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Abstract - This paper addresses the carrier-phase estimation 
problem under low SNR conditions as are typical of turbo- and 
LDPC-coded applications. In previous publications by the first 
author, closed-loop carrier synchronization schemes for error- 
correction coded BPSK and QPSK modulation were proposed 
that were based on feeding back hard data decisions at the input 
of the loop, the purpose being to remove the modulation prior to 
attempting to track the carrier phase as opposed to the more 
conventional decision-feedback schemes that incorporate such 
feedback inside the loop. In this paper, we consider an 
alternative approach wherein the extrinsic soft information from 
the iterative decoder of turbo or LDPC codes is instead used as 
the feedback. 

1. Introduction 
In recent years there has been, an ever-increasing interest in 
highly power efficient error-correction codes such as turbo codes 
and low density parity check (LDPC) codes. These codes which 
approach the Shannon channel capacity of the system operate at 
very low symbol signal-to-noise ratios (SNRs) thus necessitating 
the need for carrier synchronization schemes that likewise 
operate efficiently at these SNRs. To begin to address this issue, 
several years ago the notion of iterative information-reduced 
carrier synchronization for coded binary phase-shift-keyed 
(BPSK) modulation was introduced [I]. The idea behind this 
notion was to overcome the penalty in noisy reference loss 
attributed to the large squaring loss at low SNRs that is 
characteristic of the traditional types of BPSK carrier sync loops, 
e.g., the Costas or I-Q loop, by removing the modulation from 
the received signal pr ior  10 the carrier tracking process. The 
process by which the modulation was removed (information 
reduced) was envisioned as an iterative one where hard decisions 
on the data produced by the data detectorldecoder would be fed 
back and applied to (multiplied by) the received signal thus 
improving the carrier synchronization which in turn would 
improve the data detector performance, hence the data decisions 
fed back on the next iteration, and so on. At the same time, the 
loop would be adapting its parameters (i.e., the loop nonlinearity 
in the inphase arm) to match the current fidelity of the data 
decision process all the while shifting its configuration from a 
Costas-type loop toward a phase-locked loop (PLL) in the limit 
of perfect detection. Several publications based on this notion 
appeared in the literature that included everything from the basic 
idea and accompanying analysis/performance evaluations [ l ]  

to successful application and implementation for specific block 
and convolutional codes [2,3] where improvements in loop SNR 
(reductions of squaring loss) on the order of 4 to 6 dB were 
demonstrated at very low symbol SNRs. More recently the 
approach was extended to QPSK modulation [4]. 

In the previous cases, the schemes were motivated by 
maximum a posteriori (MAP) estimation of carrier phase 
considerations based on an input consisting of a modulated (the 
nature of which depended on the statistics of the fed back hard 
decisions) carrier in Gaussian noise. In the soft decision 
feedback case being considered here, the extrinsic information is 
modeled as Gaussian [5,6,7] and thus the process of information 
removal produces an input to the carrier synchronizer consisting 
of apure  tone but in non-Gaussian noise (due to signal x noise 
and noise x noise products). This complicates the carrier phase 
MAP estimation problem and thus instead we propose to simply 
use a PLL throughout the iteration. 

In Section 2, we consider BPSK modulation and derive 
the tracking performance of the PLL in terms of its mean-square 
phase error when operating in the linear (high loop SNR) region 
as is typical. In Section 3 we illustrate an alternative digital 
implementation that achieves the same performance as the 
piecewise constant analog model considered in Section 2. In 
Section 4 we present analogous results for QPSK modulation. 
Section 5 presents numerical results derived from a simulation of 
the BPSK scheme with a particular LDPC code. Finally, Section 
6 documents our conclusions. 

2. Tracking Performance for BPSK Modulation 
With reference to Fig. I ,  consider an input BPSK modulation of 
the form 

yl ( r ;  0,) = ~ r n ( t ) s i n ( w , t  + 0,) + n, ( t )  (1 )  
where n(t )  is a bandpass AWGN process that can be expressed 
as 

