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Section 1: Introduction

= |WO memory models
a SMP (Symmetric Multi-Processors)
o cluster (Networked Computers)
= Hybrid SMP clusters are currently popular

a 304 out of the top 500 fastest supercomputers are
clusters (as of June 2005 per top500.0rg)

= Cell (IBM) /Multi-core (Intel and AMD)
a Where are the threads?

2 3
PEI PE2 PE3 PEL PE PE
Memory | Memory 2 Memory 3
Memory
Network
(2) (b)
shared memory distributed memory
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Introduction (cont’d) |

u Distribute parallel programming is a grand challenge

0
a
0

0
o

Message passing and multithreading both needed, but very different
Message passing scalable for distributed memory but hard to use

Other proposed approaches (e.g., DSM or HPF) somewhat easier but
not fast enough

Code ported to supercomputers does not work on PC
Parallelizing compilers are mostly for shared memory architectures

Our ability to program the clusters is lagging behind
demand

d
a
|

$50K is about enough for a decent off-the-sheilf cluster
$50K is only 1/5 -- 1/3 of a man-year for a good parallel programmer
Parallelization of the nuclear code at DOE cost billions of dollars

In science and engineering, can create and collect complex data at
tremendous rates, but can hardly manage and analyze the data

Porting sequential game to online/cluster distributed environment is
expensive, and the ported code may not work well on new
architectures (e.g., cell/multi-core clusters)
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Section 2: NavP vs. SPMD Views ]

= SPMD (Single Program Multiple Data)

o one piece of code for all processors

= NavP (Navigational Programming)

a the programming of self-migrating computations

ICS'06



Distributed Computation: A 2-D Problem

= Space for distributed computation: the Cartesian product of
time and network (the net itself can be multi-dimensional)

= For simplicity, a phenomenon of distributed computation has
a 2-D representation
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NavP vs. SPMD Views: Simple Example 1

nl nZ2

Data distribution

(1) v1 = diag(A)
(2) v2 = Bvi
(3) va = Av2

(0.1) If rank = n1)

(1) vi = diag(A)
(1.1) - send(vi, n2)

(1. recv(vz, n2)

(3) v3 = Av2

(3.1) Else If (rank = n2)
(3.2)* recv(vi, nl)

(2) v2 = Bvi

(2.1) send(vz, nl)
(2.2) End If

(a) Sequential

(b) SPMD

ICS'06
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Line (2) no longer in between (1) and (3)!

A Computation

s Fxecution flow
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NavP vs. SPMD Views: Simple Example (cont’d)
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(1) vi1=diag(A)
(1.1) hop(n2)
(2) v2=Bwi
(2.1) hop(nl)
(3) v3=Aw

(c) NavP

= hop(dest) -- pauses the
computation, moves the
computation locus to the
destination, and resumes the

computation

= V1 and v2 are agent variables --
variables that follow the locus

of computation

tl

t2

t3

NavP vs. SPMD Views: Simple Example (cont’d) !
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NavP: Navigational Programming

s 1he programming of self-migrating computations
= Explicit navigational statements hop ()

= Stationary data is put in “node variables”

= Carried data is put in “agent variables”

« Synchronization uses “events’

= Code does NOT move, computation does

= Overhead — book-keeping data (~200 bytes)

11 1CS'06



NavP vs. SPMD Views

e SPMD (single program multiple data)

12

o One piece of code for all processors
o Computations are described at stationary locations

o a.k.a. the Eulerian view
o All existing models (MP, DSM, HPF) use SPMD

= NavP (navigational programming)

o The programming of self-migrating computations

o The description of a computation follows the
migration of its locus

0 a.k.a. the Lagrangian view

L @
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Analogy: ltinerary vs. Arrivals & Departures

