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Section 1 : Introduction 

Two memory models 
SMP (Symmetric Multi-Processors) 
cluster (Networked Computers) 

a Hybrid SMP clusters are currently popular 
LI 304 out of the top 500 fastest supercomputers are 

clusters (as of June 2005 per top500.org) 
B Cell (IBM) /Multi-core (Intel and AMD) 

n Where are the threads? 

shared memory distributed memory 



I Introduction (cont'd) 

Distribute parallel programming is a grand challenge 
;1 Message passing and multithreading both needed, but very different 
3 Message passing scalable for distributed memory but hard to use 
~1 Other proposed approaches (e.g., DSM or HPF) somewhat easier but 

not fast enough 
Code ported to supercomputers does not work on PC 
Parallelizing compilers are mostly for shared memory architectures 

M Our ability to program the clusters is lagging behind 
demand 

$50K is about enough for a decent off-the-shelf cluster 
$50K is only 115 -- 113 of a man-year for a good parallel programmer 

r;r Parallelization of the nuclear code at DOE cost billions of dollars 
LI in science and engineering, can create and collect complex data at 

tremendous rates, but can hardly manage and analyze the data 
LI Porting sequential game to onlinelcluster distributed environment is 

expensive, and the ported code may not work well on new 
architectures (e.g . , cell/multi-core clusters) 
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I Section 2: NavP vs. SPMD Views b 

H SPMD (Single - - Program - Multiple - Data) 
o one piece of code for all processors 

s NavP (Navigational - Programming) 
CI the programming of self-migrating computations 

JPL 



I Distributed Computation: A 2-D Problem k 

a Space for distributed computation: the Cartesian product of 
time and network (the net itself can be multi-dimensional) 
For simplicity, a phenomenon of distributed computation has 
a 2-D representation 

node 1 nodel node3 node4 s (space) 



I NavP vs. SPMD Views: Simple Example b 

Data distribution 

(a) Sequential 

(0.1) If (rank = n l )  
(1) VI = diag(A) 

send(vi,n2) 

(2) v2 = Bvi 
(2.1) send(v2, n l )  
(2.2) End If 

(b) SPMD 

JPL 
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I NavP vs. SPMD Views: Simple Example (cont'd) b 

Line (2) no longer in between (1) and (3)! 

Computation - Execution flow 

node 1 node? 

Sequential 

n ion Colllput t '  

- Dependency 

node 1 node2 
S 

I A Computation I 
A I - Execution flow I 

/( 1 )\ I - Comrntmicaiion 8. 
\ Sjmchrot~ izat ion 

t if0 else if'() 

Dependency & distribution SPMD 

JPL @ . , 



I NavP vs. SPMD Views: Simple Example (cont'd) 

(1) vl = diag(A) 
(1.1) hop(n2) 
(2) v2 = Bvi 
(2.1) hop(n1) 
(3) v3 = Av2 

( c )  NavP 

PB hop(dest) -- pauses the t2 

computation, moves the 
computation locus to the t3 

destination, and resumes the 
computation 

.r 

v l  and v2 are agent variables -- 
variables that follow the locus 
of computation 

,//, Computation 
I 

I 
I \- Executior~ flow 

I 
I 
1 . '\ ' . '. 

NavP 
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a The programming of self-migrating computations 
Explicit navigational statements hop ( ) 

a Stationary data is put in "node variables" 
Carried data is put in "agent variables" 

6~ Synchronization uses "events" 

I Code does NOT move, computation does 
M Overhead - book-keeping data (-200 bytes) 



NavP vs. SPMD Views 

H SPMD (single program multiple data) 
o One piece of code for all processors 
o Computations are described at stationary locations 
o a.k.a. the Eulerian view 
Q All existing models (MP, DSM, HPF) use SPMD 

r NavP (navigational programming) 
Q The programming of self-migrating computations 
o The description of a computation follows the 

migration of its locus 

a.k.a. the Lagrangian view 



I Analogy: Itinvary vs. Arrivals & Departures k 
-- Arrivals & Departures: a description of 

train information at locations - Itinerary: a description of trains 
following their movement 

[ Arrivals & departures ] 

CUST:CJZCZJETPL hGT:IlLOMW 
ITINERARY: ITIN 
RECORD LOCATOR : MH4 4 3U 

'7 

ISSUE DATE: SEP 15 2004  

19 SEP 0 4  - SUNDAY 
TOUR 
ELECTRONIC TICKET 
COST EFFECTIVE NON REFUNDABLE 
5 10 0 MIN FEE FOR CHANGES {ADDITIONAL AIRFARE HAY APPLY 
NOR REFUNDABLE 5 9 4 . 4 0  

AIR: MER. WEST FLT: 630 CONFIRMED COACH CLASS 
LV: ORANGE COUNTY 123OP EQUIP-AIRBUS A 3 2 0  JET 
RR: PHOENIX 147P NONSTOP 

RLRHILES : 3 3 8 
RESERVED SEATS-25D 

(description at locations) AIR:  ~ E R .  WEST FLT: 824 CONFIRMED COACH CLASS 
LV: PHOENIX 307P EQUIP-AIRBUS A320 J E T  
AR: BOSTON 1052P NONSTOP 
FOOD TO PURCHASE AIRHILES: 2300 
RESERVED SEATS-IZE 
DEPARTURE TERMINAL-4 

TOUR 
NO CAR NEEDED 
MAX LODGING ALLOWED $ 1 9 2  etus TAX- 

(try inserting hops in /' 
& JPL cw 
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Trl 

(a) Arrivals & Departures 

I The information provided by one view can 
be presented in another 

t l  
t2 
t3 
t 4  

1 A view is ood for a purpose (taxi driver vs. 
traveler); 8 PMD is good for client/server 

s3 

Tr3 
Tr-4 
Tr.3 
Tr.4 

(b) Itinerary 

s4 

Tr4 
Tr3 

sl 

Trl 
2 
1'1-1 
Tr2 

s2 

Tr2 
Tr1 
Tr2.Tr4 
Trl.Tr3 



Analogy: Describing a girl on a train 
7 .  

- How do you want to 
describe a girl sitting on a 
train? 
LI Hold a video camcorder and 

sit next to her (Lagrangian) 
o Station a line of people along 

the railway to take snapshots 
of her as she passes them in 
the train, and assemble the 
pictures into a video later 
(Eulerian) 

&& 
JPL -- 



I Structured Distributed Programming: 
I 

- 

Uniprocessor SpecialCase I 

SendIRecv are goto in distributed programming 

(0.1) If (rank = nl)  
(1) vl = diag(A) 

send(v1, n2) 
recv(v2, n2) 

(3.1 i",; lse =Av2 If (rank = 1 n ) 

(3.2) recv(v1, n l )  
(2) v2 = Bvi 
(2.1) send(v2, nl)  
(2.2) End If 

(a) SPMD (b) SPSD 
JPL 



The Software Crisis in the 1960s 

Goto Statement Considered Harmful 
o by Edsger W. Dijkstra, Communications of the ACM, 

Vol. 1 1, No. 3, March 1968, pp. 147-1 48 
CI Suggestion: Abolish goto and use structured 

programming 
M Send-receive considered harmful: Myths and 

realities of message passing 
by Sergei Gorlatch, ACM Transactions on 
Programming Languages and Systems, Vol. 26 , 
Issue 1, January 2004 

Q Suggestion: Use collective operations, e.g., 
broadcast, reduction, etc. to replace send and recv 

We suggest to use hop ( ) 



