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Abstract 

We present a Multiple-Instance Learning 
(MIL) algorithm for determining the salience 
of each item in each bag with respect 
to the bag's real-valued label. We use 
an alternating-projections constrained opti­
mization approach to simultaneously learn 
a regression model and estimate all salience 
values. We evaluate this algorithm on a sig­
nificant real-world problem, crop yield mod­
eling, and demonstrate that it provides more 
extensive, intuitive, and stable salience mod­
els than Primary-Instance Regression, which 
selects a single relevant item from each bag. 

1. Introduction 

Classical machine learning operates on individual 
items, each represented by a feature vector and as­
signed a label, which is either categorical (for classifi­
cation) or real-valued (for regression). However, some 
learning problems do not fit this model. There are 
situations in which observations are instead bags of 
items, with a single label applied to the bag. These 
tasks require a multiple-instance learning (MIL) ap­
proach. For example, the problem that first motivated 
this area of research was to predict a drug's activity 
("active" or "inactive") given observations of multiple 
structural conformations of the drug molecule (Diet­
terich et al., 1997). Only some of the observed confor­
mations contributed to the label of the molecule, and it 
was not known which ones were relevant. While much 
work in MIL has focused on obtaining high-accuracy 
classifications from such bag data, there has been rela­
tively less focus on the task of determining which items 

Preliminary work. Under review by the International Con­
ference on Machine Learning (ICML). Do not distribute. 

are the relevant ones. Two efforts in this direction 
are Primary-Instance Regression (Ray & Page, 2001), 
which selects a single relevant item from each bag as 
its exemplar (primary instance), and the MILES al­
gorithm (Chen et al., 2006), which selects a subset of 
items from each bag as relevant to the bag label. 

In this paper, we present a novel method for inferring 
the salience of each item with respect to a real-valued 
bag label (i.e., a regression target). We also introduce 
the method of alternating projections (AP): a feasibil­
ity algorithm that is well-known within the optimiza­
tion community but which is less familiar to machine 
learning audiences. 

Further, we have identified an important agricultural 
problem that is naturally cast as a multiple-instance 
learning problem: crop yield modeling. Early pre­
diction of expected crop yields is a priority of the 
United States Department of Agriculture (USDA) for 
two major reasons: crop yield estimates can help es­
tablish pricing strategies, and an early warning of low 
yield can inform corrective crop management strate­
gies (precision agriculture). Using county-level his­
torical yield figures, we seek to learn a model that 
connects remote sensing data to expected crop yield. 
This is an MIL problem in that we have thousands 
of individual pixel-level multispectral observations for 
each county, but only one target yield value per county 
and no guidance as to which pixels are relevant to the 
target. We have found that the salience estimates pro­
duced by our algorithm reflect important spatial struc­
tures of crop distributions (Section 4). 

Like prior work (Ray & Page, 2001), we find that 
our formulation requires solution of an NP-hard op­
timization problem (Section 3.2). Thus, we cannot 
hope to achieve an exact optimum. However, our ap­
proach produces a more informative model by return­
ing salience estimates for each data item. The extra 
degrees of freedom require a more expensive optimiza-
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tion, so our work can be seen as exchanging computa­
tional effort for descriptive power. 

2. Related Work 

A significant amount of work has been devoted to 
methods for multiple-instance classification, including 
axis-parallel rectangles (Dietterich et al., 1997), di­
verse density (Maron & Lozano-Perez, 1998), voting 
by the k nearest neighbor bags (Wang & Zucker, 2000), 
graph spectral methods (Rahmani & Goldman, 2006), 
and others. Amar et al. (2001) extended the k nearest 
neighbor and diverse density approaches to MIL prob­
lems in which each bag has a real-valued label that in­
dicates its proximity to the target concept. Likewise, 
Goldman and Scott (2003) interpreted real-valued la­
bels to be "the degree to which the example satisfies 
the target concept" and used axis-aligned rectangles 
to learn the target concept. 

As noted above, methods for determining the relevance 
of each item have been limited. Ray and Page (2001) 
offered the pioneering work in this area by contributing 
a Primary-Instance Regression (PIR) method. This 
approach assumes that the label of a bag is deter­
mined by exactly one primary instance and that the 
rest of the items in the bag are noisy observations of 
the primary instance. They proposed an EM-based so­
lution to alternately estimate the most likely primary 
instance for each bag and then to maximize the fit of a 
linear regression through the primary instances. Chen 
et al. (2006) proposed a method for multiple-instance 
classification that represents each bag by its similar­
ity to each item in the data set, then uses an SVM 
to select relevant features (those with an SVM weight 
magnitude> 0). Since each feature implicitly stands 
for an item, a subset of relevant items is also identified. 

