
Identifying Contingency Requirements Using Obstacle Analysis on an
Unpiloted Aerial Vehicle

Robyn R. Lutz, JPWCaltech and Iowa State University, rlutz@cs.iastate.edu
Stacy Nelson, NelsonConsultinglQSS, NelsonConsult@aol,com

Ann Patterson-Hine, Ames Research Center, apatterson-hine@mail.arc.nasa.gov
Chad R. Frost, Arnes Research Center, cfrost@mail.arc.nasa.gov

Doron Tal, Arnes Research Center, dtal@email.arc.nasa.gov

Abstract

This paper describes experience using Obstacle
Analysis to identlfi contingency requirements on an
unpiloted aerial vehicle. A contingency is an
operational anomaly, and may or may not involve
component failure. The challenges to this eflort
were: (I) rapid evolution of the system while
operational, (2) incremental autonomy as
capabilities were transferred from ground control to
software control and (3) the eventual safety-
criticality o f s uch systems a s they begin t o f ly o ver
populated areas. The results reported here are
preliminary but show that Obstacle Analysis helped
(1) identrh new contingencies that appeared as
autonomy increased; (2) idenjib new alternatives for
handling both previozcsly known and new
contingencies; and (3) investigate the continued
validity of existing s o f ~ a r e requirements for
contingency handling. Since many mobile, intelligent
systems are built using a development process that
poses the same challenges, the results appear to have
applicability to other similar systems.

1. Introduction

This paper describes experience using Obstacle
Analysis [151 to identify contingency requirements
on an unpiloted aerial vehicle (UAV). A contingency
is an operational anomaly that may or may not
involve component failure. The problem was how to
identify, reason about, and specify the software
requirements for handling contingencies on an
experimental, autonomous helicopter.

Unpiloted Aerial Vehicles (also called unmanned
or uninhabited aerial vehicles) are attractive
candidates for future surveillance of high-risk
environments such as volcanoes or forest fires; for
automated surveys, such as of highway traffic or
electrical lines; and for assisted search and rescue

operations, such as for downed pilots or lost hikers
P I .

Existing approaches to UAV autonomy tend to
use ad hoc approaches to anomalies. The focus has
been primarily on developing new system capabilities
rather than on identifying contingencies. However,
to achieve the levels of robustness necessary to
eventually fly in populated airspaces, a more
structured approach is needed. A recent study, for
example, found the most common cause of UAV
failure to be emergency procedures [13].

The requirements for anomaly handling in these
autonomous systems have to encompass not only
traditional fault protection (e.g., the failure of a
sensor or an overpressure in a fuel tank) but also
unexpected environmental or operational scenarios
that could contribute to hazards. An example of a
contingency that does not involve component failure
is a strong crosswind that buffets the UAV and
interferes with the camera's ability to acquire the
images needed for mission success. These broader
classes of anomalies that must be anticipated and
handled are referred to as "contingencies" [8] . The
software requirements for detecting, identifying, and
responding to such anomalies we call "contingency
handling."

The challenges to the effort reported here were
threefold: (1) rapid evolution of the system while
operational, (2) incremental autonomy as capabilities
were transferred from ground control to software
control and (3) the eventual safety-criticality of such
systems when they begin to fly in national airspace.

Rapid Evolution. The Autonomous Rotorcraft
Project is a NASA UAV project for autonomous
helicopter research for low-altitude flight [24]. Two
small Yamaha RMAX helicopters, originally
developed for remote-piloted crop-dusting in farming
regions, serve as the platforms to demonstrate the
new autonomous software. The autonomous RMAX

Identifying Contingency Requirements Using Obstacle Analysis on an
Unpiloted Aerial Vehicle

Robyn R. Lutz, JPWCaltech and Iowa State University, rlutz@cs.iastate.edu
Stacy Nelson, NelsonConsultinglQSS, NelsonConsult@aol,com

Ann Patterson-Hine, Ames Research Center, apatterson-hine@mail.arc.nasa.gov
Chad R. Frost, Arnes Research Center, cfrost@mail.arc.nasa.gov

Doron Tal, Arnes Research Center, dtal@email.arc.nasa.gov

Abstract

This paper describes experience using Obstacle
Analysis to identlfi contingency requirements on an
unpiloted aerial vehicle. A contingency is an
operational anomaly, and may or may not involve
component failure. The challenges to this eflort
were: (I) rapid evolution of the system while
operational, (2) incremental autonomy as
capabilities were transferred from ground control to
software control and (3) the eventual safety-
criticality o f s uch systems a s they begin t o f ly o ver
populated areas. The results reported here are
preliminary but show that Obstacle Analysis helped
(1) identrh new contingencies that appeared as
autonomy increased; (2) idenjib new alternatives for
handling both previozcsly known and new
contingencies; and (3) investigate the continued
validity of existing s o f ~ a r e requirements for
contingency handling. Since many mobile, intelligent
systems are built using a development process that
poses the same challenges, the results appear to have
applicability to other similar systems.

1. Introduction

This paper describes experience using Obstacle
Analysis [151 to identify contingency requirements
on an unpiloted aerial vehicle (UAV). A contingency
is an operational anomaly that may or may not
involve component failure. The problem was how to
identify, reason about, and specify the software
requirements for handling contingencies on an
experimental, autonomous helicopter.