(0.1) If (rank = n l )  
(1) v i  = diag(A) 
(1.1) send(v1, n2) 
(1. EndIf 

(1. ) If (rank = n2) 
(1. r: recv(v1, nl)  
(2) v2 = BVI 
(2.1) send(v2, n l )  

recv(v2, n2) 
(3) v3 = Av2 
(3.1) End If 

18 

n Structured Distributed Programming 
with SPMD problematic, unless: 
CI Manage to have corresponding 

recv() follow next to the send() 
LI As a special case, use collective 

operations, e.g., broadcast, 
reduction, gather 

NavP preserves Algorithmic 
Inteqritv: 
o Hop() does not change the 

successive (in time) action as 
described by the original 
successive (in text space) action 
descriptions, even though the 
spatial location of the successive 
(in time) action is changed 



I NavP: Shared Variable Programming Beyond Shared Memory L 

Shared Variable Programming 
CI Inter-process communication and 

synchronization managed through variables to 
which two or more processes have access 

rt SV Programming attractive because 
reading and writing remote memory with 
familiar assignment statements 

a DSM uses SV Programming 

JPL @ 



M SV Programming beyond shared memory 
CI Algorithmic Integrity 

M Global view of the distributed data 
CI Data structure Integrity 

PEO PE 1 



s Node vs. agent variables 

DSV: Distributed Shared Variable 
A compound navigational statement 

distlribu ted 
agent. variable 
DSV 

non-shared 
shared L_ 

l o a d  temporary data t o  agent v a r s  
~ ~ ~ ( D E s T )  
unload temporary data from agent v a r s  

non-dist.ribu tied 
(none) 
node variable 

JPL 



I Summary: NavP vs. SPMD Views h 

Introduced the NavP view for distributed computing 
(a.k.a. the Lagrangian view in fluid dynamics) 

II Distributed computation is fundamentally Lagrangian 
NavP is the programming of self-migrating 
computations 

a Send-receive as harmful as goto; use hop ( ) 

a NavP preserves Algorithmic Integrity 
Computation mobility (defined later) enables shared 
variable programming beyond shared memory 

JPL 0. 
, - -1 
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BI Computing with distributed data using a 
single locus of computation 

o But a cluster computer is for parallel 
computing? 
CI Yes, parallelism is considered later 

LI DSC is by itself useful 

LI DSC is a fundamental composing element of 
NavP: a parallel program can be composed from 
pipelined DSC threads 



DSC: why? 

~r Only few algorithms can be perfectly 
parallelized (embarrassingly parallel); 
sequential portions are unavoidable 

B Granularity considerations 
IS Re-implementing parallel code can be a 

major effort, while distributed sequential 
computing can handle large problems 

EW Insight into distributed programming 

JPL @ 



I Computation Mobility Ilk 

The ability for the locus of computation to 
migrate across distributed memories and 
continue the computation as it meets the 
required data 

JPL @ 



I DSC: Data and Computation Rendezvous b 

MEM 1 
> 

Thread x 

i 
'. J 

(a) The Problem 

MEM 1 

i A 4 -  
\ 1 

MEM 2 
\ 

. - - -  
\ 

(b) DSM 

MEM i 
\ 

_ _ - - - - - -  

\ /' 

MEM 2 
\ 

(d) DSC using computation mobility 



I An Anatomy of MP and DSM b 

~s MP code efficient in communication 
e MP implementation restructures the original 

code 
o With MP, partitioning data means restructuring 

code 

DSM code the same as the original code 
a Severe performance penalty with DSM 

large data is moved to meet with small data 

M Try something new? 

JPL 0 
..I 



I DBlock Resolution and DBlock Analysis 

BI DBIock: - Distributed code building Block 
LI Any code block containing a DBlock is a DBlock 

a DBlock Resolution: Make the data-computation 
rendezvous happen 

RI DBlock Analysis: Find an efficient rendezvous 

(4 
A DBlock And its data 



I The Principle of Pivot-com~utes 

s Principle of Pivot-computes: The 
computation of a DBlock should take place 
on the node that hosts the largest piece of 
the distributed data that the DBlock 
accesses 
That node is called a pivot node 

JPL 



I DSC Proaram Transformation b 

r How to implement a distributed program 
from a sequential program? 

Conduct DBlock analysis to determine which 
DBlocks to resolve (granularity level matters) 
Resolve those chosen DBlocks following the 
principle of pivot-computes 

g. If you do not want to restructure the 
original sequential code, resolve the 
DBlocks using computation mobility 
LI Otherwise you handcraft computation mobility 

to follow pivot-computes 



I DSC Simple Example: A Left Looking Algorithm 

gatheriug 

101 ol0lol.l 
0 producer cousulmer 

Left-looking pattern 

end do I* computations not communitive, nor associative *I 

end do 

-. 

JPL 



)SC Simple Example: A Left Looking Algorithm (cont'd) 

hop (node Ii] ) 

end do 

i, j, mx are "agent variables" 
m a[.] is a "node variable" 

r Most hops are no-ops 



1 DSC Real Example: Crout Factorization 

Eliminates page faults by distributing the locus of 
computation on multiple nodes 

e Eliminates disk paging and replace it by 
inexpensive and less frequent hops 
A competing approach: paging to remote memory 
LI "Adaptive and Reliable Paging to Remote Main 

Memory," J. of Para. and Dist. Comp., 1999 
o Violates pivot-computes; moves more data than needed 

o A special case of DSM 
o Does not reduce the number of page faults. Only 

improves the service time for each page fault. 
u Not a scalable solution; may cause remote memory 

thrashing 



r DSC Real Example: Crout Factorization (cont'd) k 

-e What if the working set is too big for a 
computer? 
LI Partition the working set 

LI Distribute the working set 

o Have computation approach the partitions 

Data for Kij Data for column j 
col j put in agent variable 
and go to meet the blocks 



I DSC Real Example: Crout Factorization (cont'd) b 

Need enough collective memory to host working set (not 
entire matrix) 
Use an additional PE to pre- and post-fetch 

M Use 4 workstations to solve a problem of the size of 35 
machines' collective memory 



r DSC Real Example: Crout Factorization (cont'd) 

(1) For *; = 1 t o  2\- 

(1 1) luitd ~ . ~ l l l l l l l l  ; 
(2) o r  i = 2 to j - 1 
( 2 . 1 )  I l u p  to 1 i 
(2.2) l o i \ t  1 
(3) 

1 - 1  

I - , - C, =. , h, [C!.] 
(4) 1 < 1 1 ( 1  FOY 

(4.1) 1 . I  1 . 0 1 1 1 1 1 1 1 1  j 

(4.2) 1 1 1 1 1 t , i t < l  c r ~ l ~ i ~ i r ~ l  .i 

(5) i = l tt, j - 1 
(61 I '  
(7) 7' I<:, - - 

kit 

(8) li,, - 1 - l ' I<l . l  
(9) Elll( 1 F[.K 
(10) I;ll(l Fur 

Sequential Crout DSC Crout wlo fetching 

ICS1O6 
JPL @ 



(1) For j = 1 . . S  

(2) For i =  2 . . j  - 1 

(3 )  - I<zj - z;z; .f<liI<lJ 
(4) Etld FO/* 

( 5 )  For i =  l . . j - 1  
( 6 )  1' c Iiij 
( 7 )  T I<zj - - I\-$ 
(8) I<jj  - I<jj - Y'I<:-j 
(9) Erd For* 
(10) Er~d For 

( I )  For. j =  1 . .X  
(1 . 1) hoy~ j r ~ o t l c * [ j ] )  

( 1 . 2 )  I f  ( h o p ] f i 4 ( /  trrOi.oss ,t oc1r ) 
(1.3) i ) )  jt I, Tl-R(&j)) 
(1 .4) tr+rcitEvc I !  t ( I O b (  
( 1 . 5 )  E~ltl i f  
(1.6) /orctl(r*o/trrrtr~ . J )  t 

( 2 )  For i =&...I  3 - - 1 
(2.1) Ir 01) ( r~otlr* [ i ]  ) 

(2.2) 1 d ( I<$ ) 
( 3 )  ICij - I - '- lcli lcl 
(4) E~ztl .Frnx 

( 4 . 1 ) / I  op ( l t )di3 [.;I ) 

(4 . 2 )  1 / 9 7  ( 0  1 i - 1 )  

( 5 )  For i = l . . j - 1  
6)  7' I{ij 
( 7 )  T - - A*. . 

