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Abstract 

This paper describes experience using Obstacle 
Analysis to identlfi contingency requirements on an 
unpiloted aerial vehicle. A contingency is an 
operational anomaly, and may or may not involve 
component failure. The challenges to this eflort 
were: ( I )  rapid evolution of the system while 
operational, (2) incremental autonomy as 
capabilities were transferred from ground control to 
software control and (3) the eventual safety- 
criticality o f  s uch systems a s  they begin t o  f ly o ver 
populated areas. The results reported here are 
preliminary but show that Obstacle Analysis helped 
(1) identrh new contingencies that appeared as 
autonomy increased; (2) idenjib new alternatives for 
handling both previozcsly known and new 
contingencies; and (3) investigate the continued 
validity of existing s o f ~ a r e  requirements for 
contingency handling. Since many mobile, intelligent 
systems are built using a development process that 
poses the same challenges, the results appear to have 
applicability to other similar systems. 

1. Introduction 

This paper describes experience using Obstacle 
Analysis [ 151 to identify contingency requirements 
on an unpiloted aerial vehicle (UAV). A contingency 
is an operational anomaly that may or may not 
involve component failure. The problem was how to 
identify, reason about, and specify the software 
requirements for handling contingencies on an 
experimental, autonomous helicopter. 

Unpiloted Aerial Vehicles (also called unmanned 
or uninhabited aerial vehicles) are attractive 
candidates for future surveillance of high-risk 
environments such as volcanoes or forest fires; for 
automated surveys, such as of highway traffic or 
electrical lines; and for assisted search and rescue 

operations, such as for downed pilots or lost hikers 
P I .  

Existing approaches to UAV autonomy tend to 
use ad hoc approaches to anomalies. The focus has 
been primarily on developing new system capabilities 
rather than on identifying contingencies. However, 
to achieve the levels of robustness necessary to 
eventually fly in populated airspaces, a more 
structured approach is needed. A recent study, for 
example, found the most common cause of UAV 
failure to be emergency procedures [13]. 

The requirements for anomaly handling in these 
autonomous systems have to encompass not only 
traditional fault protection (e.g., the failure of a 
sensor or an overpressure in a fuel tank) but also 
unexpected environmental or operational scenarios 
that could contribute to hazards. An example of a 
contingency that does not involve component failure 
is a strong crosswind that buffets the UAV and 
interferes with the camera's ability to acquire the 
images needed for mission success. These broader 
classes of anomalies that must be anticipated and 
handled are referred to as "contingencies" [ 8 ] .  The 
software requirements for detecting, identifying, and 
responding to such anomalies we call "contingency 
handling." 

The challenges to the effort reported here were 
threefold: (1) rapid evolution of the system while 
operational, (2) incremental autonomy as capabilities 
were transferred from ground control to software 
control and (3) the eventual safety-criticality of such 
systems when they begin to fly in national airspace. 

Rapid Evolution. The Autonomous Rotorcraft 
Project is a NASA UAV project for autonomous 
helicopter research for low-altitude flight [24]. Two 
small Yamaha RMAX helicopters, originally 
developed for remote-piloted crop-dusting in farming 
regions, serve as the platforms to demonstrate the 
new autonomous software. The autonomous RMAX 
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system has an onboard attitude sensor 
(accelerometers and gyros), a GPS sensor, and a 
communication modem [22]. The rotorcraft has four 
cameras-a stereo pair of cameras to provide input to 
a passive range estimation algorithm, a camcorder to 
provide video recording, and a color camera to 
provide situational awareness. Ground support is 
housed in an instrumentation trailer with a GPS 
ground station, radio modems for communication 
with the aircraft, and video displays of the camera 
images. 

Two key components of the software architecture 
for the system are Apex and CLAW. The Apex 
reactive planner selects actions for execution on- 
board the rotorcraft based partly on a library of stored 
partial plans. Apex has the capability for path 
planning around obstacles. The inner and outer-loop 
Control Laws (CLAW) provide attitude stabilization 
and waypoint guidance control. CLAW has a 
hardware model that is used for limited hardware-in- 
the-loop testing on the ground. In addition, an 
operator on the ground can adjust variable values and 
alter the state of the control law during execution to 
provide ground control. A simulation environment 
provides both testing of the reactive planner and a 
high-fidelity simulated view of the rotorcraft and its 
operating environment synthesized from telemetered 
vehicle state and position data. 