Unpiloted Aerial Vehicles (also called unmanned
or uninhabited aerial vehicles) are attractive
candidates for future surveillance of high-risk
environments such as volcanoes or forest fires; for
automated surveys, such as of highway traffic or
electrical lines; and for assisted search and rescue

operations, such as for downed pilots or lost hikers
P I .

Existing approaches to UAV autonomy tend to
use ad hoc approaches to anomalies. The focus has
been primarily on developing new system capabilities
rather than on identifying contingencies. However,
to achieve the levels of robustness necessary to
eventually fly in populated airspaces, a more
structured approach is needed. A recent study, for
example, found the most common cause of UAV
failure to be emergency procedures [13].

The requirements for anomaly handling in these
autonomous systems have to encompass not only
traditional fault protection (e.g., the failure of a
sensor or an overpressure in a fuel tank) but also
unexpected environmental or operational scenarios
that could contribute to hazards. An example of a
contingency that does not involve component failure
is a strong crosswind that buffets the UAV and
interferes with the camera's ability to acquire the
images needed for mission success. These broader
classes of anomalies that must be anticipated and
handled are referred to as "contingencies" [8] . The
software requirements for detecting, identifying, and
responding to such anomalies we call "contingency
handling."

The challenges to the effort reported here were
threefold: (1) rapid evolution of the system while
operational, (2) incremental autonomy as capabilities
were transferred from ground control to software
control and (3) the eventual safety-criticality of such
systems when they begin to fly in national airspace.

Rapid Evolution. The Autonomous Rotorcraft
Project is a NASA UAV project for autonomous
helicopter research for low-altitude flight [24]. Two
small Yamaha RMAX helicopters, originally
developed for remote-piloted crop-dusting in farming
regions, serve as the platforms to demonstrate the
new autonomous software. The autonomous RMAX

system has an onboard attitude sensor
(accelerometers and gyros), a GPS sensor, and a
communication modem [22]. The rotorcraft has four
cameras-a stereo pair of cameras to provide input to
a passive range estimation algorithm, a camcorder to
provide video recording, and a color camera to
provide situational awareness. Ground support is
housed in an instrumentation trailer with a GPS
ground station, radio modems for communication
with the aircraft, and video displays of the camera
images.

Two key components of the software architecture
for the system are Apex and CLAW. The Apex
reactive planner selects actions for execution on-
board the rotorcraft based partly on a library of stored
partial plans. Apex has the capability for path
planning around obstacles. The inner and outer-loop
Control Laws (CLAW) provide attitude stabilization
and waypoint guidance control. CLAW has a
hardware model that is used for limited hardware-in-
the-loop testing on the ground. In addition, an
operator on the ground can adjust variable values and
alter the state of the control law during execution to
provide ground control. A simulation environment
provides both testing of the reactive planner and a
high-fidelity simulated view of the rotorcraft and its
operating environment synthesized from telemetered
vehicle state and position data.

The rapid development process for the UAV is
similar to incremental prototyping except that the
vehicle is already operational (flying) during the
process. Requirements evolve rapidly as autonomous
features are added regularly.

Incremental Autonomy. Autonomy is the
capability of a software system to make control
decisions on its own. The advantage of autonomy in
an unpiloted vehicle is that it can react faster than
ground-based controllers to failures, anomalous
situations, and changes in environment. On the UAV
incremental autonomy means either (1) something
previously done manually (by operator control) is
now done automatically or (2) something that could
not be done manually is now done automatically. An
example of the first category of incremental
autonomy is the shift from a remote-piloted landing
(human-in-the-loop) to an autonomous landing. An
example of the second category of incremental
autonomy is the move from downlinking to the
ground all images taken by the onboard cameras to
downlinking only those images in which onboard
software finds a feature of interest.

Safety-critical focus. The system is an
experimental rotorcraft for exploring the feasibility of
unpiloted vehicles in the national airspace. Issues of
software safety are thus of interest. An early

understanding of possible contingencies and of
requirements on the software responsible for
detecting, identifying, and handling contingencies
contributes to building in safety features.

This paper reports experience with a novel
application of goal-oriented requirements engineering
to study contingencies in a rapidly evolving,
autonomous system. Our approach to contingency
analysis was similar to an informal application of
Letier and van Lamsweerde's goal-oriented
techniques for obstacle analysis [15]. They define an
obstacle as a set of undesirable behaviors. The results
reported here are preliminary but show that Obstacle
Analysis helped: (I) identify new contingencies that
appeared as autonomy increased; (2) identify new
alternatives for handling both previously known and
new contingencies; and (3) investigate the continued
validity of existing software requirements for
contingency handling. The paper describes the
consequences of these results in terms of the
requirements engineering of autonomous systems.
Since many mobile, intelligent systems are built
using a development process that poses the same
challenges, the results reported here may have
applicability to other similar systems such as mobile
robots and rovers.

2. Related Work

The w ork on contingency analysis described here
draws on or has implications for work in three areas:
requirements evolution, fault handling in autonomous
systems, and goal-oriented requirements analysis. We
describe related work in the first two areas in this
section. Related work in the last area appears in
Section 3 with the description of the approach.

Most work in requirements evolution addresses
the pre-implementation phases of a system. Anton
and Potts, for example, use goals and obstacle
analysis to refine evolving requirements in a
developing system [I] .There have also been several
studies describing agile approaches for handling
rapidly evolving systems (e.g., the "evolutionary
prototyping" in [5]). The authors recommend these
approaches for market-driven domains such as e-
commerce rather than for critical systems.