L t  

( 8 )  I<jj KjJ - IIIidj 
(9) End For- 
(10) EM/ For 

3 8 Sequential Crout rcsTo6 DSC Crout with fetching JPL 
. , -, 



DSC Real Example: Crout Factorization (contgd) 

Performance of DSC Crout Factorization 

I 1 I I I I 1 I I I 
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Size af Matrix (Number of Rows) x lo4 



1). Both loops broken; Message Passing Crout 

(1) F O ~  x.= I . . P  (17) n( l (Y+ (c+ol j. k )  
(2) I f  p = = k  (6 ' )  o i = .. Ik- - 1 
(3) FOI. ; = lk .. Ik+1 - l ( 7 ' )  I i i j  +-- ATij - xi-.-l ICliIi/j 1 - 1  

(4) Srvr tl ( ( a 0 1  j. k - 2 )  (£3') Erlti For* 
( 5 )  (c*ol j .  k - 1) ( 1 8 )  r ( I  j { k - I )  
(6) For i = lk . . . j  - 1 ( 1 9 )  E ~ r t l  For 
( 7 )  I<. r .! . +-- I<*j - I= 1 IiliIClj 
( 8 )  

(20 )  Elsr 1 f 11 == Xz - 1 
Eld For 

(21) For 11,  = Ik .. lk+l - l 
(9) For i = l . . j  - l (22) R(rr (col j .  { I } .  k - 2) 
(10) 1' +- i C i j  ( 6 " )  For. i = I k - l  ..Ik - 1 
( 1 1 )  

'1 ' 1Cij  - 
1 (7") I<] + ICij - 1=1 '- I<[ 

( 1 2 )  ICjj + I<jj - I ' J ! < ~ ~  ( 8 " )  E11d Fol  
(13) Ellrl! For (23 )  S<.rr tf (col j. { K d d ) .  k )  
(14) E.ud For (24) E l  For 
(15) EEsoIf 11 == k - 2  (25) E I f  
( 1 6 )  F o ~ . r r t = I ~ . . l ~ + ~ - l  ( 2 6 )  Eid F01- 

2). if()/else if() for different nodes. (code for fetching not shown) 

40 ICS'O6 

I 



1 Analoqy: Drums or Drummer? k 

- Programming the drums? 



I Analoav: Drums or Drummer? (cont'd) h 

- Or the drummer? 



1 Summary: Distributed Sequential Computing 

lntroduced DSC: Distributed Sequential 
Computing 

n lntroduced Computation Mobility 

lntroduced DBlock and DBlock analysis 
lntroduced the Principle of Pivot-computes 

B Used simple as well as real-world examples 
to show why DSC using NavP is efficient, 
scalable, and easy 

s MP is not a good fit for DSC 
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I The NavP Buildinn Blocks h 

Applications 

Tool kit for converting 
Methodology sequential code into 

(NavP) distributed parallel 
programs (NavP Tool kit) 

! 

Enabling Technology: 
Computation Mobility 

(MESSENGERS) 

Network of Workstations, Cluster, or the Grid 



The NavP Steps 

-'? 

ential 



I The NavP Steps 

1. Data distribution 
Affinity graph by code instrumenting 
Partition the graph to get data mapping 
Distribute data to DSV 

2. Distributed Sequential Computing (DSC) 
Insert migration statements (hop(.)) 
Small data to meet with large data 
Computation made coarse grained 

3. Distributed Parallel Computing (DPC) 
Decompose into and pipeline DSC threads 
Insert signalEvent0 and waitEvent() 

4. Loop back for feedback and refinement 
Redistribute data to find a balanced point 
between degree of parallelism and cost of 
communication 

JPL 



DSC Distribution 

JPL 
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I Step 1: Data Distribution 

Affinity graph (sequential program "instrumentation" - 
obtain data access pattern info. from execution) 

In contrast to using the dual of a mesh 

A(affinity), C(continuity), R(regularity) edges in 
affinity graph 
k-way graph partitioning 

I panit ion 
I 

I 

Summation 

More later. 

- - - .  
partition 

(131 
Dot product Transpose 

JPL 



I Step 2: Sequential to DSC h 

~s Insert hop() statements to resolve the 
DBlocks chosen from 
R DBlock analysis 

14 Following the Principle of Pivot-computes 
( i e ,  smalled-sized data hops to meet with 
large-sized data for each DBlock) 



I Step 3: DSC to DPC 

NavP code transformations 

WO PM PE 1 PE2 PEO PE1 PI2 

(a) 

sequential 
fb) 

DSC 

(c) 

mobile pipeline 

(d) 
pipeline 
phase-shifting 

ICS'O 6 



I Step 4: Loop Back b 

block 

block 
cyclic 

M Refinements 
CI Block data distribution 

to block cyclic data 
distribution 

CI Refining or coarsening 
granularity level of 
computation 

B Find a balancing point # of cyclic blocks 



end do I* computations not communitive, nor associative *I 

end do 

JPL @ 



Affinity graph: 
o A edges fully connect the graph 

C edges connect the neighbors 

I k-way graph partitioning 

% Result: Block data distribution 





I NavP Simple Example Step 3: DSC to DPC b 

a Long DSC thread cut into 
shorter ones and pipelined 

Thread thrd(j) 
hop(node[jI); mx = a[iI 

simal(e, 1) 
d o i =  1 toj -1  

hop(node [i]) 
d o j = 2 t o n  wait(e. i) 

iniect(thrd6)) mx = (mx+a [il)*j/(i+i) 
end do end do 

hop(node[jI); a[jI = mx 
a[iI = a[jI/j 

_____--- - - - -__ ----- --- - - -- 
/<---' --_ - - signal(e, i) 

JPL @ 
.-<' 



NavP Simple Example (cont'd) h 

a conventional vs. mobile pipelines 
CI factory work vs. farmland work 
CI carpet cleaning vs. laundry 

CI Chinese banquet vs. western buffet 

e d c b a location 

El- 

Figure 4 .?. The co~nparison of ts~vo pipelines. (a,) Conventional. (1,) hlobile. 