Arrivals & Departures: a description of
train information at locations

Itinerary: a description of trains
following their movement

CUST:CJZCZJETPL  AGT:DLOMW
ITINERARY: ITIN
RECORD LOCATOR: MH443U ISSUE DATE: SEP 15 2004
19 SEP 04 - SUNDAY
TOUR
ELECTRONIC TICKET
COST EFFECTIVE NON REFUNDABLE
$100 MIN FEE FOR CHANGES/ADDITIONAL AIRFARE MAY APPLY
NON REFUNDABLE 594.40
AIR: AMER. WEST FLT: 630 CONFIRMED COACH CLASS
LV: ORANGE COUNTY 1230P  EQUIP-AIRBUS A320 JET
AR: PHOENIX 147p NONSTOP
. AIRMILES: 338
(description at locations) AIR: AMER. WEST FLT: 824 CONFIRMED COACH CLASS
LV: PHOENIX 307P  EQUIP-AIRBUS A320 JET
AR: BOSTON 1052P NONSTOP
FOOD TO PURCHASE AIRMILES: 2300
- RESERVED SEATS-12E
,,,,f,f—»ff”ff’ DEPARTURE TERMINAL-4
TOUR
- NO CAR NEEDED
Itinerary MAX LODGING ALLOWED $192 PLUS TAX-

(try inserting hops in
between destinations)

1Y
L @
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Analogy: ltinerary vs. Arrivals & Departures (cont’d)

sl s2 s3 s4

=y

sl s2 s3 s4
t1 | Trl | Tr2 Tr3 | Tr4d
t2 | Tr2 | Trl Trd | Tr3
t3 | Trl | Tr2.Trd | Tr3
td | Tr2 | Tr1.Tr3 | Tr4

(a) Arrivals & Departures

Trl | Tr2 | Tr3 | 'ITr4
t1 | sl s2 s3 s4
t2 | s2 sl s4 s3
t3 | sl S2 s3 s2
t4d | s2 sl S2 s3
| (b) Itinerary

The information provided by one view can

be presented in another

s Aview is %ood for a purpose (taxi driver vs.

traveler);

14 ICS'06
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Analogy: Describing a girl on a train

How do you want to
describe a girl sitting on a
train?

a Hold a video camcorder and
sit next to her (Lagrangian)

a Station a line of people along
the railway to take snapshots
of her as she passes them in
the train, and assemble the
pictures into a video later
(Eulerian)

1CS'06



Structured Distributed Programming:
Uniprocessor Special Case |

= Send/Recv are goto in distributed programming

(0.1) If (rank = nl) 0.1)
(1)  v1=diag(A) (1)  v1=diag(A)
(1.1 send(vi, n2) (1.1 goto L1
(1. recv(ve, n2) (1. L2:
(3) v3 = Av2 (3) vs = Av2
(3.1 _Else If (rank = n2) (3.1
(3.2) recv(vi, nl) (3.2) L1:
(2) v2=Bw1 | 2  v2=Bw1
(2.1) send(vz, nl) (2.1) goto L2
(2.2) End If (2.2)

(a) SPMD (b) SPSD

arL @
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The Software Crisis in the 1960s

= Goto Statement Considered Harmful

a by Edsger W. Dijkstra, Communications of the ACM,
Vol. 11, No. 3, March 1968, pp. 147-148

a Suggestion: Abolish goto and use structured
programming
= Send-receive considered harmful: Myths and
realities of message passing

a by Sergei Gorlatch, ACM Transactions on
Programming Languages and Systems, Vol. 26 ,
Issue 1, January 2004

o Suggestion: Use collective operations, e.g.,
broadcast, reduction, etc. to replace send and recv

= \We suggest to use hop ()

L @
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Structured Distributed Programming (cont’d) )

(0.1) If (rank = n1)
(1)  v1=diag(A)
(1.1) send(vi, n2)

(1.2 End If

(1.3) If (rank = n2)
(1. recv(vi, nl1)
2) v2 = Bvi
(2.1) send(ve, n1)
(2.2 End If

(2.8) If (rank = nl)
(2. recv(ve, n2)
(3) v3 = Av2

(3.1) End If

= Structured Distributed Programming
with SPMD problematic, uniless:

o Manage to have corresponding
recv() follow next to the send()

o As a special case, use collective
operations, e.g., broadcast,
reduction, gather

e NavP preserves Algorithmic
Integrity:

a Hop() does not change the
successive (in time) action as
described by the original
successive (in text space) action
descriptions, even though the
spatial location of the successive
(in time) action is changed

ICS'06
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NavP: Shared Variable Programming Beyond Shared Memory §

= Shared Variable Programming

a Inter-process communication and
synchronization managed through variables to
which two or more processes have access

= SV Programming attractive because

reading and writing remote memory with
familiar assignment statements

= DSM uses SV Programming

ICS'06



a Algorithmic Integrity

a Data structure Integrity

Thread x

rl

NavP: Shared Variable Programming Beyond Shared Memory |

= Global view of the distributed data

= SV Programming beyond shared memory

M W

.