The rapid development process for the UAV is 
similar to incremental prototyping except that the 
vehicle is already operational (flying) during the 
process. Requirements evolve rapidly as autonomous 
features are added regularly. 

Incremental Autonomy. Autonomy is the 
capability of a software system to make control 
decisions on its own. The advantage of autonomy in 
an unpiloted vehicle is that it can react faster than 
ground-based controllers to failures, anomalous 
situations, and changes in environment. On the UAV 
incremental autonomy means either (1) something 
previously done manually (by operator control) is 
now done automatically or (2) something that could 
not be done manually is now done automatically. An 
example of the first category of incremental 
autonomy is the shift from a remote-piloted landing 
(human-in-the-loop) to an autonomous landing. An 
example of the second category of incremental 
autonomy is the move from downlinking to the 
ground all images taken by the onboard cameras to 
downlinking only those images in which onboard 
software finds a feature of interest. 

Safety-critical focus. The system is an 
experimental rotorcraft for exploring the feasibility of 
unpiloted vehicles in the national airspace. Issues of 
software safety are thus of interest. An early 

understanding of possible contingencies and of 
requirements on the software responsible for 
detecting, identifying, and handling contingencies 
contributes to building in safety features. 

This paper reports experience with a novel 
application of goal-oriented requirements engineering 
to study contingencies in a rapidly evolving, 
autonomous system. Our approach to contingency 
analysis was similar to an informal application of 
Letier and van Lamsweerde's goal-oriented 
techniques for obstacle analysis [15]. They define an 
obstacle as a set of undesirable behaviors. The results 
reported here are preliminary but show that Obstacle 
Analysis helped: ( I )  identify new contingencies that 
appeared as autonomy increased; (2) identify new 
alternatives for handling both previously known and 
new contingencies; and (3) investigate the continued 
validity of existing software requirements for 
contingency handling. The paper describes the 
consequences of these results in terms of the 
requirements engineering of autonomous systems. 
Since many mobile, intelligent systems are built 
using a development process that poses the same 
challenges, the results reported here may have 
applicability to other similar systems such as mobile 
robots and rovers. 

2. Related Work 

The w ork on contingency analysis described here 
draws on or has implications for work in three areas: 
requirements evolution, fault handling in autonomous 
systems, and goal-oriented requirements analysis. We 
describe related work in the first two areas in this 
section. Related work in the last area appears in 
Section 3 with the description of the approach. 

Most work in requirements evolution addresses 
the pre-implementation phases of a system. Anton 
and Potts, for example, use goals and obstacle 
analysis to refine evolving requirements in a 
developing system [I] .There have also been several 
studies describing agile approaches for handling 
rapidly evolving systems (e.g., the "evolutionary 
prototyping" in [5]). The authors recommend these 
approaches for market-driven domains such as e- 
commerce rather than for critical systems. 

Requirements evolution post-deployment has been 
studied primarily from the viewpoint of how it can be 
managed. The focus is on establishing processes to 
scope or evaluate proposed changes, e.g., in terms of 
traceability [7] or change-impact studies. Similarly, 
maintenance methodologies tend to focus on 
classifying and managing requirements changes 
rather than on analyzing changes [2]. 



The domain of concern in most requirements 
evolution work is the business environment rather 
than safety-critical systems such as UAVs. There has 
been little work that has looked at evolving 
requirements in operational, critical systems. 
DeLemos is an exception, modeling an operational 
system in which requirements evolution (specifically, 
automating the self-destruct feature of a rocket) can 
be structured so that the architectural components 
remain unchanged while their interactions adapt to 
the changed requirements [9]. Lutz and Mikulski 
showed that requirements evolved during operations 
on seven spacecraft to compensate for anomalies 
caused by hardware degradation or the occurrence of 
rare events 11 7,181. 

Several recent papers describe autonomy 
requirements for existing or planned space missions, 
including fault handling [3,6]. Although the re- 
planning software onboard each of these systems can 
respond to some mission anomalies, the focus to date 
has been on verification of normal behavior rather 
than on identification of anomaly-related 
requirements. 

Other researchers, motivated by problems with 
fault identification on rovers, have presented 
improved algorithms for fault detection or responses. 
Verma, Langford and Simmons present an algorithm 
for estimating the dynamic state of a system (e.g., 
fault identification) from noisy measurements of 
continuous variables [ 23 ] .  Dearden et al. generate 
contingency plans for rovers in the presence of 
uncertainty regarding timing and resources [8]. In 
both cases, the algorithms assume that requirements 
for fault and contingency monitoring and handling 
have been defined separately (the problem addressed 
in this paper). 