Requirements evolution post-deployment has been
studied primarily from the viewpoint of how it can be
managed. The focus is on establishing processes to
scope or evaluate proposed changes, e.g., in terms of
traceability [7] or change-impact studies. Similarly,
maintenance methodologies tend to focus on
classifying and managing requirements changes
rather than on analyzing changes [2].

The domain of concern in most requirements
evolution work is the business environment rather
than safety-critical systems such as UAVs. There has
been little work that has looked at evolving
requirements in operational, critical systems.
DeLemos is an exception, modeling an operational
system in which requirements evolution (specifically,
automating the self-destruct feature of a rocket) can
be structured so that the architectural components
remain unchanged while their interactions adapt to
the changed requirements [9]. Lutz and Mikulski
showed that requirements evolved during operations
on seven spacecraft to compensate for anomalies
caused by hardware degradation or the occurrence of
rare events 11 7,181.

Several recent papers describe autonomy
requirements for existing or planned space missions,
including fault handling [3,6]. Although the re-
planning software onboard each of these systems can
respond to some mission anomalies, the focus to date
has been on verification of normal behavior rather
than on identification of anomaly-related
requirements.

Other researchers, motivated by problems with
fault identification on rovers, have presented
improved algorithms for fault detection or responses.
Verma, Langford and Simmons present an algorithm
for estimating the dynamic state of a system (e.g.,
fault identification) from noisy measurements of
continuous variables [23] . Dearden et al. generate
contingency plans for rovers in the presence of
uncertainty regarding timing and resources [8]. In
both cases, the algorithms assume that requirements
for fault and contingency monitoring and handling
have been defined separately (the problem addressed
in this paper).

A few researchers specifically address safety
constraints in autonomous systems. For example, Fox
and Das describe the deployment of software agents
for intelligent decision-making in safety-critical
medical applications [12]. A European Space
Agency ESTEC project has investigated how to
ensure safety and dependability of autonomous space
software, based on lessons learned from non-space
autonomous domains. Among their
recommendations is a "safety bag" or safety
supervisor that checks constraints at execution time
1221. FDIR (Failure Detection, Identification and
Recovery) is handled by a separate module.

The work described here also builds on previous
work in vehicle health management. Patterson-Hine
et al. modeled the engine and transmission
subsystems on a UH-60 helicopter [20]. They
investigated potential failures or malfunctions of
hardware components, together with the downstream

effect on the system and the fault visibility on the
ground via various instrumentation suites. Whalley
et al. subsequently described the challenges involved
in using vehicle health modeling of a UAV to assist
in automated transition from remote control of the
vehicle to computer control [24]. Such a transition
will require improved contingency analyses and
motivates the work reported here.

3. Obstacle Analysis Approach

Our approach was to use a simplified version of
the framework for goal and obstacle analysis
provided i n [14,15,16] t o guide our investigation o f
software requirements for contingency identification
and handling. This application of the obstacle
analysis was informal and manual. The use of
Obstacle Analysis met the criteria for lightweight
applications of formal methods to requirements
modeling described by Easterbrook et al. [I I]:
applied in response to an existing development
problem, applied selectively to only some critical
portions of the requirements, offers only a partial
solution without guarantees of completeness or
correctness, and fed back into the development
process to improve the product.

In this section we give a brief description of Letier
and van Larnsweerde's obstacle-analysis framework.
The reader is referred to [14,15,16] for a detailed
account of the goal-oriented approach. The
subsequent section then describes our use and
adaptation of the obstacle analysis framework.

The underlying rationale for this work is that
contingencies are either obstacles to achieving goals
or are indications that the goals are unrealizable with
the a vailable a gents. C ontingency handling involves
the introduction of new goals or new agents to
resolve an obstacle. Incremental autonomy, which
involves replacing human agents with software
agents, produces new sub-goals to achieve the
autonomy, as well as new obstacles, new sub-goals to
resolve those obstacles, and new alternatives to
resolving previous obstacles.

For example, initial collision avoidance (e.g., of
the rotorcraft with simulated buildings) was done via
remote control by a pilot steering the airborne UAV
from the ground. Later, collision avoidance was
done by calculating a path through the obstacles
before flight began and then autonomously executing
the planned path during flight. Still later, the path
calculation handled new obstacles that appeared
during flight. Future software will autonomously
plan a path during flight based on real-time
processing of images taken by the UAV's cameras
and on software that autonomously detects changes in

the imaged target. Any solution for contingency
analysis thus needed to be readily expandable and
maintainable.

An advantage of autonomy is that it adds
flexibility to a mission, allowing it to take advantage
of unanticipated science opportunities that would be
missed if observations had to wait for human
interaction. The work described here is not
concerned with this s ort o f a daptive r e-planning for
science gain, but solely with negative contingencies
that can place the system in a hazardous state. Some
of the results appear to be applicable for intelligent
systems that re-plan for opportunistic science gain,
but that investigation is beyond the scope of the work
described here.

Goals. A goal defines a set o f d esired behaviors.
Goal-oriented requirements engineering organizes
goals in an AND/OR structure (i.e., a directed acyclic
graph) in which the AND nodes refine the goals into
sub-goals both of which must be satisfied and the OR
nodes provide alternative ways to meet the goals.
Refinement continues until a sub-goal (i.e., a terminal
goal) can be achieved by an agent. Software
requirements are terminal goals assigned to software
agents.

