac{\omega}{\omega_0})^2 = 1 + \frac{(m_2/m_1)}{2} \pm \left[\left(\frac{m_2/m_1}{2}\right) + \left(\frac{m_2/m_4}{4}\right)\right]^{0.5}
\]

(A1)

where \(\omega_0\) is the natural frequency of one of the uncoupled oscillators, \(m_1\) is the mass of the source oscillator, and \(m_2\) is the mass of the load oscillator in Figure 1. The ratio of the interface force \(S_{FF}\) to acceleration \(S_{AA}\) spectral densities, divided by the magnitude squared of the payload dynamic mass \(m_2\), is:

\[
S_{FF} / (S_{AA} m_2^2) = \frac{[1 + (\omega/\omega_0)^2/Q_2^2]}{[1 - (\omega/\omega_0)^2]^2 + (\omega/\omega_0)^2/Q_2^2}
\]

(A2)

where \(Q_2\) is the quality factor, one over twice the critical damping ratio, of the payload.

The force spectral density, normalized by the payload mass squared and by the acceleration spectral density, at the two-coupled system resonances is obtained by combining Equations (A1) and (A2). For this TDFS, the normalized force is just slightly larger at the lower resonance frequency of Equation (A1). The maximum normalized force spectral density, obtained by evaluating Equation (A2) at the lower resonance frequency, is plotted against the ratio of payload to source mass for three values of \(Q_2\) in Figure 2.
Reduction of Mean-Square Response by Notching Input to SDFS

Approximate form, $Q^2 \gg 1$ & $(A^2-1)^{1/2} \gg 1/(2Q)$,

\[
1 - (2/\pi)[\tan^{-1}(A^2-1)^{1/2} - (A^2-1)^{1/2}/A^2]
\]

agrees well with plotted $Q=50$ curve.
SVF2 Experiment to Validate Force Limiting

- Successful Shuttle Vibration Forces (SVF2) Experiment on STS-96
 - External forces on Hitchhiker (HH) canister measured in 3 axes, 20-2000 Hz
 - Acceleration at top of canister measured in 2 axes, 20-2000 Hz
 - Only acceleration near HH canister CG measured in 2 axes with SVF1 on STS-90 (no force data, because of instrumentation problems)

- Objective: Cost effective structural design/analysis/test methods
 - Validation of methods used to derive force limits for vibration tests and
 - Validation of shuttle lift-off, random vibration design load methodology

- Conclusions:
 - Data support force limit methodology, and indicate lower (~50%) random vibration loads than design limits currently used for HH sidewall payloads
 - Additional flights desirable to provide: low frequency loads, adapter beam inputs, force data at other shuttle locations, and flight-to-flight variations
SVF Experiment Installation on STS-90 & 96

SVF1, Bay 4, STS-90

SVF2, Bay 3, STS-96
Payload Ballast
Structure (Signal Conditioning and WBSAAMD Recorders)
SVF1 (STS-90) ACCELERATION DATA MEASURED NEAR TOP OF CANISTER

Y AXIS ACCELERATION NEAR CG OF SVF1 CANISTER

Max lift-off acoustics, 6.5<7 < 9.0 sec.

0.04 g Hz

Power Spectral Density (g^2/Hz)

Frequency (Hz)

20 50 100 200 500 1000 2000

Z AXIS ACCELERATION NEAR CG OF SVF1 CANISTER

Max lift-off acoustics, 6.5<7 < 9.0 sec.