3. Salience Assessment for MIR Data 

In this work, we generalize these instance-selection 
methods: rather than making a binary decision about 
each item's relevance, we assign a continuous salience 
value to each one. Following Ray and Page, we ag­
gregate bags to single exemplars, but our exemplars 
are weighted averages of the contents of the bag. This 
approach offers three advantages: first, it provides ad­
ditional degrees of freedom in locating a high-quality 
regression fit. Second, it subsumes a number of com­
mon aggregators (e.g., mean or max), while not requir­
ing a domain expert to specify the aggregator a pri­
ori. Third, an item's weight can be interpreted as its 
salience: its relevance, with respect to all other points 
in the bag, for predicting the bag label. As we show in 

Section 4, our algorithm successfully identifies differ­
ent saliences for the same bags given different labels. 
Thus, it is learning information about the structure of 
the data in the conte.Tt of the target of prediction, and 
not simply deriving salience from the characteristics of 
the bag contents alone. 

3.1. The AP-Salience Algorithm 

In this section, we describe the alternating projec­
tions algorithm (AP-Salience) algorithm that we use 
to optimize item salience. AP algorithms (Bauschke & 
Borwein, 1996) are closely related to EM algorithms, 
though they are motivated by geometric considerations 
rather than statistical ones. We give additional back­
ground on AP and an analysis of the performance of 
AP-Salience in Section 3.2. The core of our algorithm 
is an iterative re-estimation process: first, we compute 
the best assignment of salience values to items under a 
fixed regression model. Then, given the fixed saliences, 
we update the regressor that maps bag exemplars to 
bag labels. 

Let Bi denote bag i from a data set D, which is a 
collection of m bags. Bag i consists of ni data points, 
Bj E [Rd. (Note that, although bags may contain dif­
ferent numbers of points, every data point must be 
of the same dimension.) Thus, each bag can be repre­
sented as a d x ni real matrix. In the multiple-instance 
classification framework, bags may be positive, Bi+, or 
negative, B i -. For regression (as in this paper), each 
Bi instead has an associated label, yi E [R. 

Each bag can be thought of as a cloud of points that 
share the same y coordinate. That is, a bag is a 
bounded region of a hyperplane orthagonal to the y 
axis. We seek a regression surface (e.g., hyperplane) 
that passes through each bag, predicting the true label 
of the bag from at least one point (the exemplar H) 
within that bounded region. Each item in bag i, Bj, is 

assigned an (unobserved) real value, aj, that indicates 

how salient item Bj is to predicting yi for bag Bi. The 

vector a i E [Rni gives the saliences for all items in the 
bag. 

The exemplar itself is a convex combination of the 
items in its bag: Hi = L:j ajBj, where L:j aj = 1 

and all aj 2:: O. This forces Hi to fall within the 

convex hull of the points in Bi. Essentially, this con­
straint guarantees that bag Bi will influence the re­
gressor. Without some constraint on ai, Hi might fall 
arbitrarily far from the bag data, and Bi would not 
influence the final model. 

For this paper, we assume a linear regression: fj(Hi) = 
WT Hi, where W is the d + 1 vector of regression 
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Algorithm 1 AP-Salience 

1: Inputs: {Bkh~1 .. rn; Y; 1'1; 1'2 / / Bag data; vector of bag labels; regularization coefficients for a and W 
2: Outputs: W; {akh~1 / / Regression coefficients; per-bag salience vectors 
3: W = random(d + 1, 1) / / Initialization: random d + 1 column vector 
4: repeat 
5: for k = 1 to m do / / Project from W space to a k simplex 