AL0.99]  B[0.49] ! A[100..199] B[50..99]
PEO PEI]
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' NavP: Shared Variable Programming Beyond Shared Memory '

s« Node vs. agent variables

non-distributed distributed
non-shared | (none) agent variable
shared node variable DSV
= DSV: Distributed Shared Variable
= A compound navigational statement

load temporary data to agent vars
hop(DEST)
unload temporary data from agent vars

21 ICS'06




Summary: NavP vs. SPMD Views )

e Introduced the NavP view for distributed computing
(a.k.a. the Lagrangian view in fluid dynamics)

= Distributed computation is fundamentally Lagrangian

a NavP is the programming of self-migrating
computations
= Send-receive as harmful as goto; use hop ()

s NavP preserves Algorithmic Integrity

= Computation mobility (defined later) enables shared
variable programming beyond shared memory

22 ICS'06
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__Section 3: Distributed Sequential Computing (DSC) ]

= Computing with distributed data using a

single locus of computation

= But a cluster computer is for parallel

computing?
a Yes, parallelism is considered later
o DSC is by itself useful

a DSC is a fundamental composing element of
NavP: a parallel program can be composed from
pipelined DSC threads

ICS'06




s Only few algorithms can be perfectly
parallelized (embarrassingly parallel);
sequential portions are unavoidable

= Granularity considerations

= Re-implementing parallel code can be a
major effort, while distributed sequential
computing can handle large problems

= Insight into distributed programming

25 ICS'06



26

Computation Mobility 1

= The ability for the locus of computation to

migrate across distributed memories and
continue the computation as it meets the
required data

L @
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DSC: Data and Computation Rendezvous

MEM 1 MEM 2 MEM 1 MEM 2

i A< o-=-q---
\. _/ \. J

(b) DSM

MEM 1 MEM 2 MEM 2
R ) ) )
Sync
@[ @D
) I - i
_____ - - 1 A A
\ Wy, \_ _ \_ , . i,

(d) DSC using computation mobility

JpL @
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An Anatomy of MP and DSM 1

s MP code efficient in communication
= MP implementation restructures the original

code

a With MP, partitioning data means restructuring
code

= DSM code the same as the original code
= Severe performance penalty with DSM

o large data is moved to meet with small data

= 1ry something new?

- @
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DBlock Resolution and DBlock Analysis

= DBlock: Distributed code building Block
o Any code block containing a DBlock is a DBlock

DBlock Resolution: Make the data-computation
rendezvous happen

= DBlock Analysis: Find an efficient rendezvous

(1) ——
(2) ~---
(3) —
(4) ===
(5) ----
(a) | b
A DBlock B T(D) ASld i?s data JPL %
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The Principle of Pivot-computes

= Principle of Pivot-computes: The

computation of a DBlock should take place
on the node that hosts the largest piece of
the distributed data that the DBlock
accesses

#= That node is called a pivot node

ICS'06
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DSC Program Transformation

= How to implement a distributed program

from a sequential program?

a Conduct DBlock analysis to determine which
DBlocks to resolve (granularity level matters)

o Resolve those chosen DBlocks following the
orinciple of pivot-computes

= |f you do not want to restructure the
original sequential code, resolve the

DBlocks using computation mobility

a Otherwise you handcraft computation mobility
to follow pivot-computes

ICS'06



DSC Simple Example: A Left Looking Algorithm

O producer . consumer
Left-looking pattern

doj=2ton
doi=1toj1
alj] = (aljl+aliD*j/G+)

end do computations not communitive, nor associative */

alj] = aljl/
end do

i j j+1

al.]

PE1 PE 2 PEk

ICS'06
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_DSC Simple Example: A Left Looking Algorithm (cont’d)

doj=2ton
hop(node[j]); mx = alj]
do1=1to J']: = i, j, mx are “agent variables”
hop(nodeli]) ne..s ~ = al[]isa"“node variable”
mx = (mx+alil)*j/G+1) Most hops are no-ops
end do

hop(nodelj]); alj] = mx
alj] = aljl/;
end do

@

PE1 PE2 PE3 PE4 PES

L @
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DSC Real Example Crout Factorlzatlon