0.04 g Hz

0.001

1.80 Gms

Frequency (Hz)

20 50 100 200 500 1000 2000
SVF2 (STS-96) ACCELERATION DATA MEASURED NEAR TOP OF CANISTER

X AXIS ACCELERATION AT TOP OF SVF2 CANISTER

Y AXIS ACCELERATION AT TOP OF SVF2 CANISTER
SVF2 (STS-96) FORCE DATA
Total Y-Force Between Sidewall and Canister

- Measured force spectrum is ~ 6 dB less than force limit used in random vibration test (3 dB is test margin) and still resulted in ~16 dB of notching (see next viewgraph)

- Measured force of 233 lb rms divided by total canister weight of 230 lb gives CG acceleration of 1.0 g rms or 3.0 g peak, which is less than 8.0 g HH design limit for y-axis
FORCE LIMIT AND NOTCHING IN Y-AXIS
RANDOM VIBRATION TEST OF HH CANISTER

NASA/GSFC Vibration Laboratory

22nd Aerospace Testing Seminar, March 21, 2005
SVF2 (STS-96) FORCE DATA
Total Z-Force Between Sidewall and Canister

- Measured force spectrum is ~ 13 dB less than force limit used in random vibration test (3 dB is test margin)

- Measured force of 138 lb rms divided by total canister weight of 230 lb gives CG acceleration of 0.6 g rms or 1.8 g peak, which is less than 5.4 g HH design limit for z-axis
SVF2 (STS-96) FORCE DATA
Total X-Force Between Sidewall and Canister

➢ Measured force spectrum is ~ 6 dB less than force limit used in random vibration test (3 dB is test margin)

➢ Measured force of 250 lb rms divided by canister weight of 230 lb gives CG acceleration of 1.1 g rms or 3.3 g peak, which is less than 5.4 g HH design limit for x-axis
Summary of SVF2

➢ SVF2 was successful, thanks to continued NASA HQ support and extraordinary effort by team members at GSFC and JSC
➢ SVF2 data indicate maximum random vibration CG load of ~4 g in y-axis, i.e. ~50% lower than current HH design limit of ~8 g
➢ The SVF2 force limiting experiment, with a payload weight of 230 lb, yielded a value of the semi-empirical method constant of $C^2 = 1.9$.
The flight data described in Reference 10 were measured at the interface of the Cosmic Ray Isotope Spectrometer (CRIS) instrument and the Advanced Composition Explorer (ACE) spacecraft.

The data were recorded during a one second interval corresponding to the time of maximum acoustic loading during the lift-off of the Delta II 7920-8 launch vehicle.

Following figure shows the 65 lb (30 kg) CRIS instrument mounted on the left side of the ACE spacecraft bus, which is a two-deck octagon honeycomb structure, 65 in. (1.6m) across and 40 in. (1m) high.
CRIS Instrument on ACE Spacecraft
Total Vertical Force in CRIS Random Vibration Test
Notched Acceleration Input In CRIS Random Vibration Test
Spectral Density of In-Flight Normal Acceleration

Measured Near One Mounting Foot of CRIS Instrument
Spectral Density Of In-Flight Normal Force Measured Under CRIS Instrument

ACE Spacecraft Launch
Acoustic/Vibration Environment

Frequency (Hz)
11 : 2X+ 2X+ 4
ACE Spacecraft Launch
PSD (134-135 secs)
Summary of ACE Flight Force Limiting Experiment

➢ The measured flight acceleration input PSD to the CRIS instrument was 20 dB lower than the vibration test specification.

➢ The measured flight force input PSD to the CRIS instrument was 20 dB lower than the vibration test limit.

➢ Even with this very high force limit, approximately 7 dB of notching resulted in the vibration test.

➢ The ACE force limiting experiment, with a payload weight of 65 lb, yielded a value of the semi-empirical method constant of $C^2 = 1.7$
Conclusions

• Force limiting alleviates vibration overtesting associated with the near infinite impedance of shakers as compared to the compliance of aerospace structure.

• Force limiting only helps at payload resonances; it’s no good for electronic boxes and other “bricks”.

• Force limiting does not make up for a bad, i.e., too conservative, acceleration specification.

• Usually, only the in-axis force needs to be measured and controlled. (Only one channel of instrumentation is typically needed for notching.)

• Force limiting has been validated by two flight experiments and several system acoustic tests.