I NavP Simple Example (cont'd) 

B Complexity 
Storage on each node: O(N/P) (not O(N)) 

Q Total communication: O(N*P) (not O(N2)) 

Algorithmic integrity 
M Other solutions 
a cache all entries (O(N) storage) 
D recommunicate (O(N2) communication) 

a loop interchange (change algorithm structure) 

-- 

JPL 



I NavP Simple Example: Pipeline Parallelism 

Using shared memory or DSM 

p o s t ( ~ ~ ( l ) )  
doacross j = 2 to n 

d o i =  1 t o j - 1  
wait (EV(i)) 
a[i] = (ab]+a[i])*j/(i+i) 

end do 

B Problems: 
Either: not a scalable 
solution if some nodes are 
required to cache the entire 
array (P(N) storage) 

Or: not an efficient solution if 
a[i] entries are pulled to the 
nodes whenever needed 
(GZ(N2) communication) 

end do 

- 

JPL 



I NavP Simple Example: Direct Message Passing Pipeline 

w Problem: mismatch between data flow and 
computation sequence 

II Possible solutions: 
CI Either: cache all entries (B(N) storage, not scalable) 
LI Or: sendlrecv the same entry multiple times 

(B(N2) communication, not efficient) 
LI Or: loop interchange (not trivial and maybe dangerous) 

JPL @ 



m gathering 

0 producer e consutner 

(a) Left-looking pattern 

ICS'O 6 

scattering rn 
producer 0 consumer 

(b) Right-looking pattern 

JPL 



pavP Simple Example: Swap the Loop to Make Right Looking 

-- Relying on loop interchange is dangerous. What 
if your boss stepped in and said: "Oh, for better 
stabilitylconvergence, we'd like to add a new 
line in the algorithm ... ?" 

end do 

New line that 
changes dependency. 
Neither left- nor 
right-looking now. 

abl = ab]/j All vour C previous efforts are wasted! 

end do 

- NavP handles the above situation easily (just 
add that line in to t h e  NavP code) 

62 ICSOOG 



7 NavP Simple Example: MP Mimicking NavP h 

Anything that NavP can do can be done with 
MP and vice versa 

$I But there may be problems: 
LI Loop is interchanged 
LI Send()/Recv() behavior like gotollabel 

a Small perturbation in the original algorithm could 
result in large deviation in MP code (Algorithmic 
Instability) 

-- 

JPL 



I NavP Simple Example: Card-dropping Transformation 

-- Transform from DSC code to MP code 
.- From MP to DSC, use card-collecting transformation 

-. Animation by Wendy Zhang 

end do 

end do 



1 for j = 2  to N 

( 2 )  for i = l  t o  j - 1  

(3) a[j] - j * b[j] + a[ i ] ) / i  j + i) 
(4) elid for 

(5) a[ j ]  - a [ j ]  ,i j 
(6) cnc i  for 

1 i - rank  
(2) if (i! = 1) 
(3) send(  all]. node [l] ) 

~ e c v ( x .  node[i - 11 
a[l] - x / i  

(6) euct if 

(7) for j = i + l  t o  N 
if ( r ank  == node[l])  ( 8 )  l;_. 

(9) Recv(x. nodelj] ) 
(10) else 
(11) Recv(x.node[i - I])  
(12) encl if 1 
(13) x - j -k (x + a[ l ] ) / ( j  + i) 
( 14) ~ e n d ( x .  node[i + 11) 
(15) erld for 4' 

Original sequential q 
Sendlrecv behave like goto, so the code structure ( 1 ) )  

changed MP 
81 MP program is parallel, hence is harder to debug 

than the DSC program 
6 5 ICS'O 6 
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I NavP Simple Example: Small Perturbation in Oriainal h 

d o j = 2 t o n b y 3  
d o i =  l t o j - l b v 2  

** a[-] = (ab]+a[iI) j/(i+i) 
end do 

end do 

JPL 0 -, 



I means large deviation in MP 

I 

(1) i - r a n k  
(2) if ((i - 2)%3 == 0) 
(3)  Send(a[i] . node[l] j 
(4) Recv(x. n o d e [ l e f t i ( i ) ] )  
(5) a[%] - x / i  
(6) t .~lcl  if 

( 7 )  if (fi - i)'/i2 == 0) 
(8) for j = r i g h t - j f i )  to N by 3 
(9) i f  (rank == node[l]) 
(10) Recv(x, node[j] ) 
(11) else 
(12) Recv(x.node[lef t i f i ) ] )  
(13) eilcl  if 

(14) x - j -+. ( x  +a[l])/(j + i i  
(15) Send(x. node[min(right i~ i I .  j )] ) 
(16) ~ u c l  if  
(17) enrl for 

j;' the  1st r ~ - o / I ( c  to this PE's it. f t  
(18) iiit Fwict,ioli l e f t i ( i n t  i )  
(19) i l  - i - 1 
(20) wl~ilc  ({ii - 1)?:12 ! = 0 )  
(21) il - i l -  1 
(22) cilcl u~liile 

/ /  thr 1s t  i t ~ l l u c  to thiz  FE's right 
(25) lilt Fr~l~ct.ioil r igh t - i ( in t  i 1 
(26) i 1 - i + l  
(27) xvllil~ ( ( i l - l ] ( X 2  ! = a )  
(28) i I - i i + I  
(29) eucl while 

li thr, 1st j cicrli~r to f1ri.c. FE's  right 
(32) iilt. F~inct.ion right -j ( i n t  i ) 
(33) i l - i + l  
(34) while f l i l - 2 ) % 3  ! = O ]  
(35) ii - i l +  I 
(36) e l i c l  wllilc 

Algorithmic Instability! 
L. 

(38) clld Funct.io11 

6 7 ICS'C : 
PL 



, ' send t o  the rzotit- t h t  hosts (ct[l] 
(11 recv-cnt - 0 
(2) f~br 11 = 1 t o  loca l  cn t  
13) 12 - oa[l t j ,  J - gjl2j 
(41 recv cnt - recv cnt  + N - J 

(53 I f ( j ! = l i  
( 6 )  recv-cnt - recv cn t  + I 
(7) i f  I r a n k  ' = nodemp[ l ]  I 

( 8 )  ~end ia [ l l ] .  3 .  ntdemrap[l]) 
(9) c ~ t l  if 
(10) f.lh(' 

(11 1 recv-cnt - recv-cnt - 1 
(12) enqueueiQ[ranb],a[ll].J.l~ 
(13) c w t 1  if 
(14) c i k c l  f ~ ~ r  

1. tmnputt  r f ' (~ . l? t f  
(15) 12 - oa[i] 
( r 6) g2 - g[12] 
(17) h w  11 = 2 t o  loca l  cn t  
(18 )  1 3  - oa[l l] ,  g3 - g[l3] 
(19) if ig2 + 1 == g3) 
(203 recv-cnt - recv-cut - I N  - g3 + 11 
(21) cwtl if 
(221 gz - g3 
(23) cinl ftr~ 

; tht r~ocii that l ~ o s i s  fhr 1 ~ t  t-!dry 
(24) if frank -- node_map[l] 1 

( 2 5 )  fox 11 = 2 t o  fl 
t '  r h r k  tf u a y  qutzcrd h n . ~  fhrs teratry 
(26) 11 - f lg -0  
(27) f o r  12 = 1 t o  n u n o d e s  
(28) if [Q[l2] not empty\ 
(29) i f  l3.t found) 
(30) dequ%ue(Q[l2],x, j i 1 
(31) Call  request  p r o d  1, j. x r 
(32) l l l l g  - 1 
(33) break 
(34) owl i f  
(35) crrd if 
(36) cncl for 

' ;  not I n  the rlrletica. *,> rcccrrt 
(37) i f l l l f l g = = O )  
(383 u-l~ilc.lrecv cnt  01 
(39) recv(x. 3.  A N Y S R C I  
(40) s r c  rank - t h e  sender's rani 