Agents, Agents (e.g., human operators, hardware
devices, or software components) are active objects
to whom the implementation of the sub-goals are
assigned. (Note that this definition of an agent
differs from the notion of autonomous software
agents. In the g oal-oriented approach an agent may,
or may not be software, and may or may not be
autonomous.) Software components are the most
common agents for UAV autonomy. In the UAV
project, the rapid evolution of the system meant that
new agents (autonomous features, as well as sensors,
cameras, range-finders, etc.) were regularly being
integrated into the operational flight system.

Obstacles. An obstacle describes a set of
undesirable behaviors. For example, an obstacle to
the goal "Store Camera Images in Memory" is
"Images Exceed Available Memory." This type of
obstacle is called a "non-satisfaction" obstacle since
it obstructs the satisfaction of a goal. [15]. Obstacles
cover a broad space of possible barriers to achieving
required functionality. Contingencies are those
obstacles that can arise during real-time operations,
such as failures or other anomalous events or
scenarios of concern. (Note that, to avoid confusion
with the common UAV term "obstacle avoidanceM-
meaning "collision avoidancen--we use the term
"obstacles" in this paper only to mean obstructions to
desired behaviors.)

Like goals, obstacles are organized and refined in
AND/OR structures, and are associated with the

goals they impede. The example in [15] uses a table
to specify the goals, assigned agents, and obstacles
for the system being anaIyzed (the safety-critical
London Ambulance System). 0 bstacles usually are
associated with terminal goals, i.e., goals assigned to
individual agents. Obstacle refinement patterns,
described both formally and as heuristics of the form
"if the specification has such or such characteristics
then consider such or such type of obstacle to it," are
described in [15]. We report experience with these
refinement patterns below.

Obstacle resolution. Once obstacles have been
identified, they need to be resolved. There are some
standard strategies to resolve the obstacles [15]. For
example, t o eliminate the obstacle, we can consider
getting rid of the goal that it obstructs, assigning a
different agent so that the obstacle does not occur,
adding a new goal to require that the obstacle be
avoided, changing (or "de-idealizing" the goal), or
changing the domain such that the obstacle can no
longer occur. Another strategy is to just tolerate the
obstacle, perhaps by adding a new goal (e.g., a new
requirement for contingency handling) to mitigate the
consequences of the obstacle, or perhaps by deciding
to accept the occasional occurrence of the obstacle.

Obstacle resolution involves evaluating and
selecting from among the available alternatives.
Often this involves the generation of new sub-goals
to eliminate, reduce, or tolerate the identified
contingency. These resolutions yield new software
requirements when assigned to software agents.

4. Results: Contingency Requirements
from Obstacle Analysis

We first performed a baseline contingency analysis
for two selected subsystems (communications and
perception) recommended by the project. Our
involvement began about the time that the rotorcraft
began regular autonomous flights within a
constrained airspace with autonomous collision-
avoidance path-planning around stationary objects
such as simulated buildings. The project involved a
tight-knit team of experts working together with
strong technical leadership. Most of our knowledge
of the system came from participation in weekly team
meetings and from discussions with the experts on
the team rather than from limited project
documentation.

The project considered contingency analysis of the
communications subsystem to be important because
many UAVs currently rely upon flight termination
(including commanded hard landings) to stop the
vehicle in case of communication failure. Improved
software contingency handling for communications

failure would make it possible for the UAV to fly to a
safe raIly point (a pre-designated location) and land
normally. The project also considered contingency
analysis of the perception system (i.e., the cameras
and range finders) to be important. This was both
because the cameras are assigned mission-critical
responsibilities during some operations and because
the cameras can provide backup position or ranging
information when other, primary components fail.

4.1 Obstacle Identification

To help identify obstacles for communication and
perception we used Bi-Directional Safety Analysis
[19]. We selected BDSA because it combines a
forward analysis (from potential failure modes to
their system effects) with a backward analysis (fiom
the failures to their contributing causes). The
forward analysis is similar to a Software Failure
Modes, Effects, and Criticality analysis (SFMECA).
The backward analysis is similar to a Software Fault
Tree Analysis (SFTA). The combination of the
forward and backward analyses has proven to be a
powerful way to identify and understand the causes
of software-associated failures in systems. Previous
applications include its use to validate fault
protection software on two spacecraft and to analyze
thruster failure modes on another.

As input to the obstacle analysis, we produced only
those portions of the goal-graph about which there
was some confusion or controversy. This was done
in order to facilitate review of accuracy by experts.
For example, Fig. 1 shows a portion of the goal graph
for 3-dimensional collision avoidance. For other

3-D Collision
Avoidance

Use 3-D Compute Range
M a p Mea rement

b
Acquire Raw Find Sensor
Range Data Position

Figure 1. Goal graph

Goals we used architectural diagrams, state diagrams,
and functional dependency graphs that we had earlier
produced as input to the obstacle analysis rather than
producing a separate goal-graph. The decision not to
produce a complete goal-graph meant that the
obstacle analysis was less rigorous, with no formal
proofs of completeness possible. However, obstacle
analysis explicitly supports the possibility of such
lightweight applications as a way to guide inquiry
into potential obstacles. In our case, iterative project
review of our specifications gave some assurance that
we had adequately captured the high and mid-level
goals.