• Force limiting has been utilized on many spacecraft, and unit vibration tests at JPL, GSFC, and NASA contractors during the past 15 years (Part II of tutorial).

• Application of force limiting is described in NASA-HDBK-7004B, which is available at:

 http://standards.jpl.nasa.gov/jpl-nasa/
Test Instrumentation and Supporting Equipment

- Piezo-electric Force Transducers
- Signal Processing and Conditioning Systems
- Test Fixtures
- Vibration Controller Systems
Force Transducers
Multi-Component Force Transducers

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range: F_x, F_y</td>
<td>$1,000 \text{ lb}$</td>
</tr>
<tr>
<td>Overload</td>
<td>F_x, F_y</td>
</tr>
<tr>
<td>Maximum moment: M_x, M_y</td>
<td>25 lb-in</td>
</tr>
<tr>
<td>Threshold</td>
<td>F_x, F_y</td>
</tr>
<tr>
<td>Sensitivity Error: F_x, F_y</td>
<td>$0.02 %$</td>
</tr>
<tr>
<td>Linearity & hysteresis</td>
<td>$\pm0.2 %$</td>
</tr>
<tr>
<td>Cross talk: $F_x \rightarrow F_y$</td>
<td>$\pm0.5 %$</td>
</tr>
<tr>
<td>Riggity: y & x direction</td>
<td>$8,000 \text{ psi}$</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>$-50\text{ to } 150 \text{ C}$</td>
</tr>
<tr>
<td>Temperature coefficient of sensitivity</td>
<td>$0.02 %/\text{C}$</td>
</tr>
<tr>
<td>Capacitance (each channel)</td>
<td>400 pF</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>$>10^6 \text{ ohms}$</td>
</tr>
<tr>
<td>Weight</td>
<td>8 g</td>
</tr>
</tbody>
</table>

Recommended Cables

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range: F_x, F_y</td>
<td>8.000 lb</td>
</tr>
<tr>
<td>Overload</td>
<td>F_x, F_y</td>
</tr>
<tr>
<td>Maximum moment: M_x, M_y</td>
<td>25 lb-in</td>
</tr>
<tr>
<td>Threshold</td>
<td>F_x, F_y</td>
</tr>
<tr>
<td>Sensitivity Error: F_x, F_y</td>
<td>$0.02 %$</td>
</tr>
<tr>
<td>Linearity & hysteresis</td>
<td>$\pm0.2 %$</td>
</tr>
<tr>
<td>Cross talk: $F_x \rightarrow F_y$</td>
<td>$\pm0.5 %$</td>
</tr>
<tr>
<td>Riggity: y & x direction</td>
<td>$8,000 \text{ psi}$</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>$-50\text{ to } 150 \text{ C}$</td>
</tr>
<tr>
<td>Temperature coefficient of sensitivity</td>
<td>$0.02 %/\text{C}$</td>
</tr>
<tr>
<td>Capacitance (each channel)</td>
<td>400 pF</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>$>10^6 \text{ ohms}$</td>
</tr>
<tr>
<td>Weight</td>
<td>8 g</td>
</tr>
</tbody>
</table>

Recommended Cables

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range: F_x, F_y</td>
<td>8.000 lb</td>
</tr>
<tr>
<td>Overload</td>
<td>F_x, F_y</td>
</tr>
<tr>
<td>Maximum moment: M_x, M_y</td>
<td>25 lb-in</td>
</tr>
<tr>
<td>Threshold</td>
<td>F_x, F_y</td>
</tr>
<tr>
<td>Sensitivity Error: F_x, F_y</td>
<td>$0.02 %$</td>
</tr>
<tr>
<td>Linearity & hysteresis</td>
<td>$\pm0.2 %$</td>
</tr>
<tr>
<td>Cross talk: $F_x \rightarrow F_y$</td>
<td>$\pm0.5 %$</td>
</tr>
<tr>
<td>Riggity: y & x direction</td>
<td>$8,000 \text{ psi}$</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>$-50\text{ to } 150 \text{ C}$</td>
</tr>
<tr>
<td>Temperature coefficient of sensitivity</td>
<td>$0.02 %/\text{C}$</td>
</tr>
<tr>
<td>Capacitance (each channel)</td>
<td>400 pF</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>$>10^6 \text{ ohms}$</td>
</tr>
<tr>
<td>Weight</td>
<td>8 g</td>
</tr>
</tbody>
</table>
Force Transducers Selection