(42) recv-cnt - recv-cnt - 1 

f 42) 1 - 1  
,'i r f rt ru2r'cd  ILL^ fh* (118r . 6 t t y u ~ ~ t c  ~t 
(43) i f { l l  != j i  

(44) enqueueiQ[src~ank].  x. J ,  1) 
{45) f'l%(* 
(46) break 
(47) c~rtl i t  
(48) c>utl wl~ilr~ 
(49) Cal l  request_proc(i, j. x i  
(50) (*IIXI if 
( 5  1) t>rlcl for 
(52) ~ 1 i t 1  if  

:; rtcr7z.c untd al l  rr~sy.* rttuttuif 

(53) w l ~ i l i ~ ~ r e c u - c n t  . 0) 
(54) recvrx, 3, I .  ANY S R C )  
(55) recv-cnt - recv-cnt - 1 
(56) Ca l l  request  procr r .1.x)  
(57 )  m r r f  wltilr- 

(58) Proc-4vlrrn~ reques t  procii.  j . x )  
(59) for 11 = i t o  j - I 
(60) if (rank == nodenap[l l]  I 
(61) x - -  J t i x + a ~ l [ l l ] ] )  Ij+ir 
(62) c b l s c ~  

(63) break 
(59) olrd if 
(60)  r b r ~ c l  for 

(61) if (3.1 == J h d  rank == node mapb]) 
(62) a[l[~11- x:j 
( 63 )  chs. 
(64) send(x, J .  11. nodemap[ll]) 
(65) clud if 
(66) t.ud P rtrc.fuilt1.c. 



I Difficulties with MP lm~lementation 

BI Adapting to arbitrary data distribution 
3 Irregular communication pattern 

Partial sorting and queuing needed 

Code restructuring 
LI Loops broken 
LI Repeated core code lines 
LI Large amount of auxiliary code 

%I Termination complicated 
o Anticipate number of messages a node will receive 

BR Self-sending using shared memory 
LI Use queues (sending to a node itself is expensive with MPI) 

Deadlock 
LI Balance receiving, processing, and sending (need 

MPI - THREAD - MULTIPLE) 
LI Or learn the tricks of posting recv's at the right place 

ICS'06 
JPL @ 



1 Regular vs. Irregular Communication Patterns 

com tmuon 
1 7 - 3 1 S f! J 6 1 1 3 5 

n l  
1 

t2 

t l 11 



I NavP Simple Example:MP or NavP? 

w MP is excellent for client-server applications 
(computation described at stationary locations) 

PO Our suggestion: MP is not necessarily a bad way to 
implement, but NavP is a more structured way to 
design and describe general purpose distributed 
parallel algorithms 
LI NavP is the "source code" 
3 MP is the "target code" 

a OK to have "jump"s in assembly code 
I Likewise OK to have sendlrecv in MPI -- the "assembly code" for 

distributed computing 

LI The compiler from NavP to MP exists 
o The compiler from sequential to NavP is to be built 



I NavP Simple Example Step 4: Loop Back 

%I Performance considerations 
o Block algorithm (coarser level computations) 

Can be automated using loop tiling techniques 

Block cyclic data distribution (more parallelism) 
~rr Can be automated (NavP code works for 

arbitrary data distribution) 
o FIFO pipeline (less signallwait events) 



I NavP Simple Example: Start from Block Algorithm 

1 forJ = 1 t o  num-blocks 
(1.1) hop(node_map[J]): loadblk J t o  x[] 
(2)  f o r I = l  t o  J - 1  
( 2 . 1 )  hop(node_map[~]) 

(3) Call F(1. J. a. x) 
(4) end for 
(4.1) hop(node_map[J] ) 
(5) Call F(J.J.x.x);unloadx[]toblkJ 
(6) end for 

I 

(1)Procedure F(I .  J. a. x) 
(2) for j = start (J) to end(J) 
(3) for i = start(1) to min(end(1). j - 1) 
(4) x[l[j l l  - j * (xP[jll + a[l[ill,/Cj + 1) 

(5) end for 
(6) if (I = J) a[l[j]] +- a[l[j]]/j 
(7) end far 
(8) end Procedure 

Fig. 6. Block pseudocode for the sirliple alg~rit~hm. (a,) DSC; (b) The function F() 

4 A block algorithm is a good starting point 
cache performance for sequential code 

LI +coarse granularity for distributed code 

Can use manual programming 
s Or use a loop tiling tool 

7 3 ICS'OG 



I NavP Simple Example: Performance k 

Elapsed ttme of simple example using navigatronal pipelm 
400 1 I I I f I I I I 1 I I 

'+ ~ k c k  alg' (50K) ' 
4 B M  alg + Block cyclic data (NK)  . 

. . . . . .  -e- Non-block alg (50K) 
I jli. B W  alg + B h k  cyclrc data (100K) I 

Number of processors 

Speedup of simple example using naqatinal pipelane 
I f I I 1 I 

"0 2 4 6 8 10 12 
Number of processors 



NavP Simple Example: Block Cyclic Data Distribution 

block 

block 
cyclic 

M Block cyclic data distribution is a 
classical approach to load balancing 

JPL 



s Presented the methodology and steps of 
NavP 

s Used a simple left-looking example to 
exercise the NavP steps 
Introduced the card-dropping transformation 
Contrasted the NavP implementation to 
other possible implementations (MP or 
DSM) 



I Outline 

7 "  Introduction 
2. The NavP view vs. the SPMD view 
p: ". - Distributed sequential computing (DSC) 

4 The methodology of NavP 
5. Case Studies 

The enabling technology of NavP 
r Comparisons, conclusions, and future work 

- 

JPL. 



I Section 5 :  Case Studies b 

Case selection rationale 
Solving linear systems accounts for the majority of CPU time 
in numerical computation 
Direct solvers are harder to parallelize than iterative solvers 

Real-world examples 
Crout factorization: A "left-looking" matrix factoring 
algorithm 

* Cholesky factorization: A "right-looking" matrix factoring 
algorithm 
Matrix multiplication: A lot of parallelism 

Performance 
NavP implementations of the algorithms perform well 
NavP Cholesky code performs as fast as ScaLAPACK 
NavP matrix multiplication performs faster than ScaLAPACK 

JPL 



I Case Study 1 : Crout Factorization b 

A left-looking algorithm to factorize symmetric matrices 

A = U T D U  

(I) For j = = l . . N  

( 2 )  Fur i =  l . . j - 1  

( 3 )  Kij  + lizj - c;:: K l z K l j  
( 4 )  End For 

1 ( 5 )  For i = l . . j - 1  
( 6  1 T +- K,, 
(7) 

T 
h",j +- - 

h'i  z 

(8 K3j + KJJ - TICij 
( 9 )  End For 
( 1 0 )  E17d For 

( 1 )  For j = 1 . .  N 
( 1 -1) h o p  (node  [ j ] ) :  load (colz~rnn j )  
( 2 )  For i =  l . . j - 1  
( 2 . 1 )  l zop (nodc [ i ] ) :  
( 3 )  

2 - 1  
Kzj -KzJ  KIZKIJ 

( 4 )  End For 

( 4 . 1 )  hop(nolle[j]);  u n ~ o n d ( c o 1 u r n n  j , K z i [ ] )  