Ellmlnates page faults by distributing the locus of

computation on multiple nodes

= Eliminates disk paging and replace it by

iInexpensive and less frequent hops

= A competing approach: paging to remote memory

o “Adaptive and Reliable Paging to Remote Main
Memory,” J. of Para. and Dist. Comp., 1999

o Violates pivot-computes; moves more data than needed
o A special case of DSM

o Does not reduce the number of page faults. Only
Improves the service time for each page fault.

a Not a scalable solution; may cause remote memory
thrashing
L@
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\ DSC Real Example: Crout Factorization (cont’d) '

What if the working set is too big for a
computer?

a Partition the working set
a Distribute the working set
o Have computation approach the partitions

col j put in agent variable
Data for Kij Data for column | and go to meet the blocks

JrL @
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DSC Real Example: Crout Factorization (cont’d) f

k-2 k1| k |k+l k-2 k-1 | k |k+l |k+2

Need enough collective memory to host working set (not
entire matrix)

Use an additional PE to pre- and post-fetch

Use 4 workstations to solve a problem of the size of 35
machines’ collective memory

ICS'06
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DSC Real Example: Crout Factorization (cont’d)

(5)
(6)
(7
(8)
(9)

For j=1to N

For i7=2 to j—1

- - l""’“i - -
1&,-_,‘ — I\U‘ — Ziwl ]\1,’]\1';
End For

For i=1to j—1
I'— Wy
NE Ky )

Ky —Nj;—1Thi

End For

\ (10) End For

(1)
(1.1)
(2)
(2.1)
(2.2)
(3)
(4)

(4.1)
(4.2)

(5)
(6)
(7)
(8)
(9)
(10)

For j=1 to ¥V
load column
For i =2 to j~—1
hop to columm
loadd Ky

End For

hop to column
unload columm

For i=1to j—1
1" — K,

Vo o—

. . P

I\J'J — K ji = Ik 1]

End For
End For

Sequential Crout

ICS'06

DSC Crout w/o fetching
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(1)

(2)

(3)
(4)

(5)
(6)
(7)
(8)
(9)

For j=1..N

For i=2.j-1

- - i—171- 71~
]\ij — K ij 2;21 NN
End For

For i=1..7-1
1 *“‘IXI_ZF
[\jj““[\jj“ll\gj

End For

(10) End For

(1)

(1.1)
(1.2)
(1.3)
(1.4)
(1.5)
(1.8)

(2)
(2.1)
(2.2)
(3)
(4)

(4.1)
(4.2)

(5)
(6)
(7)
(8)
(9)

For j=1..N

liop (nodej])

If (hopped aeross node)
inject (WR())
waitEvent (10y4)

End If

load (column j)

For i=2..j-1

hop (nodeli])

load (K;;)

]f;‘_j — ]{53' — ZE;% IX—[gf\’lj
End For

hop (node[j])
unload (column  j)

Fori=1.j-1
1 — If,jj
- L
I\f} Ky )
]\jJ’ — Iﬁjj mfl\gj
End For

(10) End For

Sequential Crout 1CS'06

DSC Crout with fetching
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DSC Real Example: Crout Factorization (cont’d)

Performance of DSC Crout Factorization

6
10 R R R S T S R R TR T
- T=c¢ | e
L .| —=- DSCon2nodes - .......-.. e N
|- DSCondnodes |........... S
| % DSCon3nodes| e S

Elapsed Time (s, log scale)

I I i | I { | | L
0.4 0.6 0.8 1 1.2 1.4 16 1.8 2
Size of Matrix (Number of Rows) % 10°
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(1) For k=1.P (17) Reev (col §. k)

(2) If p===F (67) For i =1,_9 -'Il.rfl -1
3)  For j=1I. T —1 (7°) Kij — K — Y021 Kl
(4) Send (col j. k- 2) (8%) End For
(5) Recv (col j. {Kyq}. k—1) (18) Send (col j. {Kaq}. k — 1)
(6) Fori=1,..5)—1 (19) End For
ATTIDEE ASURE el Ny A Al
g R st Rk g0y Bl ==k -1
S (21) For m=1. I 4 —1
(9) Fori=1.j-1 (22) Recv (col j. {Kaa}. k —2)
(10) L =hiy (6") For i=Ij.Ii—1
(11) hij=rmz (7" Ky — Ky =SV Rl
(12) I&jj — [\jj — 1 A,’j (8") FEnd For
(13) End For (23) Send (col j. {Kqq}. k)
(14)  End For (24) End For
(15) Elself p==%k -2 (25) End If
(16) For m=1I;. Iy —1 (26) End For
1). Both loops broken; Message Passing Crout

2). if()/else if() for different nodes. (code for fetching not shown)

40 1CS'06
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Analogy: Drums or Drummer? '

- Programming the drums?