A few researchers specifically address safety 
constraints in autonomous systems. For example, Fox 
and Das describe the deployment of software agents 
for intelligent decision-making in safety-critical 
medical applications [12]. A European Space 
Agency ESTEC project has investigated how to 
ensure safety and dependability of autonomous space 
software, based on lessons learned from non-space 
autonomous domains. Among their 
recommendations is a "safety bag" or safety 
supervisor that checks constraints at execution time 
1221. FDIR (Failure Detection, Identification and 
Recovery) is handled by a separate module. 

The work described here also builds on previous 
work in vehicle health management. Patterson-Hine 
et al. modeled the engine and transmission 
subsystems on a UH-60 helicopter [20]. They 
investigated potential failures or malfunctions of 
hardware components, together with the downstream 

effect on the system and the fault visibility on the 
ground via various instrumentation suites. Whalley 
et al. subsequently described the challenges involved 
in using vehicle health modeling of a UAV to assist 
in automated transition from remote control of the 
vehicle to computer control [24]. Such a transition 
will require improved contingency analyses and 
motivates the work reported here. 

3. Obstacle Analysis Approach 

Our approach was to use a simplified version of 
the framework for goal and obstacle analysis 
provided i n  [ 14,15,16] t o  guide our investigation o f 
software requirements for contingency identification 
and handling. This application of the obstacle 
analysis was informal and manual. The use of 
Obstacle Analysis met the criteria for lightweight 
applications of formal methods to requirements 
modeling described by Easterbrook et al. [I  I]: 
applied in response to an existing development 
problem, applied selectively to only some critical 
portions of the requirements, offers only a partial 
solution without guarantees of completeness or 
correctness, and fed back into the development 
process to improve the product. 

In this section we give a brief description of Letier 
and van Larnsweerde's obstacle-analysis framework. 
The reader is referred to [14,15,16] for a detailed 
account of the goal-oriented approach. The 
subsequent section then describes our use and 
adaptation of the obstacle analysis framework. 

The underlying rationale for this work is that 
contingencies are either obstacles to achieving goals 
or are indications that the goals are unrealizable with 
the a vailable a gents. C ontingency handling involves 
the introduction of new goals or new agents to 
resolve an obstacle. Incremental autonomy, which 
involves replacing human agents with software 
agents, produces new sub-goals to achieve the 
autonomy, as well as new obstacles, new sub-goals to 
resolve those obstacles, and new alternatives to 
resolving previous obstacles. 

For example, initial collision avoidance (e.g., of 
the rotorcraft with simulated buildings) was done via 
remote control by a pilot steering the airborne UAV 
from the ground. Later, collision avoidance was 
done by calculating a path through the obstacles 
before flight began and then autonomously executing 
the planned path during flight. Still later, the path 
calculation handled new obstacles that appeared 
during flight. Future software will autonomously 
plan a path during flight based on real-time 
processing of images taken by the UAV's cameras 
and on software that autonomously detects changes in 



the imaged target. Any solution for contingency 
analysis thus needed to be readily expandable and 
maintainable. 

An advantage of autonomy is that it adds 
flexibility to a mission, allowing it to take advantage 
of unanticipated science opportunities that would be 
missed if observations had to wait for human 
interaction. The work described here is not 
concerned with this s ort o f a  daptive r e-planning for 
science gain, but solely with negative contingencies 
that can place the system in a hazardous state. Some 
of the results appear to be applicable for intelligent 
systems that re-plan for opportunistic science gain, 
but that investigation is beyond the scope of the work 
described here. 

Goals. A goal defines a set  o f d esired behaviors. 
Goal-oriented requirements engineering organizes 
goals in an AND/OR structure (i.e., a directed acyclic 
graph) in which the AND nodes refine the goals into 
sub-goals both of which must be satisfied and the OR 
nodes provide alternative ways to meet the goals. 
Refinement continues until a sub-goal (i.e., a terminal 
goal) can be achieved by an agent. Software 
requirements are terminal goals assigned to software 
agents. 

Agents, Agents (e.g., human operators, hardware 
devices, or software components) are active objects 
to whom the implementation of the sub-goals are 
assigned. (Note that this definition of an agent 
differs from the notion of autonomous software 
agents. In the g oal-oriented approach an agent may, 
or may not be software, and may or may not be 
autonomous.) Software components are the most 
common agents for UAV autonomy. In the UAV 
project, the rapid evolution of the system meant that 
new agents (autonomous features, as well as sensors, 
cameras, range-finders, etc.) were regularly being 
integrated into the operational flight system. 