( 5  For i = 1 . . j  - 1 
(61 T + 

( 7 )  
T hFZj - 

h'iz 
(8) K J 3  + - T I C t J  
( 9  E r ~ d  For 
(10) End For 

Sequential DSC 



I Case Study 1: Crout Factorization (cont'd) b 

(1) For j = 1 .. iV 
( 2 )  call c o l p r o c ( j )  
( 3 )  E n d F o r  

( 4  ) Procedure  col-proc(i~2t j )  

( 5 )  For i = 1 . . j  - 1 

( 6 )  
2 - 1  

KzJ + Kzj - El= ,  liliKlj 

(7) End For 

( 8 )  F o r  i =  l . . j - l  
(9) T t K j  
(10) T .Ka3 +- - 

Ki, 
( 1 1 )  h;, + h; - T K z J  
(12 1 End F o r  
( 1 3 )  Erad Procedure  

( 1 )  F o r  j = l . . N  
( 2 )  i n j e c t  (cul-p7-0c(j)) 
( 3 )  E ~ z d  For 

( 4  ) .Agent col_proc(int j )  
( 4 . 1 )  h o p ( n o d e [ j ] ) :  lond(co1urnn j) 
( 5 )  F o r  i = l . . j - 1  
(5-1) hop (node  [i]); load (K,,) 
( 5 . 2 )  If ( j  > 1 A n d  i = 1 )  w a i t E u e n t ( e r * t , j  - 1 )  
( 6 )  

2-1 KJ +- LJ - C,=, KliIii, 
( 6 . 1 )  If ( i  = 1 )  signnlEtlent(e~!t. j )  
( 7 )  End For 

( 7 . I  ) hop  ( n o d e  [ j ]  ) ; U ~ Z ~ O U ~  (col umn j, Kii [I) 

( 8  For i = l . . j - 1  
( 9 )  T + K,, 
( 1 0 )  T K Z j  + - 

Ki i 
(11)  h;, 4-- h;, - Tli,, 
( 1 2 )  E n d  For 
( 1 3 )  End Agent 

DSC DPC 



I Case Studv 1: Crout Factorization (cont'dl b 

- MP implementation is left as an open problem 

..= NavP code performance 

Elapsed time of simple example and Crowt Speedup of simple example and Cmut 
factorization using navigational pipeline factorization using navigational pi peli ne 

- Sun UltraGDs WMHz 255MB main rnemary 1GB vinual memory, 1WMbps Ethernet - Sun UltmWs 49MHz 2561118 rnaln memory 1GB virtual memory, 1WMbps Ethernet 

- -. -- .- -. . . ~* 

I 
Cmut 6960-6960 matm 

- 
CmR 5040-5040matm 

- - . CmR 31m-3120matm 

- - ,Sinple sample' Bhk alg + B b k  11 
qck data (1WK) 

1 
! 

i T 
Smple ample: B b d r  alg + Bbck I 

cyck data (MI 1: $ - 

i-- 

i 
4 

i 
- 

Y - 

- 
- *- 

T - 4 

S~lrpk example Backalg * h k c y c h c  

1 -Snrplesxanym mekalg + Bloekcychc I data ,loOK lOOKmaP1k1 

Number of pmeessors 



I Case Study 2: Cholesky Factorization h 

H A right-looking algorithm to factorize symmetric 
positive definite matrices 

B Two nested loops, "scaling" to a "single" (G) 
column in outer loop, "updating" to "all" the 
columns in inner loop using the new G column 

BB In DSC code, a "scaling" on one node (different 
for different loops), followed by a "updating" on 
all the nodes. These are in loops. 

D In DPC code, parallel "updatings" interspersed 
with sequential "scalings." 

JPL 



I Case Study 2: Cholesky Factorization (cont'd) 

a Right-looking data 
accessing pattern 

scattering I 
I 

a Interleaved parallel 
and sequential steps 

producer e consumer C- ,-. O3 I - . - + I 
I 
I 
I 
1 

t 

Space 
-----_.--_.I-- + 

-- 

JPL 



I Case Study 2: Cholesky Factorization (cont'd) 

(1) fur k = I t o  n 
(2) 
(3) 
(4) ~ ( k  : n. col(k)  j / = JA(L. col(k))  
(5) 
(6 1 
(7 1 
(7.1) f o r r a n k = l  t o p  
(8 i n j e c t  (updat i n g  (rank. k. xi) )  
8 1 end for 
(9) 
(9.1) hop (nodemap(k + I ) )  
(9 .2 )  waitEvent (Evt. k + I )  
(10) end for 

(11) updat ing ( i n t  rank, i n t  k ,  i n t  n )  
(12) vloc(k + t : n) = A(k + I : n. col (k))  
(12.1) hop(node_map(k+raak)) 
(12.2) waitEvent (Evt. k) 
(13) for j = k + r a n k : p : n  
( 14) 
(15) A ( j  : n.col ( j}) -  = v ~ o c ~ j ~ ~ ~ ~ ~ ( ~  : n) 
(16) 
(17) end for 
(17.1) signalEvent (Evt, k + I) 
(18) end 

i 

DSM 

( I )  for k = l  t o  n 
(2) if ( rank == I)  
(3) vl,, (k : n) = A (k : n. k) 

(4) vloc(k : 4 / = J6m 
( 5 )  A(k : n, k)  = vl,,(k : n) 
(6 1 elid if 
( 7 )  b a r r i e r  

(8) call updating (sank, k, n )  

(9) b a r r i e r  

(10) end for 

( 11) upda t ing  ( i n t  rank, i n t  k, i n t  n) 
(12) v l , , ( k + l : n ) = A ( k + i : n , k )  

(13) for j = k + r a n k t o n  by p 
(14) : n) = A ( j  : n, j)  
(15) wl,, ( j  : n) - = vloc (j )vloc (j : n) 
(16) A ( j  : n, J )  = vloc(j : n) 
(17) elid for 

(18) elid 

NavP 



I Case Study 2: C holesky Factorization (contgd) 

I 

DSC 

PEI PE2 PE3 PE1 
... - 

s (spare) 

DPC -. 

JPL 





I Case Study 2: Cholesky Factorization (cont'd) k 

The NavP code performs as well as the MP code or ScaLAPACK. 

Speedup of Parllel Cholesky Factorization (5.ClOOX5.050 mdrk) 
12 I I I 1 9 I I I I I 1 

Nuniber of Workstations 

Speedup of Parallel Chdesky Factotization [7.000X7.000 matrix) 

' 1  2 3 4 5 6 7 8 9 10 11 12 
Number of Workstations 





1 Case Study 3: Matrix Multiplication 

Sequential 

(1) for i = O  t o  p - 1  
( 2 )  for j = O t o p - 1  

(3) Cij = AiBj 

(4) end for 
( 5 )  end for 

Abundant parallelism. But doall's 
work for distributed memory? 
CI Cache A and B everywhere; or 

CI Contention 

(1) doall i = O , N - 1  
(2) d o a l l  j = O  , N - 1  
(3) C ( i , j )  = 0 . 0  
(4) do k=O,N-I 
( 5 )  C ( i , j )  += A ( i , k )  * B ( k ,  j) 
( 6 )  end do 
( 7 )  end doall 
(8) end doall 

JPL 



I Case Study 3: Matrix Multiplication (cont'd) h 

(I) do k=O,N-2 
(2) doall node(i,j) where O<=i,j<=N-I 
(3) i f  i > k  than 
(4) A -- east(A) 
(5) end if 
(61 lf j>k then 
(7) B -- south(B) 
(8) end if 
(9) end do 
(10) end do 

(11) doall node(i,j) where O<=i,j<=N-1 
(12) C = A * B  
(13) end do 
(14) do k=O,N-2 
(15) doall node(i,j) where O<=i,j<=N-1 
(16) A aast(A) 
(27) B south(B) 
(18) C + = A * B  
(19) enddo 
(20) end do 

Gentleman's Algorithm 
o How did this guy get here? 