6: a k f- solution of the QP: { ~in"k: a
k

: (Bk T WWTB .. k + Ed) a
k 

- ykWTBka
k 

subJect to: a k 1 = 1; a~ 2': 0 Vi 
7: Hk f- Bkak 

8: end for 
9: W f- (HHT + E2I)-1HY / / Project from {a k

} onto W space 
10: until convergence 

weights and Hi is a d + 1 column vector in homo­
geneous coordinates (prepending a 1 to each data vec­
tor). We take the usual L2 loss, with regularization 
terms 1'1 and 1'2 on a k and W (which are otherwise 
underdetermined). Altogether, we have the following 
optimization problem: 

mIn: (1) 
m 

= 2: [(yk - WTHk)2 + f111a k 11 2] + f211Wl1 2 

k=l 
m 

= 2: [(yk - W T
B

k
a

k)2 + f111a
k

11
2
] + f211WI1

2 

k=l 
k 

subj to: a~ 2': 0 Vi, k; 2:
n 

k 
a· = 1 

i=l ' 
Vk 

where the minimization is with respect to both Wand 
{a k

h=l ... m. The core part of the objective, fO, is the 
squared-error loss term: (yk - W TB ka k)2. The factor 
Bkak represents the aggregation of the data in bag k 
to a single exemplar (Hk), and the factor WT Hk is 
the linear regression estimate of exemplar Hk. An­
alytic minimization of Equation lover both Wand 
{a k } simultaneously is difficult. But if either W or 
{a k } is known, then the other can be found via well 
understood least-squares techniques. This motivates 
the AP approach of Algorithm 1. 

In the AP-Salience algorithm, m represents the num­
ber of bags; Y E IR m is the vector of all bag labels; H 
denotes the (d + 1) x m matrix of all exemplar points; 
I and 1 denote the identity matrix and vector of all 
ones, respectively, each of the appropriate size; and 
1'1 and 1'2 are regularization coefficients. In line 3, we 
initialize the weight vector to a random vector. The 
core of the algorithm is an alternation between two 
projection steps. In the first step (lines 5-8), we solve 
for each a k assuming a fixed W. This step can be 
seen as a projection from the space of all possible W 
vectors (lR d+1 ) onto the nk-simplex. The simplex con­
straint necessitates a quadratic program to solve the 

least-squares problem. Next, we fix all of the a k vec­
tors and project back onto the W space (line 9). We 
alternate between these two steps until convergence. 

3.2. Alternating Projections Methods 

In this section, we show that the AP-Salience algo­
rithm converges to a critical point of the objective 
function (1). We also find that exact optimization of 
this objective is NP-hard, so perfect minimization is 
impractical for large data sets. 

Alternating projections is a powerful class of methods 
for the conve.T feasibility problem: finding the inter­
section of convex sets (Bauschke & Borwein, 1996). 
AP-based methods are widely used in the optimiza­
tion community, where they appear in the solution of 
convex optimization problems, but they are less well 
known in the machine learning community. They can 
be used for function minimization by choosing the con­
vex sets to be the zeros of the partial derivatives of the 
objective function. Then an intersection point is a si­
multaneous zero of all partial derivatives and is, thus, 
a critical point of the function. Algorithm 1 uses this 
formulation to find a critical point of (1). 

There is an immense body of literature on AP algo­
rithms that dates back to von Neumann (which we will 
not attempt to review here), but the essential idea is 
to start with a group of convex sets, Co, ... , Cn, in a 
Hilbert space, X, and a corresponding group of pro­
jection operations To, . .. ,Tn. The goal is to find a 
point in the intersection of the Ci . To do so, start 
with an arbitrary point, x EX, and iteratively ap­
ply the projection operations in sequence. Ti updates 
the representation of x in Ci, moving it closer (in the 
metric of X) to the corresponding representations in 
Cjopi . Because the C i are convex, the sequence of Ti 
form a contraction mapping and the sequence of xs 
converges in norm to a fixed point: the desired point 
in the intersection. 
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In our case, the Hilbert space is X = IR d+1 x n:1 Si, 
the Cartesian product of the 1Rd+1 space of ~V with the 
a i simplexes. A point x E X is an assignment of ~V 
and all a i

. The Ci are defined to be: 

Co == {W: 8~f(W,ai) = O} x afixcd 

Ci == {a i 
: 8~i f(W, ai

) = O} x Wfixcd 

the subsets of IR d+1 and Si corresponding to zeros of 
the derivative of the objective function, fO, with re­
spect to each free variable. 

These sets are convex because they are solutions to 
linear equations (the derivatives of the quadratic f()). 
The projections are lines 6 and 9 of Algorithm 1, which 
return points in the Ci sets. The Hessian matrix in 
line 6 is positive definite by construction, so the QP 
possesses a global optimum, which is a zero of 8~k f 
under fixed ~V and a#k. Similarly, line 9 is the stan­
dard least-squares solution that minimizes fO under 
fixed {a i

}. Thus, the AP iteration is guaranteed to 
find some point in the intersection of the C i , i.e., a 
critical point of fO with respect to all variables simul­
taneously. 