SPL

ICS'06
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Or the drummer?

ICS'06

Analogy: Drums or Drummer? (cont’d)

7

&N
<SP0 =



Summary: Distributed Sequential Computing |

= [ntroduced DSC: Distributed Sequential
Computing

= Introduced Computation Mobility

= Introduced DBlock and DBlock analysis

= Introduced the Principle of Pivot-computes

= Used simple as well as real-world examples
to show why DSC using NavP is efficient,
scalable, and easy

= MP is not a good fit for DSC

. JPL %
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The NavP Building Blocks

| _Applications
N Toolkit for converting
Methodology sequential code into
(NavP) distributed parallel

programs (NavP Toolkit)

Enabling Technology:

Computation Mobility

(MESSENGERS)

Network of Workstations, Cluster, or the Grid

ICS'06
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| | The NavP Steps | i
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The NavP Steps

. Data distribution

o Affinity graph by code instrumenting
e Partition the graph to get data mapping
e Distribute data to DSV

. Distributed Sequential Computing (DSC)

* Insert migration statements (hop(.))
e Small data to meet with large data
« Computation made coarse grained

. Distributed Parallel Computing (DPC)

e Decompose into and pipeline DSC threads
» Insert signalEvent() and waitEvent()

. Loop back for feedback and refinement

e Redistribute data to find a balanced point
between degree of parallelism and cost of
communication

ICS'06
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The NavP Steps Can Be Applied Repeatedly or Hierarchically

/ Concurrency

NavP

Pipelined
threads .

DSC Distribution
L @
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Step 1:

Data Distribution

= Affinity graph (sequential program “instrumentation” -
obtain data access pattern info. from execution)
a In contrast to using the dual of a mesh

= A(affinity), C(continuity), R(regularity) edges in

affinity graph

= K-way graph partitioning

partition

901000

000060

(a) Summation

49

partition
I'd

More later. R R4

4 rd
ol £

7
/
# I'd
L d L4
/
4 /
4

o @
@ @
o — 0
@ @ | partition
| ® ,
o @ 7
(b) (c)
Dot product Transpose

JPL

ICS'06



50

Step 2: Sequential to DSC

# Insert hop() statements to resolve the

DBlocks chosen from
2 DBlock analysis

= Following the Principle of Pivot-computes

(i.e., smalled-sized data hops to meet with
large-sized data for each DBlock)

ICS'06




Step 3: DSC to DPC

g NavP code transformations

PE1 PE2 PEO PEl PE2 PEOQ PE1 PE2

(a)
sequential

51

(b) (c) (d)
pipeline

DSC mobile pipeline o
phase-shifting

L @
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Step 4: Loop Back ]

PEI PE2
block | 1 2 3 4 |5 6 7 8

block
CycliC1256 3 4 7 8
a Refinements

o Block data distribution
to block cyclic data
distribution

a Refining or coarsening
granularity level of
computation

= Find a balancing point

52
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NavP Simple Example: A Left Looking Algorithm

doj=2ton
do1=1toj-1
aljl = (aljl+ali)*j/G+D

end do /* computations not communitive, nor associative */

aljl = aljlj
end do

i i j+1

al.]

PE1 PE 2 PEk

L @
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= Affinity graph:
o A edges fully connect the graph
a C edges connect the neighbors

= K-way graph partitioning
= Result: Block data distribution

PE1 PE2 PE3 PE4

54 ICS'06
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NavP Simple Example Step 2: Sequential to DSC |

doj=2ton
hop(nodelj]); mx = alj]
doi1=1toj-1 « i, j, mx are “agent variables”
hop(nodeli]) e a[]isa“DSV"
mx = (mx+a[i])*j/ G"‘i) # Most hops are no-ops
end do
hop(nodeljl); alj] = mx
aljl = aljl/;
end do

@

PE1 PE2 PE3 PE4 PES

ICS'06
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NavP Simple Example Step 3: DSC to

Long DSC thread cut into

. Thread thrd(
shorter ones and pipelined hop(node[j(]];; mx = alj]