Obstacles. An obstacle describes a set of 
undesirable behaviors. For example, an obstacle to 
the goal "Store Camera Images in Memory" is 
"Images Exceed Available Memory." This type of 
obstacle is called a "non-satisfaction" obstacle since 
it obstructs the satisfaction of a goal. [15]. Obstacles 
cover a broad space of possible barriers to achieving 
required functionality. Contingencies are those 
obstacles that can arise during real-time operations, 
such as failures or other anomalous events or 
scenarios of concern. (Note that, to avoid confusion 
with the common UAV term "obstacle avoidanceM- 
meaning "collision avoidancen--we use the term 
"obstacles" in this paper only to mean obstructions to 
desired behaviors.) 

Like goals, obstacles are organized and refined in 
AND/OR structures, and are associated with the 

goals they impede. The example in [15] uses a table 
to specify the goals, assigned agents, and obstacles 
for the system being anaIyzed (the safety-critical 
London Ambulance System). 0 bstacles usually are 
associated with terminal goals, i.e., goals assigned to 
individual agents. Obstacle refinement patterns, 
described both formally and as heuristics of the form 
"if the specification has such or such characteristics 
then consider such or such type of obstacle to it," are 
described in [15]. We report experience with these 
refinement patterns below. 

Obstacle resolution. Once obstacles have been 
identified, they need to be resolved. There are some 
standard strategies to resolve the obstacles [15]. For 
example, t o  eliminate the obstacle, we can consider 
getting rid of the goal that it obstructs, assigning a 
different agent so that the obstacle does not occur, 
adding a new goal to require that the obstacle be 
avoided, changing (or "de-idealizing" the goal), or 
changing the domain such that the obstacle can no 
longer occur. Another strategy is to just tolerate the 
obstacle, perhaps by adding a new goal (e.g., a new 
requirement for contingency handling) to mitigate the 
consequences of the obstacle, or perhaps by deciding 
to accept the occasional occurrence of the obstacle. 

Obstacle resolution involves evaluating and 
selecting from among the available alternatives. 
Often this involves the generation of new sub-goals 
to eliminate, reduce, or tolerate the identified 
contingency. These resolutions yield new software 
requirements when assigned to software agents. 

4. Results: Contingency Requirements 
from Obstacle Analysis 

We first performed a baseline contingency analysis 
for two selected subsystems (communications and 
perception) recommended by the project. Our 
involvement began about the time that the rotorcraft 
began regular autonomous flights within a 
constrained airspace with autonomous collision- 
avoidance path-planning around stationary objects 
such as simulated buildings. The project involved a 
tight-knit team of experts working together with 
strong technical leadership. Most of our knowledge 
of the system came from participation in weekly team 
meetings and from discussions with the experts on 
the team rather than from limited project 
documentation. 

The project considered contingency analysis of the 
communications subsystem to be important because 
many UAVs currently rely upon flight termination 
(including commanded hard landings) to stop the 
vehicle in case of communication failure. Improved 
software contingency handling for communications 



failure would make it possible for the UAV to fly to a 
safe raIly point (a pre-designated location) and land 
normally. The project also considered contingency 
analysis of the perception system (i.e., the cameras 
and range finders) to be important. This was both 
because the cameras are assigned mission-critical 
responsibilities during some operations and because 
the cameras can provide backup position or ranging 
information when other, primary components fail. 

4.1 Obstacle Identification 

To help identify obstacles for communication and 
perception we used Bi-Directional Safety Analysis 
[19]. We selected BDSA because it combines a 
forward analysis (from potential failure modes to 
their system effects) with a backward analysis (fiom 
the failures to their contributing causes). The 
forward analysis is similar to a Software Failure 
Modes, Effects, and Criticality analysis (SFMECA). 
The backward analysis is similar to a Software Fault 
Tree Analysis (SFTA). The combination of the 
forward and backward analyses has proven to be a 
powerful way to identify and understand the causes 
of software-associated failures in systems. Previous 
applications include its use to validate fault 
protection software on two spacecraft and to analyze 
thruster failure modes on another. 