( t )  = & [ N ~ ,  ( t )  COS(WZ + Bc)  - Ns, (t)sin(mCt + B,)] ( 2 )  
In (2),  Ncl (t), N,, ( t )  have single-sided noise power spectral 
density (PSD) equal to No and 

m 

m(r) = dk P(I  - k~ (3 
k=-  

is a baseband modulation with independent, identically 
distributed (i.i.d.) *l data symbols {dk) and unit rectangular 

pulse shape p(t)  of duration T,.  Next, delay y l ( t ; B c )  by the 

*The research in this paper was performed at the Jet Propulsion decoder delay A and multiply it by a normalized (by the signal 
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amplitude A)' version of the soft decision feedback signal 
corresponding to the extrinsic information derived from iterative 
decoding of LDPC and turbo codes which can be modeled as a 
Gaussian signal [5,6,7], i.e., 

Y2 ( t )  = m(t - A) + n2 (t)  I A (4) 
where n2(t) n2(t) can be modeled as a piecewise constant 
baseband noise process, namely, 

m 

where {n2k) are i.i.d. zero mean Gaussian random variables 

(RVs) with variance 0'. Over a single iteration (block of input 
symbols), A and o2 are assumed to be fixed. The result of this 
multiplication, whose intent is to remove the modulation, is 

+(m I ~ ) r n ( t  - d)n2 (t) sin(u,r + 8,) 
(6) 

+&m(t - A)[N,~ ( t )  cos(w,t + 8,) - ~ , l ( t )  sin(o,t + oc)] 

+(a I a)n2 ( r ) [ ~ ~ ~  (t)cos(mcf + 8,) - N,, (r)sin(o,t + o,)] 
which is the sum of a pure sinusoidal tone at the carrier 
frequency plus a mixture of signal x noise and noise x noise 
terms. The signal in (6) is then input to a PLL whose voltage- 
controlled oscillator (VCO) output can be expressed as 

6 (t) = & c0s(oct + ic) (7) 

then the demodulated signal becomes 

;(t) = fi sin #, + (fi I ~ ) m ( t  - A)n2(t) sin qC + m(t - A) 

A ' -  where @, =8, - $, denotes the phase error in the loop. Note that 
the loop tracks the phase error r#, as opposed to twice the phase 
error 2$, as in the more conventional Costas loop. Thus, 

differential encoding of the data is not necessary to resolve a 
phase ambiguity. 

Next we pass z(t) through a matched filter (I&D) to 
produce (in t h e  kth interval (k + l)T, < t < (k + 2 ) q )  the 
piecewise constant error signal2 

ek = jzl)T' z(t)dt = T, f i  sin @, + (-,@ 1 A ) ~ , d ~ n ~ ~  sin qC 

The purpose of the normalization is to make the signal 
component of the feedback independent of the extrinsic 
information amplitude, A. This in turn results in the input to the 
carrier tracking loop being independent of this same amplitude 
thereby not affecting the choice of the loop bandwidth. In 
practice, one would need to estimate A per iteration to perform 
this normalization. For the purpose of our theoretical discussion 
here, we shall assume that this estimation is perfect. 

Without loss in generality, we herein ignore the decoder delay 
A .  

+dk [Nclk cos qC - Nslk sin #c]  (1 1 ~ ) n 2 k [ ~ c l k  COS #c 
(9)  

-Nslk sin#,] = ~ , f i s i n # ,  + v(k,@,) 

where 

are zero mean Gaussian noise RVs with variance 
D; = NOTs 12 .  Clearly from the above, the slope of the S- 
curve, K g ,  is given by 

Kg = q f i  (1 1) 

We now compute the autocorrelation function of 
v(k,$,) (treated as a piecewise continuous process v(t,@,)) 

from which we shall obtain the equivalent noise PSD affecting 
the loop. For operation in the neighborhood of #, = 0, it is 

reasonable to consider only the autocorrelation function of 
v(k,O). Assuming nl(t) and n2(t) are independent and the 
noise samples are independent from symbol interval to symbol 
interval, then the autocorrelation is triangular 

R,, (z) = E{v(~, o)v(~ + T ,  0)) = (12) 

(0, otherwise 
with 

2 2 NoTs l + 6  I A  )=-(l+[i21A2) (13) 
2 

Thus, the equivalent single-sided noise PSD, N,, is given by 

Finally, the mean-square phase error in the loop is 
given by 

where p = P I  ( N ~ B ~ )  is the loop SNR in a conventional PLL 
and 

s, 4 ( l +  6. I a2)-' 

is the degradation of the loop SNR analogous to the "squaring 
loss" in a conventional Costas loop. The quantity 1 o2 
represents the extrinsic SNR. For iterative decoding of LDPC 
and turbo codes, the ratio of the mean to variance of the extrinsic 
is given by A I cr2 = 1 I 2 [5,6,7], or equivalently, the extrinsic 
SNR is equal to A I 2  and thus (16) becomes 

SL 4(1+ 2 / A)-' (17) 
As the iteration proceeds, the extrinsic SNR increases and 
likewise the squaring loss decreases (i.e., SL approaches unity). 
By comparison, for a Costas loop, the expression for the 
squaring loss is given by 



and thus remains fixed, independent of the iteration process, for 
a given symbol SNR. To numerically evaluate the performance 
in (17), one needs to quantiFy the functional dependence of the 
extrinsic SNR on the input symbol SNR. 