We first performed a forward analysis of the
communications and perception subsystems. The S-
FMECA structured the investigation of possible
failures, since it considered the absence, corruption,
or untimely arrival of each input. Similarly, the S-
FMECA considered what would happen if the
software hung or failed in each state, or if a transition
took it to a wrong state. Details of the method appear
in [19]. In this way, several contingencies that
involved component failure were identified, such as
attaching incorrect rnetadata to an image (vehicle
pose, attitude, GPS position, etc.) with the effect that
the metadata does not reflect the image content, and
image compression failure that stresses available
memory.

Table I shows an excerpt fiom the SFMECA for
the data input "Request for Image Processing"
received by the onboard camera software. The
context is that a raw image is grabbed from the
UAV's video camera stream and is processed (e.g.,
compressed) onboard before being sent to the ground
mode on the subsystem (camera) and the system.

To investigate contingencies that did not involve
the failure of single components, we also performed a
backward analysis. The SFTA is a graphical
decomposition of a root node into its logical,
component preconditions [19]. The SFTAs took as
root nodes the negations of communication and
perception-related goals. In some cases the root
nodes were hazards (e.g., collision) that negated
high-level goals (e.g., collision avoidance). The
SFTA considered combinations of circumstances that
could together cause a problem. The SFTAs helped
identify alternate ways to get to an undesirable state
and, indirectly, to guide analysis of fault detectability
and fault propagation.

As an example, we consider a portion of the SFTA
for the root node "Failure of Stereo Imaging." (The
SFTA is not shown here due to space constraints.)
The root-node failure occurs when either the
Left-Camera-Fails OR the Right-Camera-Fails.
However, the left camera is redundant in that there is

Table 1. SFMECA Excerpt for the Camera Image Processing Request

both a grayscale and a color camera on the left side.
The left camera failure thus occurs only when both
the Grayscale-CameraFails AND the Color-
Camera-Fails. The SFTAs anchored the
investigation of faults that might prevent the
hnctional requirements from being satisfied.

The SFTA provided information about: (1) the
goal being studied (the negation of the root node); (2)
potential obstacles to the goal (the leaf nodes of the
fault tree); (3) necessary detection mechanisms (how
to determine that the obstacle has occurred.) That is,
any sub-goal to detect the occurrence of a node must
be assigned to an agent that has sufficient monitoring
capability as discussed below; and (4) possible
obstacle resolutions. For example, for an AND node
in the fault tree, we can sometimes use the other
branch as backup, (such as using the left color
camera when the 1 eft g rayscale c amera fails), while
for an OR node each child node often requires a
distinct resolution strategy.

Some obstacles are environmental. The recent
DARPA contest among autonomous vehicles in the
Mojave Desert illustrated the importance of
contingencies to detect and respond to environmental
anomalies. For example, one vehicle's forward
progress ended when it became entangled in a
barbed-wire fence that it could not "see." Another
vehicle went off course when it confused the sun,
which was low in the sky, with a huge object to be
avoided [4].

In the UAV domain, experience has shown that
one obstacle to wireless communication for UAV can
be interference from other wireless devices in the
vicinity. Several alternative resolutions exist to this
obstacle: a return to remote (human) piloting,,
ignoring the risk (what [I51 calls "live with it",
creating an operational policy to not use the wireless

Item

Request for
Image
Processing

channel in crowded environments, or switching
communications to an alternate medium. This last
alternative was the best, but required additional
hardware and software. The resolution itself thus
evolved with the initial resolution being a return to
piloted control and a policy change (i.e., a shif? in
domain assumptions), and the subsequent, longer-
term resolution being to switch key transmissions
between the rotorcraft and the ground to an alternate
medium.

4.2. Obstacle Resolution

Identification of Alternative Resolutions. The
construction of the SFMECA provided some insights
into resolution options. The right-hand column of the
table is a "Mitigation" column and describes ways to
eliminate or mitigate the failure mode in each row.
The SFTA also helped identify options for resolving
obstacles since finding a way to negate leaf nodes
removed the occurrence of some obstacles. The
obstacle resolution patterns in [I51 also provided
some guidance. For example, one pattern involves
the situation where a condition persists for an interval
prior to the obstacle's occurrence. Hence, the
obstacle can be anticipated and, perhaps, prevented
prior to its occurrence. The "Agent Substitution"
obstacle resolution pattern was the one most directly
applicable to autonomy. It captures how timeliness
obstacles (such as when ground control cannot react
quickly enough) can be resoIved by transfemng
responsibility to onboard software.

SeIection of a Resolution among Alternatives.
Consideration of tradeoffs weighed heavily in the
selection of obstacle resolutions in this application.
For example, there are two different sensors that can
both be used for range finding. However, they vary

Generic
Failure
Mode
Absent

Incorrect

Timing

Criticality

Minor

Minor to
Major

Minor

Mitigation

Use default processing; set
default to "compressed" to
limit memory usage and
bandwidth

Restrict processing choices
based on available info
about mission, resource
constraints

Time-tag images to detect
discrepancy

Failure
Mode
Description
No processing
command received

Processing settings
may be inappropriate
for conditions

. . ..