As input to the obstacle analysis, we produced only 
those portions of the goal-graph about which there 
was some confusion or controversy. This was done 
in order to facilitate review of accuracy by experts. 
For example, Fig. 1 shows a portion of the goal graph 
for 3-dimensional collision avoidance. For other 

3-D Collision 
Avoidance 

Use 3-D Compute Range 
M a p  Mea rement 

b 
Acquire Raw Find Sensor 
Range Data Position 

Figure 1. Goal graph 

Goals we used architectural diagrams, state diagrams, 
and functional dependency graphs that we had earlier 
produced as input to the obstacle analysis rather than 
producing a separate goal-graph. The decision not to 
produce a complete goal-graph meant that the 
obstacle analysis was less rigorous, with no formal 
proofs of completeness possible. However, obstacle 
analysis explicitly supports the possibility of such 
lightweight applications as a way to guide inquiry 
into potential obstacles. In our case, iterative project 
review of our specifications gave some assurance that 
we had adequately captured the high and mid-level 
goals. 

We first performed a forward analysis of the 
communications and perception subsystems. The S- 
FMECA structured the investigation of possible 
failures, since it considered the absence, corruption, 
or untimely arrival of each input. Similarly, the S- 
FMECA considered what would happen if the 
software hung or failed in each state, or if a transition 
took it to a wrong state. Details of the method appear 
in [19]. In this way, several contingencies that 
involved component failure were identified, such as 
attaching incorrect rnetadata to an image (vehicle 
pose, attitude, GPS position, etc.) with the effect that 
the metadata does not reflect the image content, and 
image compression failure that stresses available 
memory. 

Table I shows an excerpt fiom the SFMECA for 
the data input "Request for Image Processing" 
received by the onboard camera software. The 
context is that a raw image is grabbed from the 
UAV's video camera stream and is processed (e.g., 
compressed) onboard before being sent to the ground 
mode on the subsystem (camera) and the system. 

To investigate contingencies that did not involve 
the failure of single components, we also performed a 
backward analysis. The SFTA is a graphical 
decomposition of a root node into its logical, 
component preconditions [19]. The SFTAs took as 
root nodes the negations of communication and 
perception-related goals. In some cases the root 
nodes were hazards (e.g., collision) that negated 
high-level goals (e.g., collision avoidance). The 
SFTA considered combinations of circumstances that 
could together cause a problem. The SFTAs helped 
identify alternate ways to get to an undesirable state 
and, indirectly, to guide analysis of fault detectability 
and fault propagation. 

As an example, we consider a portion of the SFTA 
for the root node "Failure of Stereo Imaging." (The 
SFTA is not shown here due to space constraints.) 
The root-node failure occurs when either the 
Left-Camera-Fails OR the Right-Camera-Fails. 
However, the left camera is redundant in that there is 



Table 1. SFMECA Excerpt for the Camera Image Processing Request 

both a grayscale and a color camera on the left side. 
The left camera failure thus occurs only when both 
the Grayscale-CameraFails AND the Color- 
Camera-Fails. The SFTAs anchored the 
investigation of faults that might prevent the 
hnctional requirements from being satisfied. 

The SFTA provided information about: (1) the 
goal being studied (the negation of the root node); (2) 
potential obstacles to the goal (the leaf nodes of the 
fault tree); (3) necessary detection mechanisms (how 
to determine that the obstacle has occurred.) That is, 
any sub-goal to detect the occurrence of a node must 
be assigned to an agent that has sufficient monitoring 
capability as discussed below; and (4) possible 
obstacle resolutions. For example, for an AND node 
in the fault tree, we can sometimes use the other 
branch as backup, (such as using the left color 
camera when the 1 eft g rayscale c amera fails), while 
for an OR node each child node often requires a 
distinct resolution strategy. 

Some obstacles are environmental. The recent 
DARPA contest among autonomous vehicles in the 
Mojave Desert illustrated the importance of 
contingencies to detect and respond to environmental 
anomalies. For example, one vehicle's forward 
progress ended when it became entangled in a 
barbed-wire fence that it could not "see." Another 
vehicle went off course when it confused the sun, 
which was low in the sky, with a huge object to be 
avoided [4]. 

In the UAV domain, experience has shown that 
one obstacle to wireless communication for UAV can 
be interference from other wireless devices in the 
vicinity. Several alternative resolutions exist to this 
obstacle: a return to remote (human) piloting,, 
ignoring the risk (what [I51 calls "live with it", 
creating an operational policy to not use the wireless 

Item 

Request for 
Image 
Processing 

channel in crowded environments, or switching 
communications to an alternate medium. This last 
alternative was the best, but required additional 
hardware and software. The resolution itself thus 
evolved with the initial resolution being a return to 
piloted control and a policy change (i.e., a shif? in 
domain assumptions), and the subsequent, longer- 
term resolution being to switch key transmissions 
between the rotorcraft and the ground to an alternate 
medium. 