- Three Sizes of Tri-axial Measurements
 (Maximum Force Ranges, Hole Size)

- Sizes of Fasteners (or Bolts)

- Force Measurement Requirements

- Preload and Bolt Torque Values
If practical, use one gage at every mounting bolt

To minimize errors, use as high a preload as possible without overstressing components and have a smooth, flat surface on gages and on mating plates

- Preload must be sufficient to prevent unloading due to dynamic forces and moments

- Preload must be adjusted so that combined static and dynamic loads do not exceed manufactures recommended load set on transducers

Transducers, with long time constant charge amplifier, may be used to measure preload during installation

Approx. 10% of load will be shunted through mounting bolt, i.e. load divides as relative stiffness of transducer and bolt

Transducers come calibrated and sensitivity is primarily due to material properties of quartz

Best way to calibrate, and check out, system is by comparing the measured total force and acceleration at low frequencies, well below resonances, to $F = MA$
Signal Processing and Conditioning Systems

- Electrical Interconnections
- Total Force Measurement or Individual Force for Moment Calculation
- Charge Sensitivity and Amplifier Range Settings
Signal Summing Boxes
The preferred method of configuring the force transducers is to sandwich one transducer between the test item and conventional test fixture at each attachment position and use fasteners which are longer than the conventional ones to accommodate the height of the transducers. In this configuration, there is no fixture weight above the transducers and the transducer force is identical to the force into the test item. Sometimes the preferred approach is impractical, e.g. if there are too many attachment points or the attachments involve shear pins in addition to bolts. In these cases it may be necessary to use one or more lightweight intermediate adapter plates as an interface between the test item and the force transducers. The requirement is that the total weight of any intermediate adapter plates above the force transducers do not exceed 10% of the weight of the test item. For example, if the test item mounts at three feet and each foot involves two bolts and a shear pin, a candidate design would be to have a small plate attached to a big stud for each foot. The small plate would pick up the two mounting bolts and shear pin, and the stud would go through a medium sized force transducer into a shaker fixture plate. Alternately, if the mounting configuration involves sixteen small bolts in a circular pattern, the fixture might consist of one intermediate ring which accepts the sixteen small bolts and is mounted on four equally spaced larger sized force transducers.
Vibration Controllers

Most of the current generation of vibration test controllers have the two capabilities needed to implement force limiting. First, the controller must be capable of extremal control, sometimes called maximum or peak control by different vendors. In extremal control, the largest of a set of signals is limited to the reference spectrum. (This is in contrast to the average control mode in which the average of a set of signals is compared to the reference signal.) Most controllers used in aerospace testing laboratories support the extremal control mode. The second capability required is that the controller must support different reference spectra for the response limiting channels, so that the force signals may have limit criteria specified as a function of frequency. Controllers which support different reference spectra for limit channels are now available from most vendors and in addition upgrade packages are available to retrofit some of the older controllers for this capability. If the controller does not have these capabilities, notching of the acceleration specification to limit the measured force to the force specification must be done manually in low level runs.
Force Limited Vibration Test Procedure

1. Conduct a low-level sine-sweep (or random vibration with a flat frequency spectrum) in each axis to measure the dynamic signature of the test hardware and the reaction force. Reduce data and update the effective masses and resonance frequencies used to derive the force specification.