Requested processing
applied to
earlierilater image

Effects

Raw image not
compressed; buffer
limit could be
exceeded; downlink
stressed
Poor quality;
surveillance mission or
autonomous landing
may require usable
image
Delay in getting usable
image

significantly in power consumption, precision,
number of data points, range, position on the UAV,
etc. While each can provide some backup capability
if the other is inoperable, any swap involves some
intelligent tradeoff analysis either on the part of a
ground operator or on the part of the recovery
software. Other selection tradeoffs that we
encountered involved the choice of color or black-
and-white images (with color using more memory),
the levels of image compression to be used vs. the
CPU usage, the image quality vs. the downlink
bandwidth, and the number of stored image frames
vs. the size of images.

In some cases a real-time decision has to be made
by the onboard software as to how to resolve an
obstacle. Alternatives to resolving obstacles in such
situations were evaluated on four criteria: (1) Vehicle
health status indicators. An example is degraded
telemetry bandwidth, which indicates that the
transmission of images to the ground may need to be
reduced. (2) Availability indicators. This differs
from the first criterion in that the first criterion refers
to real-time data whereas the second criterion refers
to whether the component has been installed on the
rotorcraft at this time. It was found useful to separate
the two criteria to address those situations in which
the preferred alternative was not yet operational, but
soon would be. In this paper we draw examples both
from past software contingencies and from future,
anticipated contingencies. However, in the rapidly
evolving UAV system it was essential to maintain
rigor in checking consistency between components'
current availability and use of the software that
invoked it. (3) Image quality indicators. Examples
are that the image is not "empty" (i.e., all-black) and
that the attributes (such as size) of the image match
the attributes of the requested image. (4) Mission
profile. A t this time a p rirnary c onsideration i s the
planned usage of resources-memory to store
images, bandwidth to downlink images as well as
status data and power usage.

4.3. Deriving Software Requirements

In the example given above, where the obstacle to
storing images is "Images Exceed Available
Memory," alternative resolutions included "Reduce
Number of Images To Be Stored" and "Reduce Size
of Images To Be Stored" (i.e., compression). Each of
these resolutions itself involved refinement into
several sub-goals. For example, reduction of the
number of images can be based on how old the image
is or on some other assigned or calculated priority
measure. The calculated priority can be based on the
UAV location, orientation, and camera-pointing

angle or on the actual content of the image. The first
option yields an approximation to the likelihood that
the target of interest was captured in the image; the
second option discards images that did not include
the target.

l 3 e first option (prioritizing the images based on
location, orientation, and pointing angle) was only
feasible if the camera software could access the GPS
data, which it currently could not. This is an example
of what Letier and van Lamsweerde call the
unrealizability problem, meaning that not all stated
goals are realizable by agents in the system. They
give some pragmatic conditions for unrealizability in
[14]. For our application, the two most important
conditions were Lack of Monitorability and Lack of
Controllability.

Missing monitorability requirements. One of
the most useful results of the Obstacle Analysis
approach on the UAV was in identifying gaps
between the capability of the assigned software
agents to monitor for certain states or events and the
need to have them do so. Most of the new software
requirements found during the contingency analysis
involved the dependency of certain detection,
isolation, or recovery actions on specific capabilities
that the software currently lacked. In terms of goal
orientation, these goals were currently unrealizable.
Most often these gaps involved data that the software
needed to perform its functions, such as messages to
which it needed to be subscribed or resource usage
states that i t had t o track. I dentification o f missing
monitor data added ground visibility into the system
state and helped us design for verifiability.

Missing controllability requirements. Similarly,
the obstacle analysis identified several instances in
which the resolution involved the software being
asked to set the values of variables that it did not
control. For example, the software responsible for
dynamically throttling the writing of images into
memory based on their priority level must be able to
control (i.e., change) the value of the priority
threshold for grabbing images. A nother e xample i s
that adjusting the jpeg quality of images in response
to a low-light contingency can only be realized by
software that controls the jpeg parameters. Both
monitorability and controllability are important for
establishing the software requirements needed for
consistent increments in software autonomy.

In s ome c ases, one obstacle c an require muItiple
new software requirements to achieve detection and
resolution. For example, mitigating the obstacle
where images exceed available memory involves
both image compression and a "cancel" command to
reverse acquisition of requested images that are no
longer needed. In other cases one resolution may

remove several obstacles. This was the case with the
addition of accelerometer data on a previous
helicopter [20].

4.4 Evolution and Autonomy

The investigation described above identified three
main ways that incremental autonomy affects the
analysis of contingencies.

4.4.1. Nothing lost. Contingency analysis of the
evolving system first verified that previously existing
software requirements to detect, isolate, and respond
to contingencies were still valid. This involved
checking that, for every previously identified obstacle
to a goal that could still occur, that the previously
identified resolution (usually a derived software
requirement) could still handle the obstacle. For
example, when the capability was added for
autonomous pivoting of the UAV around a target, the
existing handling of the obstacle 'ccornrnunication
lost" remained valid.

An unexpected finding was that the project
sometimes chose to "dial down" the selected level of
autonomy, essentially disabling some existing
features. Our assumption had been that the level of
autonomous contingency handling would only
increase. However, at times (e.g., a demonstration or
a flight test of a new component) some degree of
autonomous control was returned to the remote
(human) pilot. These instances usually did not
involve a simple rollback to a previous version but a
pruned version of the current software. Contingency
analysis in such situations was done in an ad hoc
manner with consistency maintained primarily by
inspec tion.