4.2. Obstacle Resolution 

Identification of Alternative Resolutions. The 
construction of the SFMECA provided some insights 
into resolution options. The right-hand column of the 
table is a "Mitigation" column and describes ways to 
eliminate or mitigate the failure mode in each row. 
The SFTA also helped identify options for resolving 
obstacles since finding a way to negate leaf nodes 
removed the occurrence of some obstacles. The 
obstacle resolution patterns in [I51 also provided 
some guidance. For example, one pattern involves 
the situation where a condition persists for an interval 
prior to the obstacle's occurrence. Hence, the 
obstacle can be anticipated and, perhaps, prevented 
prior to its occurrence. The "Agent Substitution" 
obstacle resolution pattern was the one most directly 
applicable to autonomy. It captures how timeliness 
obstacles (such as when ground control cannot react 
quickly enough) can be resoIved by transfemng 
responsibility to onboard software. 

SeIection of a Resolution among Alternatives. 
Consideration of tradeoffs weighed heavily in the 
selection of obstacle resolutions in this application. 
For example, there are two different sensors that can 
both be used for range finding. However, they vary 

Generic 
Failure 
Mode 
Absent 

Incorrect 

Timing 

Criticality 

Minor 

Minor to 
Major 

Minor 

Mitigation 

Use default processing; set 
default to "compressed" to 
limit memory usage and 
bandwidth 

Restrict processing choices 
based on available info 
about mission, resource 
constraints 

Time-tag images to detect 
discrepancy 

Failure 
Mode 
Description 
No processing 
command received 

Processing settings 
may be inappropriate 
for conditions 

. . .. 

Requested processing 
applied to 
earlierilater image 

Effects 

Raw image not 
compressed; buffer 
limit could be 
exceeded; downlink 
stressed 
Poor quality; 
surveillance mission or 
autonomous landing 
may require usable 
image 
Delay in getting usable 
image 



significantly in power consumption, precision, 
number of data points, range, position on the UAV, 
etc. While each can provide some backup capability 
if the other is inoperable, any swap involves some 
intelligent tradeoff analysis either on the part of a 
ground operator or on the part of the recovery 
software. Other selection tradeoffs that we 
encountered involved the choice of color or black- 
and-white images (with color using more memory), 
the levels of image compression to be used vs. the 
CPU usage, the image quality vs. the downlink 
bandwidth, and the number of stored image frames 
vs. the size of images. 

In some cases a real-time decision has to be made 
by the onboard software as to how to resolve an 
obstacle. Alternatives to resolving obstacles in such 
situations were evaluated on four criteria: (1) Vehicle 
health status indicators. An example is degraded 
telemetry bandwidth, which indicates that the 
transmission of images to the ground may need to be 
reduced. (2) Availability indicators. This differs 
from the first criterion in that the first criterion refers 
to real-time data whereas the second criterion refers 
to whether the component has been installed on the 
rotorcraft at this time. It was found useful to separate 
the two criteria to address those situations in which 
the preferred alternative was not yet operational, but 
soon would be. In this paper we draw examples both 
from past software contingencies and from future, 
anticipated contingencies. However, in the rapidly 
evolving UAV system it was essential to maintain 
rigor in checking consistency between components' 
current availability and use of the software that 
invoked it. (3) Image quality indicators. Examples 
are that the image is not "empty" (i.e., all-black) and 
that the attributes (such as size) of the image match 
the attributes of the requested image. (4) Mission 
profile. A t this time a p rirnary c onsideration i s the 
planned usage of resources-memory to store 
images, bandwidth to downlink images as well as 
status data and power usage. 