3. An Alternative Digital Approach 
With reference to Fig. 2, suppose now we first demodulate 
(convert to baseband) the input signal of (1) with the I and Q 
reference signals (arbitrarily assuming them to have zero phase 
relative to the received signal) 

rc(t) = JZ cos w,t, r- (t) = &sin wCt (19) 
to obtain 

X ,  (t; c) = f imj t )  sin 0, + Ncl (r) cos 0, - NSl (f) sin 0, 
(20) 

,~,(t;@,) = fim(t)cos8, - NcI (r)sin 0, - Nsl (f)cos 0, 

The demodulated signals are then passed through I&Ds to give 

x, (t; 0, )dt = f i q d k  sin 0, 

-Nclk sin 8, - Nslk cost?, 
in the interval (k -t 1)q 5 t I (k + 2)c. Next multiply rck and 

z,, by the normalized soft decision feedback sample (decoder 
extrinsic information) 

Y2k = dk +nZk / A (22> 
where as before over a given iteration {n2k} are modeled as 

i.i.d. zero mean Gaussian RVs with variance n2. The result of 
this multiplication removes the modulation and produces 

lick = fi sin 8, + dk [Nclk cos 0, - Nsl sin ec] 
+(@ / ~ ) T , d , n ~ ,  sin 0, + (1 / ~ ) n ~ ~  [N,], cos 8, 

-Nslk sine,] = f i q  sin 8, + vck 

u,, = q f i c 0 s  8, + dk[-NClk sin 0, - Nslk COSO,] 
(23 1 

+(@I ~ ) T , d , n , ~  cos 0, + (1 I A ) ~ ~ ~ [ - N ~ ~ ~  sin 0, 

-Nslk cos 0,] = @T, cos 0, + v,k 
which is then input to a digital PLL whose number-controlled 
oscillator (NCO) produces an estimate of the carrier phase 

denoted by 6,. Multiplying uck and uJk by w,k = cos& 

and wSk =sine,, respectively, and then differencing the results 
of these products provides the error signal 
ek = uCk wck - usk wsk = T~ JT; sin $, + vck cos 6, - vsk sin 6, 

A A  where as before $, = 8, - 8, denotes the phase error in the loop. 
Comparing (24) with (9) we see that they are identical and thus 
the performance of the digital PLL would also be described by 
( 1  5 )  together with (16). 

4. Tracking Performance for QPSK Modulation 
With reference to Fig. 3, consider an input QPSK modulation of 
the form 

Yl ( t ;  eC) = f i m l  (t)sin(w,t + 0,) 
(25) 

+Ji;mQ (t) COS((W,~ + 8,) + nlr (t) 

where, analogous to (2), the noise is modeled by 

nlI (I) = &[NC1 (t) cos(wCr + Bc) - Nsl (t) sin(wCf + OC)] (26) 
and the I and Q moduIations are given by 

k=- k=-m 

As before, multiply yll( t;8c)  (again ignoring the decoder delay) 

by a normalized version of the soft decision feedback signal 
corresponding to the extrinsic information for the I data stream, 
namely, 

~ 2 1 ( t )  = ml (t) +n21 ( [ I f  A (28) 
where n2(t) is again modeled as a piecewise constant baseband 
noise process, namely, 

m 

n21(t)= n 2 1 k ~ ( t - k ~ )  (29) 
k=- 

with {n2[,) being i.i.d, zero mean Gaussian RVs with variance 
2 u .  