This issue of adjustable autonomy has been
described by Schreckenghost et al, in the context of
space life support systems where a human may need
to override autonomous when an anomaly occurs
[2 I] . We plan to investigate whether constraint-
checking techniques developed to solve a similar
problem in product families ("de-scoping" of features
for a baseline product) apply to the UAV domain.

4.4.2. Something gained. Enhancements to the
rotorcraft provided new ways to detect, identify, or
respond to existing contingencies. Often these
enhancements resulted in new sub-goals (e.g., added
autonomous functionality) and in new "OR branches
for the obstacle resolution model (i.e., new
alternatives for how to handle contingencies).

In general, new sensor agents (e.g., articulation of
the stereo cameras so that they can swivel up and
down) provided alternative monitoring sub-goals for

contingency detection or alternative control sub-goals
for contingency recovery. New software agents (e.g.,
the capability to dynamically add collision-avoidance
targets to the path-planning calculation) offered
improved autonomous capabilities for responding t o
contingencies and resulted in more recovery options.

4.4.3. No free lunch. As more autonomy is required,
new obstacles and dependencies were also
introduced. That is, with the addition of new agent
capabilities came the possibility of new contingences.
For example, the addition of a new laser brings with
it the failure modes of the laser to be considered, as
well as whether these failure modes are detectable on
the ground and by onboard software. Some new
agents resulted in new requirements for calibration
before use. The addition of a new feature also brings
with it potential resource contention (e.g., for power)
as well as the need to identify new feature
dependencies (e.g., between the fidelity of color
images and passive-range algorithms).

While the focus of incremental autonomy tends to
be on what is gained in terms of more rapid and
flexible handling of contingencies, contingency
analysis also looks at the potential threats introduced
by the new software complexity. Contingency
analysis investigated the failure modes for new
agents, new opportunities for feature interactions, and
new possibilities for conflicts among goals (most
commonly in terms of resource contention).
Additional issues such as mixed-initiative control
(where the rotorcraft receives inconsistent commands
from the onboard software, the ground software, and
the remote, human pilot), sensor fusion problems
(where the replacement of a single sensor by a suite
of perhaps heterogeneous sensors requires the
software to compose the data and handle data
inconsistencies), and coordination problems (where a
fleet of rotorcraft must coordinate their movement
and resource usage), were not obstacles in the current
system but are potential, future obstacles.

The three categories above (nothing lost,
something gained, no free lunch) are clearly
interrelated. The evolution of the rotorcraft creates
new contingencies but also new options for handling
those contingencies. Incremental autonomy results in
both new goals and new obstacles, and prompts
changes to both obstacle refinement and obstacle
resolution. Contingency analysis helped prioritize
the objectives of the contingency responses.

Two areas in which existing obstacle analysis
techniques provided only limited guidance on the
UAV were in analyzing fault isolation and in
identifying feature interactions. It is often easier in
Failure Detection, Isolation and Recovery (FDIR) to

determine that a failure has occurred (detection) than
it is to figure out precisely what happened and how to
prevent it from propagating (isolation). For example,
if downlink communication stops, it can be quite
difficult to isolate the problem. We are working to
extend the obstacle refinement patterns to more
explicitly address failure isolation issues in this
domain.

With regard to detecting interactions as new
features are added, Doerr provides guidelines for
detection of feature interaction in product lines that
were readily transferable to the UAV application
[lo]. For example, one such guideline that was
useful on the UAV is that, if feature B uses feature A,
then all features that also use feature A must be
identified. Doerr gives an example from the mobile
phone domain, where b 0th s ending a short message
and placing a call use the network component. To
avoid conflicts, it is important to identify that both
features use the same component.

5. Lessons Learned

The advantages of goal-oriented obstacle analysis for
the on-going identification of contingency
requirements in the experience reported here were:

Obstacle analysis helped identify new
software contingency requirements in the
UAV application. For autonomous systems
that are experimental or involve highly
innovative features, incremental autonomy
seems to be a common mode of
development. Incremental autonomy creates
new software requirements both for
increased functionality and to handle new
contingencies. With the added complexity
come more ways for the system to display
undesirable behaviors a s well a s new ways
of achieving goals.
Obstacle analysis gave a structured way to
reason incrementally about new alternatives
for handling contingencies that might need
to be addressed. The capacity for
incremental reasoning was important in this
setting because the system was both
currently operational and also evolving
rapidly to add autonomous features.
Obstacle analysis supported evaluation of
the continued validity of existing software
contingency requirements as the system and
the requirements evolved. The cyclical
nature of goal-oriented requirements
engineering, in which new goals are
introduced t o resolve a n obstacle, but must
then also be included in an iterative analysis,

matched the nature of the UAV project quite
well. This approach provided as output a
specification that explicitly linked
requirements and contingencies. Assignment
of a goal to a hardware or human agent at
one point in time could be replaced by
assignment to an autonomous software agent
as the software evolved. The contingency
analysis could then be updated by checking
whether existing requirements were still
valid and whether any new obstacles should
be generated as a result of the change.

By supporting the identification of software
contingency requirements, obstacle analysis
contributed to the building of a more robust system.