4.3. Deriving Software Requirements 

In the example given above, where the obstacle to 
storing images is "Images Exceed Available 
Memory," alternative resolutions included "Reduce 
Number of Images To Be Stored" and "Reduce Size 
of Images To Be Stored" (i.e., compression). Each of 
these resolutions itself involved refinement into 
several sub-goals. For example, reduction of the 
number of images can be based on how old the image 
is or on some other assigned or calculated priority 
measure. The calculated priority can be based on the 
UAV location, orientation, and camera-pointing 

angle or on the actual content of the image. The first 
option yields an approximation to the likelihood that 
the target of interest was captured in the image; the 
second option discards images that did not include 
the target. 

l 3 e  first option (prioritizing the images based on 
location, orientation, and pointing angle) was only 
feasible if the camera software could access the GPS 
data, which it currently could not. This is an example 
of what Letier and van Lamsweerde call the 
unrealizability problem, meaning that not all stated 
goals are realizable by agents in the system. They 
give some pragmatic conditions for unrealizability in 
[14]. For our application, the two most important 
conditions were Lack of Monitorability and Lack of 
Controllability. 

Missing monitorability requirements. One of 
the most useful results of the Obstacle Analysis 
approach on the UAV was in identifying gaps 
between the capability of the assigned software 
agents to monitor for certain states or events and the 
need to have them do so. Most of the new software 
requirements found during the contingency analysis 
involved the dependency of certain detection, 
isolation, or recovery actions on specific capabilities 
that the software currently lacked. In terms of goal 
orientation, these goals were currently unrealizable. 
Most often these gaps involved data that the software 
needed to perform its functions, such as messages to 
which it needed to be subscribed or resource usage 
states that i t  had t o  track. I dentification o f  missing 
monitor data added ground visibility into the system 
state and helped us design for verifiability. 

Missing controllability requirements. Similarly, 
the obstacle analysis identified several instances in 
which the resolution involved the software being 
asked to set the values of variables that it did not 
control. For example, the software responsible for 
dynamically throttling the writing of images into 
memory based on their priority level must be able to 
control (i.e., change) the value of the priority 
threshold for grabbing images. A nother e xample i s 
that adjusting the jpeg quality of images in response 
to a low-light contingency can only be realized by 
software that controls the jpeg parameters. Both 
monitorability and controllability are important for 
establishing the software requirements needed for 
consistent increments in software autonomy. 

In s ome c ases, one obstacle c an require muItiple 
new software requirements to achieve detection and 
resolution. For example, mitigating the obstacle 
where images exceed available memory involves 
both image compression and a "cancel" command to 
reverse acquisition of requested images that are no 
longer needed. In other cases one resolution may 



remove several obstacles. This was the case with the 
addition of accelerometer data on a previous 
helicopter [20]. 

4.4 Evolution and Autonomy 

The investigation described above identified three 
main ways that incremental autonomy affects the 
analysis of contingencies. 

4.4.1. Nothing lost. Contingency analysis of the 
evolving system first verified that previously existing 
software requirements to detect, isolate, and respond 
to contingencies were still valid. This involved 
checking that, for every previously identified obstacle 
to a goal that could still occur, that the previously 
identified resolution (usually a derived software 
requirement) could still handle the obstacle. For 
example, when the capability was added for 
autonomous pivoting of the UAV around a target, the 
existing handling of the obstacle 'ccornrnunication 
lost" remained valid. 

An unexpected finding was that the project 
sometimes chose to "dial down" the selected level of 
autonomy, essentially disabling some existing 
features. Our assumption had been that the level of 
autonomous contingency handling would only 
increase. However, at times (e.g., a demonstration or 
a flight test of a new component) some degree of 
autonomous control was returned to the remote 
(human) pilot. These instances usually did not 
involve a simple rollback to a previous version but a 
pruned version of the current software. Contingency 
analysis in such situations was done in an ad hoc 
manner with consistency maintained primarily by 
inspec tion. 

This issue of adjustable autonomy has been 
described by Schreckenghost et al, in the context of 
space life support systems where a human may need 
to override autonomous when an anomaly occurs 
[2 I ] .  We plan to investigate whether constraint- 
checking techniques developed to solve a similar 
problem in product families ("de-scoping" of features 
for a baseline product) apply to the UAV domain. 

4.4.2. Something gained. Enhancements to the 
rotorcraft provided new ways to detect, identify, or 
respond to existing contingencies. Often these 
enhancements resulted in new sub-goals (e.g., added 
autonomous functionality) and in new "OR branches 
for the obstacle resolution model (i.e., new 
alternatives for how to handle contingencies). 

In general, new sensor agents (e.g., articulation of 
the stereo cameras so that they can swivel up and 
down) provided alternative monitoring sub-goals for 

contingency detection or alternative control sub-goals 
for contingency recovery. New software agents (e.g., 
the capability to dynamically add collision-avoidance 
targets to the path-planning calculation) offered 
improved autonomous capabilities for responding t o  
contingencies and resulted in more recovery options. 