Now also phase shift the received signal by n / 2 rad. 
to form the quadrature input 

yl (t;  0, - TC / 2) = - f imr( t )  cos(w,t + 8,) 

+firnQ(t)sin(wct + 0,) + nla(t) 
(30) 

where 

nlQ(r) = & [ ~ ~ ~ ( t ) s i n ( o , r  + 6,) + ~ , ~ ( t ) c o s ( o , r  + B,)] (3 1) 
and multiply this by a normalized version of the extrinsic 
information for the Q data stream, namely, 

Y ~ Q ( ~ )  = " Q ( ~ ) +  n2Q(t) A (32) 
where, analogous to (29), 

m 

n 2 ~ ( r ) =  n 2 Q k ~ ( t - k ~ )  
k=-m 

and the sequence n ~ ~ k  is assumed to have the same properties { I 
as the sequence Furthermore, it is reasonable to assume 

the two sequences independent of each other. The results of the 
above-mentioned multiplications are given by 

u1(t;8,) = fisin(m,r + 6,) + fimI(t)rnQ(r)cos(oct +Or) 

+A, (r)[NCI (t) cos(o,t + 0,) - ~ , l  (t) sin(a,t + o,)] 
+(fi I A ) ~ , J  ( r ) [~ , l  (f) C O S ( ~ , ~  + 0,) - N ~ I  (r)sin((~,t + )] 

and 



+(a 1 ~ ) f l 2 Q ( t ) [ ~ c l ( ~ s i n ( ~  +Or)+ (t)cos(oct +oc)] 
Adding ul(r; 8,) and uQ(t; 6,)  eliminates the cross-modulation 

signal term and produces a signaI that is again the sum of a pure 
sinusoidal tone at the carrier frequency plus a mixture of signal 
x noise and noise x noise terms. 

The signal u( t ;gc)  is input to a PLL which after 

demodulation by the reference signal in (7) gives 

; ( I )  = sin qC + (m 1 .4j[mi ( i )nl l( t )  + m p  (t)nZQ (t)]sin $c 

+ 2 c ( 1  - n2,(l)N,, ( t)]  sin 9% 

(36) 
As in the BPSK case, next we pass z ( t )  through an l&D to 
produce (in the kth interval (k -t l)T, l t 2 (k + 2 ) c )  the 
piecewise constant error signal 

(k+l)?r 
e = z(t)dt =  sin & + (m I ~ ) ~ , [ d , n ~ ,  

k T, 

- n 2 1 k ~ s l k ] ~ i n  $h, = ~ , m s i n $ ,  + ~ ( k , $ ~ )  

(37) 
where Nclk ,  Nslk are defined in (10). 

Once again we must compute the slope of the S-curve 
and the equivalent noise PSD. From (37), the slope of the S- 
curve is immediately given by 

K~=T,&F (3 8) 

The variance of the additive noise v(k,O) is readily determined 
to be3 

CT? = ~ ~ 7 , [ 1 +  ( 1  + %)02 1 A ~ ]  (39) 

and thus from (14), the equivalent noise PSD is 
2 N,  = Z T , c r ,  = 2NOC[1 +(I + R ~ ) C T ~  I A 2 ]  (40) 

Finally, applying (38) and (40) to (IS), the mean-square phase 
error in the loop becomes 

The additional noise variance factor (1 + R d )  comes from the 

presence of a quadrature signal x noise term that is absent in the 
BPSK case. 

or equivalently, the "squaring loss" is given by 

s , = [ I + ( I + R ~ P ~ / A ~ ] - ~  (42) 

which applying A / o2 = 1 I 2 simplifies to 

SL = [I + ( 1  + Rd )(2 1 A)]-' (43) 
Comparing ( 4 3 )  with (17) we immediately observe the 
additional penalty (dependent now on symbol SNR R d )  in 
carrier tracking performance using a PLL for QPSK relative to 
BPSK. For small symbol SNRs, this penalty becomes mute, 
Furthermore, note that because of the creation of a pure tone by 
the soft decision feedback, thus allowing the use of a PLL, there 
are no fourth order S x N or N x N products in the loop as in 
the conventional QPSK Costas loop or information-reduced 
carrier synchronization loop with hard decision feedback. Thus, 
the "squaring loss" penalty is inherently smaller than the 
"quadrupling loss" penalty associated with the above-mentioned 
loops. 

As was the case for BPSK, it is also possible to 
construct an alternative digital implementation that once again 
would yield the same performance as its piecewise continuous 
analog counterpart discussed above. 