Acknowledgments. The research described in this
paper was carried out in part at the Jet Propulsion
Laboratory, California Institute of Technology, under
a contract with the National Aeronautic and Space
Administration. It was partially funded by NASA's
Office of Safety and Mission Assurance Software
Assurance Research Program. The first author's
research is supported in part by National Science
Foundation Grants 0204139 and 0205588. The
authors thank Matt W halley and the other members
of the Autonomous Rotorcraft Project team for
sharing their expertise and enthusiasm.

References

[I] A. Anton and C. Potts, "The Use of Goals to
Surface Requirements for Evolving Systems," 20th
Int'l Conf Sofmare Eng, Computer Society, 1998, pp.
157-166.

[2] K. Bennett and V. Rajlich, "Software
Maintenance and Evolution: a Roadmap", in A.
Finkelstein, ed. The Future of S o f ~ a r e Engineering.
ACM Press, New York, 2000, pp. 75-87.

[3] G. Brat et al., "Experimental Evaluation of
Verification and Validation Tools on Martian Rover
Software," Formal Methods in Systems Design
Journal, to appear.

[4] Caltech, "Bob Gets His Learner's Permit,"
Engineering and Science, 2004, p. 5-7.

[5] R. Carter, A. Anton, A. Dagnino, and L.
Williams, "Evolving Beyond Requirements Creep: A
Risk-Based Evolutionary Prototyping Model," 5th
Int'l Symp Reg Eng, 2001, pp. 94- 101.

61 S.Chien, et al., "Onboard Autonomy on the Three
Corner Sat Mission," Int'l Symp AI, Robotics, and
Automation for Space, Montreal, Canada, IEEE,
2001.

[73 J. Cleland-Huang, C. Chang and M. Chnstensen,
"Event-Based Traceability for Managing
Evolutionary Change", IEEE Trans on S o f i a r e Eng,
Computer Society, Los Alamitos, Sept, 2003, pp.
796-8 10.

[SIR. Dearden, et al., "Contingency Planning for
Planetary Rovers," 3rd Int '1 NASA Worhhop
Planning & Scheduling for Space, Houston, Texas,
October 2002.

[9] R. deLemos, "Safety Analysis of an Evolving
Software Architecture," 5th IEEE Int'l Symp High
Assurance Systems, Computer Society, 2000, pp.
159-167.

[lo] J. Doerr, "Requirements Engineering for Product
Lines," Diploma thesis, U of Kaiserslautern, 2002.

[l I] S. Easterbrook, R. Lutz, R. Covington, J. Kelly,
Y. Ampo, and D. Hamilton, "Experiences Using
Lightweight Methods for Requirements Modeling,"
IEEE Trans on Software Eng, Computer Society, Los
Alarnitos, Jan., 1998, pp. 4-14.

1121 Fox, J. and S. Das, Safe and Sound, A1 in
Hazardous Applications, AAAI Press, Menlo Park,
CA, 2000.

I131 T. Johnson, H. Sutherland, and S. Bush, "The
TRAC Mission Manager Autonomous Control
Executive", IEEE Aerospace Conference, Big Sky,
Montana, 2001.

[I41 E. Letier and A, van Lamsweerde, "Agent-Based
Tactics for Goal-Oriented Requirements
Elaboration", 24th Znt'l Conf Sofhare Eng, ACM
Press, 2002, pp. 83-93.

[IS] E. Letier and A. van Larnsweerde, "Handling
Obstalces in Goal-Oriented Requirements

Engineering," IEEE Trans on S o f i a r e Eng, Oct.
2000, pp. 978- 1005.

[16] E. Letier and A. van Lamsweerde, "High
Assurance Requires Goal Orientation", Int'l
Workshop Requirements for High Assurance Systems,
Essen, September 2002.

[17] R. Lutz and I. Mikulski, "Operational Anomalies
as a Cause of Safety-Critical Requirements
Evolution", J Systems and Software, 2003, pp. 155-
161.

[18] R. Lutz and I. Mikulski, "Empirical Analysis of
Safety-Critical A nomalies during Operations", IEEE
Trans Software Eng, Computer Society, March,
2004, pp. 172- 180.

[19] R. Lutz and R. Woodhouse, "Requirements
Analysis Using Forward and Backward Search,"
Annals o f S o f i a r e Eng, 1997, pp. 459-475.

[20] A. Patterson-Hine, et al., "A Model-based
Health Monitoring and Diagnostic System for the
UH-60 Helicopter," Am 'n Helicopter Socieg 57th
Annual Forum, AHS, Washington, 2001.

[21]D. Schreckenghost, et al., "Adjustable Control
Autonomy for Anomaly Response in Space-based
Life Support Systems," IJCA I- 0 I
Workshop Autonomy, Delegation, and Control:
Interacting with Autonomous Agents, 2001.

[22] Software Product Assurance for Autonomy On-
board Spacecrafr, European Space Agency ESTEC.
Ap:l/ftp.estec.esa.n~pub/tos-
qqlqqs/SPAAS/StudyOutputs.

1231 V. Verma, J. Langford, and R. Simmons, "Non-
Parametric Fault Identification for Space Rovers",
Int'l Symp A I and Robotics in Space, 2001.

[24] M. Whalley, M. Freed, M. Takahashi, D.
Christian, A. Patterson-Hine, G. Schulein, and R.
Harris, "The NASAiArmy Autonomous Rotorcraft
Project ", Am 'n Helicopter Society 59th Annual
Forum,2003.