2. Perform two low-level random vibration runs (often –18 dB) without and with force limiting, using the same acceleration spectral shape as the full level and a scaled down force limit. Compare the forces measured in these two test runs to verify that amount of notching achieved by force limit is appropriate. Modify force limits if needed and repeat the tests again.

3. Execute an intermediate-level run and then proceed to the full-level run after it is determined that the notchings are correct. The intermediate level results can be again used to verify the acceleration notches due to force limiting and if there is significant disagreement, the force limit specification may be adjusted before progressing to full level.

4. Perform the low-level sine-sweep post-test again for "health" monitoring. Keep the number of test runs as low as feasible to avoid accumulating unnecessary fatigue damage of the test hardware. Thus ideally, each axis may be conducted with no more than five to six runs.
The force limited test approach has been successfully conducted on many science instruments, spacecraft equipment and flight spacecraft and has been extremely beneficial for surviving the required verification tests. In all cases, the use of force limiting reduced the degree of over test without compromising the test objectives.

Force limiting offers a rational and justification for notches to reduce over testing in shaker vibration testing. The magnitude of the notch, once the force spectral density threshold is reached, can be impressive. Some notches even reach the depth of 16 dB or more.

Force limiting results in narrower and more accurate notches than manual notching and adapts to nonlinear changes of resonance response. Also, due to non-linearity of the test hardware, the notches in full level tests are usually less than in low-level runs.

Both force and overturning moment limits can be specified for the shaker random vibration test. Both limits can be used simultaneously. However, this control scheme is more complex and time-consuming.
FORCE LIMITED TEST LESSONS LEARNED
(Cont’d)

➢ In most cases, either force or moment limits create similar notch profiles. The force limit provides more direct and effective notching. Thus, the moment limit is usually redundant.

➢ If only one-axis force transducers are available, moment limiting is acceptable for lateral vibration testing.

➢ Only the summed force is needed for each axis of direction, which greatly simplifies and expedites the test process.

➢ The attachment bolt and the force gage react the interface loads at each attachment. The portion of load carried by each is dependent on the relative stiffness between bolt and transducer. In all cases, the apparent attenuation must be evaluated in the low-level test runs.

➢ Poor input spectrum control can arise in the force-limited test. It can be caused by slow servo loop response time associated with a large number of limit channels employed in a multiple control strategy.

➢ Force limiting should not be perceived as a method of compensating for errors in the acceleration specification. Rather, it is a method of automatically inserting notches in the acceleration spectrum at the proper frequencies and of the proper depth.
Examples of Force Limited Vibration Testing

- **Equipment Component Random Vibration Test**
 RTG (CET, Component Evaluation Test) for Vertical Test

- **Science Instrument Random Vibration Test**
 Cassini CDA for Lateral Vibration Test

- **Spacecraft System Vibration Qualification Test**
 DS1 Spacecraft for Lateral and Vertical Tests
RTG/CET Installation for Vertical Vibration Test
Shaker Measurement of the Apparent Mass of the RTG Equipment in 0.5 g Sine-Sweep Test (Multiply ordinate by two to obtain apparent mass.)
RTG Random Vibration Test Requirements

RTG BASE ACCELERATIONS
CASSINI DTM PROTOFLIGHT ACOUSTIC TEST

ACCELERATION SPECTRAL DENSITY (g^2/Hz)

FREQUENCY (Hz)

- 54R: 2.4g rms
- 54T: 3g rms
- 54Z: 3.3g rms
- 55R: 2.2g rms
- 56R: 2g rms
- RTG Specn (Zone 1)

22nd Aerospace Testing Seminar, March 21, 2005
Force Predictions Based on TDFS Methods

Example of Spread Sheet for Calculating Force Limits – Cassini RTG Equipment

![Spread Sheet Image]

22nd Aerospace Testing Seminar, March 21, 2005
Force Prediction Based on Simi-Empirical Method

Example for Computing Semi-Empirical Force Values

The fundamental resonance of the RTG mounted in a shaker vertical test,

\[f_0 \approx 150 \text{ Hz} \]