JPL 0 ,/ 



I Case Study 3: Matrix Multiplication (cont'd) 

(1) Rowcarrier 
( 2 )  do mi=O,N-1 
(3) do mj=O,N-I 
(4) hop (node fm j 1 1 
( 5 )  i f  (mj=0) mA(*)  = A ( m i  ,*) 

( 6 )  t = 0 . 0  
( 7 )  do k=O,N-I 
( 8 )  t += mA(k) * B(k) 
(9) end do 
(10) C(mi) = t 
(11) end do 
(12) end do 
(13) end 

Figure 5-16. DSC. 

JPL @ 



I Case Study 3: Matrix Multiplication (cont'd) h 

Figure 5.18. DSC wit11 pipeliiiirig. 

(1) hop(node(0)) 
(2) do i=O,N-I 
(3) inject  (RowCarrier (i)) 
(4) end do 

(1) RowCarrier (int mi) 
(2) mA(*)  = A ( m i , * )  
(3) do mj=O,N-1 
(4)  hop (node (rn j ) ) 
(5) t = 0.0 
(6) do k=O,N-i 
(7') t += mA(k) * B(k) 
(8) end do 
(9) C(mi>  = t 
(10) e n d d o  I 

(11) end 



I do mi=O,N-I 
( 2 )  hop (node (mi) ) 
(3) inject(RowCarrier(mi)) 
(4) end do 

I Rowcarrier Cint mi) 
(2) mA(*) = A ( * )  
(3) do mj=O,N-1 
(4) hop (node ( (N- l-mi+mj ) m) ) 
(5) t = 0.0 
(6) do k=O,N-1 
(7) t += mA(k) * B(k) 
( 8 )  end do 
(9) C ( m i )  = t 
(10) enddo  
(11) end 

Figure 5.20. Full DPC through phase shiftling. 

JPL @. 



I Case Study 3: Matrix Multiplication (cont'd) h 

Figure 5.22. DSC in the second dimension. 
ICS'06 

JPL @ A 



I Case Study 3: Matrix Multiplication (cont'd) 

Figure 5.21. DSC pipelining in both dimensions. JPL @ 



I Case Study 3: Matrix Multiplication Icont'd) Ilk 

Figtire 5.26. Phase shifti~lg in both dimensions. 
ICS'06 



Case Studv 3: Matrix Multiplication (cont'd) b 

B NavP is amenable to incremental parallelization 
DSC 

o Pipelining : MatrixMultl .swf 

o Phase shift: MatrixMult2.swf 

2-D DSC 
o 2-D Pipelining: MatrixMult3.swf 

o 2-D Phase shift: MatrixMult4.swf 

IIP; Final NavP implementation fast 
Intermediate codes have good performance and 
hence useful as end products 
A mechanical process that provides simple 
incremental steps 

Gentleman's Algorithm was an abrupt jump 

JPL 



I Case Study 3: Matrix Multiplication (cont'd) 

Speedup of matrix multiplication on 3x3 PEs 
9 1 I I I I 

SUN workstations 
with 100 Mbps 

The NavP c performs faster than the MP code or Sca APACK. 

+ ScaLAPACK 
ft NavP 2D DSC 
--- NavP 2 0  pipeline 

7 I I I I I 

1000 2000 3000 4000 5000 6000 7000 
Matrix order 



I Case Study 3: Matrix Multiplication (cont'd) b 

Reason for NavP superior performance 
3 multithreading (functionality factored out from application code) 



1 Case Study 3: Matrix Multi~lication Icont'dl h 

B "Local services" factored out from 
applications and put into daemon 
o multithreading 
D self-hopping (in contrast to self-sending) 

a Analogy: business travelers vs. hotel 
managers 
o use the NavP view for travelers 

use the SPMD view for hotel managers 
local services are managers' job 



I Summary: Case Studies hl 

B Presented three case studies: Crout 
factorization, Cholesky factorization, matrix 
multiplication 

I The NavP implementations are as fast or faster 
than the MP implementations 

especially true when both coarse level 
parallelism (across nodes) and fine grained 
parallelism (multithreading) are needed 

e Mobile pipelines are able to easily parallelize 
algorithms that are difficult for conventional 
approaches 

I NavP is amenable to incremental parallelization 
B NavP transformations are mechanical and 

possibly automatable 
101 ICS'06 

- 
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I Outline 

F 
6 & Introduction 

Am The NavP view vs. the SPMD view 
-$ . Distributed sequential computing (DSC) 
1P 

+ The methodology of NavP 
P- 

:I. Case Studies 

6 The enabling technology of NavP 
7. Comparisons, conclusions, and future work 

-" 
' \  
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I Section 6: Enablina NavP 

MESSENGERS: developed at UC lwine 
M The daemon system 

H Data distribution for migrating 
computations 

ICS'O 6 



Enabling NavP: The Daemon System h 

Messengers 

Logical 
Network 

Developed at UCI 

... 
Agent variables vs. 
node variables 

Physical 
Network 

Daemon network 

k Hop() statement 

Daemon daemon 1 
Network 

daemon EIl 
/ Host 2 ' I Host 3 



I Enabling NavP: The Daemon System (cont'd) 

B Queues: 
CI ready queue 
a event queues 
LI communication queues 
o injection queue 

H User level multithreading: 
LI Queuing operations transparent to users 
CI waitEvent(evt) 

B put calling agent to event queue, if evt not signaled 
B) calling agent continues, if evt already signaled 

CI signalEvent(evt) 
r move waiting agents to ready queue 

JPL @ 



I Enabling NavP: The Daemon System (cont'd) k 

I 
Messenger 
Control Block (MCB) 

- - - - - - - - - - - - - - - - - - .  

Agent variables 
- - - - - - - - - - - - - - - - - -  

Offset vector 
- - - - - - - - - - - - - - - - - -  

Messenger heap 

Figure 6.1. hfessenger structure. 

MESSENGERS Overhead Over 
MPI 
D MCB size: 220 bytes 

Marshalling and demarshalling 

Q Context switching among agents 
(user level multithreading) 

JPL . 



Enabling NavP: The Daemon System (cont'd) h 

%I A design based on DSM 
~sl Use DSM right 

large data in local memory 
D small data on DSM 

utilize the great consistency protocols 
easy daemon implementation 

DSM 
DSM for pointe~~ 

Local H Local 

I 
I 

thread-? 