Unfortunately, the complete Hessian of fO (with re­
spect to all variables) is indefinite, so the critical point 
cannot be classified a priori (derivation omitted for 
space). As a corollary, optimization of Equation 1 is 
NP-hard (Pardalos & Vavasis, 1991), so we cannot ex­
pect to find the global optimum. 

AP-Salience is more expensive than Ray and Page's 
PIR, but it remains polynomial in n k and d on each it­
eration. The solution to the QPs in line 6 can be found 
in time polynomial in n k, and the linear regression in 
in line 9 requires time O(d3 ) for the matrix inversion. 
Unfortunately, like EM algorithms, AP algorithms do 
not provide general guarantees on the rate of conver­
gence. However, we experienced reasonable runtimes 
and convergence rates in practice, even using a basic 
QP implementation in Matlab. 

4. Experimental Results 

There are no existing non-artificial data sets for 
multiple-instance regression problems. In this section, 
we present a novel MIR problem: crop yield model­
ing. We find experimentally that AP-Salience assigns 
meaningful values to pixels across each county. 

4.1. Data Sets: Modeling Crop Yield 

Each year, the USDA reports the average yield per 
acre, for each county in the U.S., for a variety of crops. 
We seek to relate these yields to remote sensing ob-

servations from the Multi-angle Imaging SpectroRa­
diometer (MISR) instrument (Diner et al., 1998). The 
spatial resolution of each pixel is 250m, so each county 
is represented by thousands of pixels, but there is only 
a single yield value (per crop). Some pixels cover fields 
that were planted with the target crop, while others 
contain different crops or non-agricultural areas such 
as cities, lakes, forests, or desert regions. This problem 
lends itself well to the multiple-instance setting and 
provides both an important real-world application for 
this work and a particularly challenging "stress test" 
for any regression method. 

We have collected data sets that cover two states, Cal­
ifornia and Kansas, over four years (2001-2004)1. The 
number of counties that reported yield values for corn 
and wheat for all four years are as follows: 

California Kansas 
Corn Wheat Corn Wheat 

15 20 103 105 

Each county corresponds to a bag, and the remote 
sensing (pixel) observations in that county are items 
inside the bag. We subsampled the remote sensing ob­
servations for each county to obtain 100 pixels for each 
bag. Each pixel is a vector comprising a sequence of 
observations taken every eight days for a year (46 time 
points per year). At each time point, reflectance values 
at red and near-infrared wavelengths were recorded, 
yielding two features per observation. Therefore, each 
pixel can have up to 92 features (two observations at 
each time point; 46 times across the year), depending 
on how much of the time series is used. 

4.2. Experimental Methodology 

We compared AP-Salience (Algorithm 1) to PIR in 
terms of their ability to identify salient pixels in the 
crop yield data. We did not empirically compare these 
methods to the MILES algorithm, since it was de­
signed for use with MIL classification problems, and 
we have not yet extended it to use a regression SVM 
in place of the I-norm classification SVM it currently 
employs. This is an area for future work. 

As recommended by Ray and Page, we ran PIR ten 
times with different random initializations for the ini­
tial regression parameters. AP-Salience was run only 
once, with a single, randomly selected initial ~V vec­
tor. We have analyzed these data sets using anywhere 
from two to 92 features (time series) for each year of 
observation. 

IThese data sets will be available on a public website. 



Salience Assignment for Multiple-Instance Regression 

40 • 0 «DO 0.1 40 o 0 Cb «DO 0.1 

:0~06,o O~OO 0~06,o Q:b0 
0.08 39.9 

00 0 0 
0.08 39.9 +«) 8 ~o CG)O 00 

o 000 
«) 0 2) 0CG)00 

'" 39.8 ~ OO~CO 0 0.06 '" 39.8 ~ OO~CO 0 0.06 
"0 0 "0 0 .il o 0 .il o 0 
~ ~ 
...J 39.7 o 00000<0 0 0.04 ...J 39.7 o 00000<0 0 0.04 

ce O~ 000 0 e O~ 0.0 0 
39.6 o 0 0 0 ~ ~CD§ 0.02 39.6 00 0 08~§ 0.02 

39.5 39.5 
-98.6 -98.5 -98.4 -98.3 -98.2 -98.1 -98 -97.9 -97.8 -98.6 -98.5 -98.4 -98.3 -98.2 -98.1 -98 -97.9 -97.8 

Longitude Longitude 

(a) Corn (b) Wheat 

Figure 1. Salience values (a) obtained by AP-Salience for 100 pixels in Jewell County, KS. Darker pixels are more salient. 
The pixel selected by PIR is marked by a cross. Both methods used observations covering January I-February 18 of 2001. 