The input acceleration spectrum value at the frequency, \(f_0 = 150 \text{ Hz} \)

\[S_{AA} = 0.08 \text{ g}^2/\text{Hz} \]

The RTG apparent mass (measured in 0.5 g sine-sweep vertical test),

\[m = 110 \text{ lbs} \]

The semi-empirical vertical force limit with \(\zeta = 3 \),

\[S_{FF} = 3 \times 110^2 \times 0.08 = 2900 \text{ lb}^2/\text{Hz} \]
Comparison of Force Predictions for RTG Test

RTG INTERFACE FORCE SUMS
CASSINI DTM FOLLOW-UP PROTOFLIGHT ACOUSTIC TEST

F4 (Rad): 126 lb rms
F5 (Tang): 42 lb rms
F6 (Vert): 70 lb rms
Force Spec. (Predicted)
Semi-empirical Spec. C²= 3
Cassini CDA on Shaker for Lateral (X-Axis) Test

RANDOM VIBRATION TEST OF CDA
(CASSINI SCIENCE INSTRUMENT)

22nd Aerospace Testing Seminar, March 21, 2005
CDA Adapter Ring and Test Fixture for Force Measurement
Cassini CDA Resonance Survey (0.5 g Sine-Sweep) Test

Status: Test stopped!
Cause:
Date: 10.11.1998
Time: 09:31:09
Elapsed test time: 0:4:22

Actual amplitude: 0.00 m/s²
Actual frequency: 1853.98 Hz

(Total Weight = 16.6 g = 16.6 kg)
CDA Low-Level (-18 dB) Test Without Force Limiting

\[F = 96 \cdot C^2 \cdot S \cdot M = 96 \times 3 \times 0.15 \times (16.3^2) = 11,900 \text{ N}^2/\text{m}^2 \]

Status: Stopped by user!

- Date: 10.11.1998
- Time: 09:33:40
- Elapsed test time: 0:0:0
- Acceleration rms: 14.7 m/s²
- Test level: -18 dB

Drive: 10%
DOF: 92 DOF
Warn limits: enabled
Abort limits: disabled
Abort level: disabled

22nd Aerospace Testing Seminar, March 21, 2005
CDA Low-Level (-18 dB) Test With Force Limiting

Graph:
- **S[^2/(m/s^2)]^2/Hz**
- **f [Hz]**
- **Status**: Stopped by user!
- **Date**: 10.11.1998
- **Time**: 09:38:50
- **Elapsed test time**: 0:0:0
- **Acceleration rms**: 15.4 m/s^2
- **Test level**: -18 dB
- **Drive**: 10 %
- **DOF**: 96 DOF
- **Warn limits**: enabled
- **Abort limits**: disabled
- **Abort level**: disabled

22nd Aerospace Testing Seminar, March 21, 2005
CDA Full-Level (0 dB) Test With Force Limiting

Status: Test time expired!

Date: 10.11.1998
Time: 09:35:32
Elapsed test time: 0:1:0
Acceleration rms: 110. m/s²
Test level: 0 dB

Drive: 72 %
DOF: 42 DOF
Warn limits: enabled
Abort limits: disabled
Abort level: disabled
DS1 Spacecraft Installation for Lateral Vibration Test
Force Transducers and Control Accelerometers for DS1 S/C Vertical Vibration Test
Sums of 24 Force Measurements in X, Y, and Z Directions
DS1 Safety Mass Simulator Vibration Test
Force Measured in Safety Mass 0.25 g Sine-Sweep Test
Full Level Acceleration Input for Safety Mass Lateral Test

![Graph showing acceleration input vs frequency](image-url)
Force Measured in Full Level Input Safety Mass Test

$1b^{-2}/Hz$ Force Sum X

$\sqrt[2]{0.02 \cdot (850)} = 28900$

Frequency (Hz)