. doi=1toj-1
signal(e, 1) hop(nodelil)
doj=2ton wait(e, i)

1n]ect(thrd(])) mx = (mx+ali])*j/ G+1)
end do end do

hop(node[j]); alj] = mx
aljl = aljlj
% signal(e, j)

end Thread

56
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NavP Simple Example (cont’'d)

= Animation: pipe.swf

conventional vs. mobile pipelines

a factory work vs. farmland work

a carpet cleaning vs. laundry

a Chinese banquet vs. western buffet

Cl C? C3 location e d c b a location
e d —|c| b a] — — |3l | —-
_ - - ° -
e —|d] | b| —*a £ — C3 C2 Ci — =
e d ¢| —*™ b a ¥ s C3 C2 CcClf —» ¥
S— I S
(a) (b)

Figure 4.7. The comparison of two pipelines. (a) Conventional. (b) Mobile.

oL@
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NavP Simple Example (cont’d)

= Complexity
a Storage on each node: O(N/P) (not ©(N))
a Total communication: O(N*P) (not ®(N?))
= Algorithmic integrity
g Other solutions
a cache all entries (B(N) storage)
a recommunicate (6(N?) communication)

a loop interchange (change algorithm structure)

58 ICS'06
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NavP Simple Example: Pipeline Parallelism

= Using shared memory or DSM

post(EV(1)) s Problems:
doacrossj =2 ton o Either: not a scalable
doi1=1toj1 solution if some nodes are
wait(EV(@{)) required to cache the entire
a[j] — (a[j]+a[i])*j/(i+i) array (Q(N) storage)
end do a Or: not an efficient solution if
alil entries are pulled to the
1 — [ nodes whenever needed
22{(_;‘9(]3) (Q(N?) communication)
end do

L @
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_NavP Simple Example: Direct Message Passing Pipeline }

PE1 PE 2 PE 3 PF 4

al.] 1 2 3 4 5 6 7 8
al1], a[2] . a[1], al2] . al1], a[2] .

a[3], al4] N al3], al4] R

al5], al6] .

= Problem: mismatch between data flow and
computation sequence

2 Possible solutions:
o Either: cache all entries (©2(N) storage, not scalable)

a Or: send/recv the same entry multiple times
(2(N?) communication, not efficient)
o Or: loop interchange (not trivial and maybe dangerous)

1CS'06
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‘NavP Simple Example: Swap the Loop to Make Right Looking }

@ gathering scattering m

OO0 @ 00000

O producer . consumer O producer . consumer

(a) Left-looking pattern (b) Right-looking pattern

@
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| NavP Simple Example: Swap the Loop to Make Right Looking

Relying on loop interchange is dangerous. What
If your boss stepped in and said: “Oh, for better
stability/convergence, we'd like to add a new
line in the algorithm ...?”

doj=2ton
doi=1toj1
a[_]] = (a[]]+a[1])*]/(]+1) New line that
1 = alil - *alq de=== Ch dependency.
alil = ali] +0.001*a[jl | (g chanses dependency
end do right-looking now.

alil = aljl/; All your previous efforts are wasted!
end do

= NavP handles the above situation easily (just
add that line in to the NavP code)

ICS'06
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NavP Simple Example: MP Mimicking NavP ]

= Anything that NavP can do can be done with
MP and vice versa

= But there may be problems:
a Loop is interchanged
a Send()/Recv() behavior like goto/label

a Small perturbation in the original algorithm could
result in large deviation in MP code (Algorithmic

Instability)

ICS'06



NavP Simple Example: Card-dropping Transformation

Transform from DSC code to MP code
From MP to DSC, use card-collecting transformation
Animation by Wendy Zhang

doj=2ton
hop(nodel[j]); mx = aljl
doi=1toj1
hop(nodel[il)
mx = (mx+alil)*j/G+1)
end do
hop(nodeljl); alj] = mx
aljl = aljl/;

end do F

64 ICS'06 JPL %
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~NavP Simple Example: MP Mimicking NavP (fine grained)

(1)

(2)

(3)
(4)

(5)
(6)

for =2 to N
for i=1to j—1

afj] — j+(aljl +a[iD/(j + 1)
end for

alj] — a[jl/]
end for

()

Original sequential

(1)
(2)
(3)
(4)
(5)
(6)

(7)
(8
(9)
(10)
(11)
(12)