4.3. Experimental Results 

Finding 1: Salience depends on the bag tar­
gets. Figure 1 shows the salience values (a) obtained 
by AP-Salience for a single county in Kansas. When 
using corn yield as the desired target value, we find 
that the most salient pixels are located in the north­
western corner of the county (Figure 1a). However, 
when using wheat yield as the target, pixels in the 
southwestern part of the county are far more salient 
(Figure 1 b). The information contained in the target 
label strongly influences the assignment of salience to 
items, as desired. 

The pixel selected by PIR as the primary instance is 
indicated with a cross. The primary instance for corn 
yield received a high salience value from AP-Salience, 
indicating agreement on its relevance. In contrast, the 
PIR pixel selected for wheat yield had a much lower 
salience. In both cases, since PIR only identifies a 
single pixel as relevant, nothing is known about the 
remaining pixels. 

Finding 2: High-salience pixels cluster spa­
tially. Figure 1 also illustrates that the salience values 
assigned by AP-Salience exhibit a strong spatial corre­
lation. AP-Salience is not given any information about 
the physical location of each pixel, yet highly salient 
values tend to cluster together spatially. That is, we 
can infer that corn fields tend to occur in the northwest 
and wheat fields in the southwest of this county. We 
found similar spatial distribution results in a number 
of other Kansas and California counties. 

Finding 3: AP-Salience tends to produce more 
stable results than PIR. We expect approximately 
the same pixels to remain salient throughout the grow­
ing season. In our evaluation, PIR and AP-Salience 
are run individually for each time point; i.e., a sepa­
rate regression model is learned for time points [1, t] 

for t = [1,46] (using the bags from all four years). 
To assess the stability of both methods, we examined 
the distribution of max-salience instances across all 46 
time points. We define stability for bag i as the en­
tropy of this distribution normalized by the minimum 
possible entropy (if the same pixel were selected at 
each time point): 

where Pj is the number of times pixel j was selected as 
the primary instance (PIR) or max-salience instance 
(AP-Salience) and T is the number of time points. 
Figure 2 shows the mean stability (across all counties) 
obtained for both states and both crops. With the ex­
ception of CA/corn, AP-Salience tends to have higher 
stability than PIR. The results are consistent across 
years, for a given state and crop. There is, in fact, 
an inverse trend; PIR is more stable when analyzing 
the CA data, while AP-Salience is more stable on the 
KS data (and consistently more stable when modeling 
wheat versus corn yield). When more bags are avail­
able (~400 for KS versus ~70 for CA), AP-Salience is 
able to produce a more accurate model, since it can 
distribute weight across all of the pixels in each bag. 
PIR tends to find it more difficult to produce a good 
model with more bags, since it must fit a linear regres­
sion through just one item from each bag. 

5. Conclusions and Future Work 

In this paper, we have presented a generalized solu­
tion to the problem of assessing the salience of items 
within a bag. In contrast to Primary-Instance Regres­
sion (PIR), which selects a single item from each bag 
to be its exemplar, or MILES, which selects a subset 
of items as relevant, we permit each item in the bag to 
contribute a fractional amount to an overall weighted-
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Figure 2. Mean (across all counties) stability (across a single year) of the primary instance selected by FIR versus the 
highest-salience pixel chosen by AF-Salience. 

sum exemplar. We have demonstrated that our al­
gorithm, AP-Salience, assigns different salience values 
depending on the target under study, confirming that 
the bag label influences salience assessment. We have 
also shown that AP-Salience assigns physically plausi­
ble (spatially correlated) values to pixels used for crop 
yield predictions and that it provides max-salient as­
signments that are generally more stable than those 
provided by PIR 

We employ linear regression here only as a first step 
and because of the simplicity of the formulation. To 
our knowledge, no nonlinear MIR methods exist. We 
plan to extend our approach to a nonlinear regressor 
by, for example, employing a nonlinear projection of 
Bj or by kernelizing the entire formulation. We also 
plan to extend MILES to regression to enable a direct 
comparison with AP-Salience. 
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