5. Iterative Processing and Numerical Results 
We have evaluated the performance of the all-digital BPSK 
baseband approach described in section 3 via joint decoding with 
an irregular ( n , k )  = (1944,972) low-density parity-check 
(LDPC) code developed in [S]. After a complex rotation to 
resolve phase ambiguity (discussed below), the signals zCk and 
zSk are multiplied by the decoder output y2k to form usk and 
uck. AS described in previous sections and shown in [I], if the 
PLL input has a small fraction of total modulated symbols in a 
block successfully removed then it can begin to produce a 
reasonable phase estimate, even at relatively low SNRs. We 
have found that the estimationJdecoding process can be 
successfully started by assigning y2k = z,k (Subsequent 
iterations derive )'2k from decoder as described by (22)). After 
this assignment, the PLL operates once across all symbols in a 
codeword. LDPC decoder log-likelihood ratio inputs are then 
produced by combining the updated PLL phase estimates with 

where a;, = P T , ~  / (2Es 1 N o ) .  
An 'extrinsic' LLR feedback mechanism was employed 

in which prior LDPC inputs are subtracted from current outputs 
before new inputs (from the most recent PLL update) are added. 
Also, state information in the decoder (in particular the most 
recent extrinsic information arriving from check-nodes) is 
preserved between LDPC-to-PLL-to-LDPC iterates. The 
accumulator in Fig. 2 implements the first order transfer function 



where K, = lo4and Ki = were selected. 

The bit and frame error rate performance of the system 
are shown in Fig. 4 for different update schedules between the 
decoder and the PLL circuit and for two cases of initial phase 
error 4,. Simulations with 4, = 0 and 4, = TC / 4 represent 
cases of maximum and minimum initial phase error. Cases with 
4, = 0 are not shown in the figure since they always achieve the 
same performance as the stand-alone code. All other initial 
phase offsets have error rate performance that lies between these 
two cases. The total number of LDPC iterations was set to either 
20 or 50. The set of curves labeled (20-20) and (50-50) shows 
the error rate performance when a decoder iteration is followed 
by a PLL update. An alternative schedule (20-10) and (50-25) 
where a PLL update is done after two decoder iterations is also 
shown. 

A plot of loop SNR ( 1  1 ~ ~ 6 ~ )  as a function of the 

number of iterations where 4, = 0 and 4, = K / 4 is shown in 
Fig. 5 in conjunction with the (50-25) scheduling case. Steady 
state operation is reached after 40 iterations for the 4, = 0 
scenarios and after 50 iterations when 4, = IL-/ 4 .  In addition, 
Fig. 5 shows that in the case of 20 iterations (for either initial 
phase offset) the PLL has not reached steady state. The 
associated loss in performance is shown in Fig. 4 where at a 
frame error rate of the (20-10) schedule loses 0.1 5 dl3 and 
the (20-20) schedule loses 0.07 dB. 

We conclude this section by noting that phase 
ambiguity (for offsets greater than +r / 2 )  can be resolved by 
first measuring the average power across a single codeblock of 
the signals z, andz,. If the sine component (z,) has average 
power greater than the cosine component (z,), then these two 
components are swapped. This procedure may leave (or induce) 
a remaining error of n radians. To resolve this ambiguity a 
single PLL pass followed by several (up to 4) LDPC iterations 
are run. The orientation that produces the maximum number of 
satisfied odd-degree check equations is selected and the 
decoding procedure is reinitialized. 

6.  Conclusions 
We have demonstrated a means for improving the carrier 
synchronization function for iterative decoded BPSK and QPSK 
using information derived from the decoder extrinsics to remove 
the modulation (information-reduction) prior to the carrier 
tracking operation. The motivation for doing such is to 
overcome the penalty in noisy reference loss attributed to the 
large squaringlquadrupling loss at low SNRs that is 
characteristic of the traditional types of BPSK/QPSK carrier 
sync loops such as the Costas-type loop. In comparison to the 
information-reduced carrier synchronization loop with hard 
decision feedback as proposed in Refs. 1 and 4, the scheme 
described in this paper that makes use of soft decision extrinsic 
information does not require estimating the decoder error 
probability. This occurs as a consequence of the assumption 
here of a fixed carrier synchronization structure, i.e., a PLL, 

whose design does not change with knowledge obtained from 
the decoder. While in the soft decision feedback case considered 
here such a structure would only be asymptotically optimum (in 
the MAP motivation sense) at high SNR, it nevertheless 
provides a simple yet performance efficient carrier 
synchronization loop in SNR regions of interest for coded 
applications. 
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y,(t) = Am(t - A) +n,(t) 
-. 
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Fig. 2. Digital Implementation of BPSK Information-Reduced ( 
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