4.4.3. No free lunch. As more autonomy is required, 
new obstacles and dependencies were also 
introduced. That is, with the addition of new agent 
capabilities came the possibility of new contingences. 
For example, the addition of a new laser brings with 
it the failure modes of the laser to be considered, as 
well as whether these failure modes are detectable on 
the ground and by onboard software. Some new 
agents resulted in new requirements for calibration 
before use. The addition of a new feature also brings 
with it potential resource contention (e.g., for power) 
as well as the need to identify new feature 
dependencies (e.g., between the fidelity of color 
images and passive-range algorithms). 

While the focus of incremental autonomy tends to 
be on what is gained in terms of more rapid and 
flexible handling of contingencies, contingency 
analysis also looks at the potential threats introduced 
by the new software complexity. Contingency 
analysis investigated the failure modes for new 
agents, new opportunities for feature interactions, and 
new possibilities for conflicts among goals (most 
commonly in terms of resource contention). 
Additional issues such as mixed-initiative control 
(where the rotorcraft receives inconsistent commands 
from the onboard software, the ground software, and 
the remote, human pilot), sensor fusion problems 
(where the replacement of a single sensor by a suite 
of perhaps heterogeneous sensors requires the 
software to compose the data and handle data 
inconsistencies), and coordination problems (where a 
fleet of rotorcraft must coordinate their movement 
and resource usage), were not obstacles in the current 
system but are potential, future obstacles. 

The three categories above (nothing lost, 
something gained, no free lunch) are clearly 
interrelated. The evolution of the rotorcraft creates 
new contingencies but also new options for handling 
those contingencies. Incremental autonomy results in 
both new goals and new obstacles, and prompts 
changes to both obstacle refinement and obstacle 
resolution. Contingency analysis helped prioritize 
the objectives of the contingency responses. 

Two areas in which existing obstacle analysis 
techniques provided only limited guidance on the 
UAV were in analyzing fault isolation and in 
identifying feature interactions. It is often easier in 
Failure Detection, Isolation and Recovery (FDIR) to 



determine that a failure has occurred (detection) than 
it is to figure out precisely what happened and how to 
prevent it from propagating (isolation). For example, 
if downlink communication stops, it can be quite 
difficult to isolate the problem. We are working to 
extend the obstacle refinement patterns to more 
explicitly address failure isolation issues in this 
domain. 

With regard to detecting interactions as new 
features are added, Doerr provides guidelines for 
detection of feature interaction in product lines that 
were readily transferable to the UAV application 
[lo]. For example, one such guideline that was 
useful on the UAV is that, if feature B uses feature A, 
then all features that also use feature A must be 
identified. Doerr gives an example from the mobile 
phone domain, where b 0th s ending a short message 
and placing a call use the network component. To 
avoid conflicts, it is important to identify that both 
features use the same component. 

5. Lessons Learned 

The advantages of goal-oriented obstacle analysis for 
the on-going identification of contingency 
requirements in the experience reported here were: 

Obstacle analysis helped identify new 
software contingency requirements in the 
UAV application. For autonomous systems 
that are experimental or involve highly 
innovative features, incremental autonomy 
seems to be a common mode of 
development. Incremental autonomy creates 
new software requirements both for 
increased functionality and to handle new 
contingencies. With the added complexity 
come more ways for the system to display 
undesirable behaviors a s  well a s new ways 
of achieving goals. 
Obstacle analysis gave a structured way to 
reason incrementally about new alternatives 
for handling contingencies that might need 
to be addressed. The capacity for 
incremental reasoning was important in this 
setting because the system was both 
currently operational and also evolving 
rapidly to add autonomous features. 
Obstacle analysis supported evaluation of 
the continued validity of existing software 
contingency requirements as the system and 
the requirements evolved. The cyclical 
nature of goal-oriented requirements 
engineering, in which new goals are 
introduced t o  resolve a n  obstacle, but must 
then also be included in an iterative analysis, 

matched the nature of the UAV project quite 
well. This approach provided as output a 
specification that explicitly linked 
requirements and contingencies. Assignment 
of a goal to a hardware or human agent at 
one point in time could be replaced by 
assignment to an autonomous software agent 
as the software evolved. The contingency 
analysis could then be updated by checking 
whether existing requirements were still 
valid and whether any new obstacles should 
be generated as a result of the change. 

By supporting the identification of software 
contingency requirements, obstacle analysis 
contributed to the building of a more robust system. 
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