I I 
DSM 

DSM for agent variables 

X Y z 
I 1 I I [ 1 

DSM I) c I 

Figure 6.4. Va.riahle assignment on the DSh1-based system. 
JPL a 



Enabling compuation mobility 
Function breaking in source to source compiling 
Code does not move, computation does (with a 
logical program counter) 
LI efficient 
LI as secure as MP 

H Potential problem: code size explosion 

(1) func f I (mcb) (6) func f2 (mcb) 
(2) SI (7) S2 
(3) rncb- > next-f unc = 2 (8) end fu~rc 
(4) ... / u  codeforhop() * /  
(5) end func 

Figure 6.2. C:ompilat ioil of st raight-line tr~dc. (a) ~IESSENGERS source rotlc. 
( I , )  Fu~ic.t~io~is fronl source to so1irt.e compiliit ioil. 
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I Enabling NavP: Data Distribution for Migrating Computations 

Instrument the sequential program with a small input 
Affinity multigraph: 
LI Nodes are array entries 

Affinity multigraph edges: 
LI an A edge between the LHS and a distinct RHS 
LI a C edge between every pair of distinct RHSs 
LI a C edge between consecutive LHSs 
CI an R edge between neighboring array entries 

r Affinity multigraph edge weights: 
LI A edge: 1 
LI C edge: infinitesimal (to break ties) 
LI R edge: between 0 and 1 (to regulate the shape) 

Affinity graph partitioned (using Metis) 
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I Enablina NavP: Data Distribution for Miaratina Com~utations k 

2 -- Matrix transpose 
4 - -  Each gray scale is a 
6 partition 
8 - In contrast, conventional 

I approaches partition the 
dual of a mesh 

specific data accessing 
pattern of an algorithm 
plays no role 



Example: ADI Integration k 

phase I only: row sweeping 
c P b 

- phase ll only: col sweeping 
c P b 

phase I and I I  combined: 
only pipeline parallelism 

LI but no data redistribution in 
between two phases 



I Enablinq NavP: Data Distribution for Migrating Computations 

- Crout dense matrix - Crout banded matrix 



I Summary: Enabling NavP k 

B Presented the NavP daemon system and 
compiler 

ie Computation enabled with overhead that is 
insignificant in all our case studies 

m Data distribution for migrating computations 
uses the knowledge of data accessing 
pattern specific to a sequential algorithm 

JPL 



I Outline k 

Introduction 
The NavP view vs. the SPMD view 

Distributed sequential computing (DSC) 
The methodology of NavP 
Case Studies 
The enabling technology of NavP 

Comparisons, conclusions, and future 
work 
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I MP or DSM versus NavP h 

4 NavP and DSM both BJ NavP and MP both follow 
use Shared Variable the principle of pivot- 
(SV) Programming. computes (the pivot node 
Easy to use. that owns the large sized 

data computes). Scalable. 
s MP and DSM: 

computation mobility must 
be hand-crafted, because 
models do not support 

Computation Mobility 
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I OpenMP versus NavP 

Upwagma o w  garallel 
L Structured multithreading 

I 
B For shared memory (SMP) ' 

nre r ump~e?-rkrecld~um ( ) ; 

P Uses the SPMD view 
total = omp~rctaum~hnadP ( 1 ; 

a Uses barriers 

I prha#th;f nm the boss.'); 

e h  #,f (mt==l )  

$pechl Task ( ] ; 

ebe 

/ *  Each of the tasks 2. . .Cotd- -1  applies 

s.ornefincticln to past af the input values, 

The input values are asaigned alternately to  

the t a s k s  such that all values are dealt with .  * 

fur (i= me; i < N ;  i f  = total - 2) 

somchru:tSon (A [ a ] 1 ; 
1 

Fig. 4.4 Structure of an OpenMP program. Fb. 4.5 Work sharing by t h a d  numbers. 

116 ICS'06 
JPL 

, 



I Parallelizing Compilers versus NavP 

u Current parallelizing 
compilers use the SPMD view 
P skew the loop and change 

the code with complicated 
loop transfermations (e.g., 
affine) 

n NavP 
B skew the loop but still keep 

the original loop bounds 

NavP is not a competing 
technology, rather it can help 
parallelizing compilers to 
express parallelism well 

JPL 



00 versus NavP 

Encapsulation puts a shield around an object 
o Object users or subtype builders do not or cannot 

care about the implementation details 
o Modules can be built independent of each other 
o Bug sources can be isolated 

* 00 view is independent of NavP view 
NavP view degenerates on one PE, but 00 view 
does not 

o Methods of an object will see DBlocks as 
distributed computation is introduced, so choosing 
NavP or MP is still an issue 

M 00 does not solve the problem rooted from 
distributed computing 

118 ICS'06 
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I NavP Advantages 

Performance 
o Fine grained parallelism within a node, coarse grained 

parallelism across nodes 

o NavP code performs as fast as or faster than MP code 

Ease of use 
o Code structure an invariant in NavP transformations 
D Incremental parallelization 
o New sources of parallelism (mobile pipelines) 

Backward uniprocessor compatibility 
o "Local service code" factored out from application 

A uniform programming model 
o No need to do hybrid programming on SMP clusters 

No need to ~ortlrewrite code for new architectures 



I NavP Potential l m ~ a c t  k 

The SPMD view is popular for historical reasons 
CI Computers were not widely connected 

Programs ran on a single CPU for their lifetime 
Today single PEs is only a special case 

The "world" is connected, and computations "flow" around 
The MP view is no longer convenient (the "assembly language") 

NavP to break MPl's "monopoly" 
CI MP dominates because other attempted approaches do not 

scale 
The usefulness of computation mobility suggests a change 

NavP is from a very simple observation 
But it calls for a revolution in hardware, compilers, and tools 

R Because migration is not a first-class operation at low level yet 



I Summary of Results k 

NavP enables structured distributed programming 
NavP can parallelize algorithms that are otherwise 
difficult or even on surface appear impossible to 
parallelize 

E NavP provides greatly improved programmability 
with negligible performance degradation 

~r NavP is a uniform approach 
o No more complicated hybrid programming 

No more code rewriting for each new generation of 
supercomputers 
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I The World without NavP 

Application Programs 

Pthreads Java Threads OpenMP MPI PVM 1 /,/ 
"i 

Shared Memory Message Passing 

\ \ 
____----- Cluster ;... 

SMP CC-NUMA / \  
Myrinet ATM 

- - - - - - - 

Concrete Architectures 

(Adapted from Leopold 200 1 ) 



I NavP Contribution k 

Application Programs 
Exploit both fine 
(multithreadinq) 

1 
i - - - -  - - - - -  and coarse 

(pipelined tasks) 

i i i  
grained 

Pthreads Java Threads OpenMP MPI PVM NavP parallelism 
P Allow people to 

Threads use the most 
advanced 
computers 

Shared Memory Message Passing computation mobility being 
overwhelmed by 
the complexity 

./- Cluster 
/ of rewriting their 

-_-T_----- 

SMP CC-NUMA /"\ 
Myrinet ATM 

codes with each 
- - -  - - I new generation 

of architectures 
\ 

Concrete Architectures 

(Adapted from Leopold 200 1 ) 
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1 NavP Future Work k 

Compiler for DSC (2D optimizing compiler) 
o heuristics for choosing the right DBlocks to resolve 
R spatial optimization (as opposed to temporal) 
Compiler for mobile pipelines 
CI coarsening the dependency relationship to threadltask level 
NavP totfrom SPMD translators 
LI card dropping and card gathering 
Support computation mobility on large-scale SMP clusters 
R more efficient daemons for SMP/Cell/Multicore 
o priority queues for local and global traffic control 
New language bindings (e.g., Fortran) 
3 MP is advantageous in this regard 

NavP for the Grid (a security mechanism) 
Supporting domain decomposition and ghost boundary at system 
level 
Automatic coarsening of communication at system level JPL @ 
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Caution 

r NavP is still a manual programming 
approach as of today 

Distribution parallel programming remains 
an art, just as sequential programming 
NavP may help express irregular 
communication patterns, locality of access, 
and parallelism well, but the optimization of 
the quantities continues to be tough math 
problems 

r Only the tip of a huge iceberg. No silver 
bullet! 
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I Comments, Questions, and Discussions b 

Thank you very much! 