(13)
(14)
(15)

i — rank

it (i'=1)

Send(a[1]. node[1])
Recv(x.node[i — 1]}

a[1] — x/1i A

end if
for j=1+1 to N

if (rank == node|1})
Recv(x.node[j])
else

Recv(x.node[i — 1]}

end if

x — jx(x+a[l])/(j+ 1)
Send(x.node[i + 1})
end for

Send/recv behave like goto, so the code structure
changed

MP program is parallel, hence is harder to debug
than the DSC program

(b)
MP
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NavP Simple Example: Small Perturbation in Original

doj=2tonby3
doi=1toj-1by2
aljl = (aljl+alil)*j/G+1i)
end do

alj] = aljlj
end do

ICS'06
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// the lst @ value to this PE's left
(18) int Function left_i{int i)
(19) il —1-1

_means large deviation in MP

(20)  while ({(i1- 1)%2 ! =0)
(21) il —11-1

(1) 1. rank (22)  end while

(2) if ({i-2)%3==0)

(3) Send(a[1].node[1]) (23) return i1l

(4) Recv(x.node[left i(i)]) (24) end Function

(5) aftl] —x/i

(6) end if [/ the 1st i value to this PE's right
(25) int Function right i{int i)

(7) if ((i - 1)%2==0) (26) dl—di+ti

ee \ (28) il —it+1

(9) if (rank == nodel1]) (29) end while

(10) Recv(x.node[j])

(11) clse o (30) return it

(12) Recv(x.node[left.i(i)]) (31) end Function

(13) end if
/1 the 1st j value to this PE's right

(14) x — j*(x+al1])/(j+1) (32) int Function right_j{int i)

(15) Send(x.node[min(right i(i). j}]) (33)  i1—1i-+1

(16)  end if (34) while ((i1~-2)%3 !=0)

(17) end for (35) il —i1+1

(36) end while

(37) return il
Algorithmic Instability! (38) end Function

ICS'C -




NavP Simple Example: MP Mimicking NavP (coarse grained) ]

/7 «end to the nede that hosts afl] i/ not in the gueues, so receive

(1) recvent — 0 an fil1flg==20)

(2) for 11 =1 to local cnt (28) while{recv cnt > 0)

(3 12— oafii] j-— g[12] (29) recv(x. ). ANY_SRC)

(4 recv cnt — recv ent+ N — (490) src.rank — the sender’s rank

(5) if{j !=1) (41) Tecy_cnt — recv.cnat — 1

(8) Tecy_¢ht — Yrecv cat + 1 {42) 1—1

&) if irank !=nodemap[1]} ;7 if received not the one, enguewe #

(8) Send{a[11], J.node map[1]) (43) {11 =31

&) end if (44) enquene(Q[src_rank].x, 3. 1)

{10)  else {45) else

{1 recy.cat -— recv.cnt — 1 (46) break

() anqueuei Q[rank], a[11]. 1.1} 47 e if

(13>  ewl if (48) el while

(14} e for (49) Call request. procii,j.xi}
(50) el if

/i compute recv et (51}  end for

(18) 12 — oa1] (52) ond if

(165 g2 — gi12]

(17) for 11 =2 to local cnt £/ reecive until all msgs rececived

(18) 13— oafl1], g3 — g[13] (53) while{recv_cnt = 0)

(19)  ifig2+1 == g38) (54) recvix,j, i, ANY SRC)

(20} recv.cat — recv.ent — [N—g3+1)| | (55) recv.eat — recv.cnt ~ 1

(213 end if (66) Call request procil.}.x)

(22) g2—g3 (57) end while

(23) end for

/7 the node that hosts the lst entry (68) Procedure request procii.j.x)

(24) if irank == node_map|1]} (69) for 11=1to j—1

(25) fur 11=2to N (60) if irank == node_map|11])

focheck if uny gueue has this entry {(61) X - Jx(x+af[11]]i/(j + 1)

{28) 11 flg —© (62) else

{27 for 12=1 to num_nodes (63) break

(28) it iQf12] not empry) (59) end if

(29) if {11 found} (60)  ond for

(30) dequeue(q12].x, 3.1)

(31) Call request proc(i,j.x) (61) if{11==) And rank == node.maplj])

(32} l1flg—1 (62) af1[3])] — =73

(33) break {63y else

(38 owd if (64) send(x, j,11,node.map|l1]}

(35) end jf (65) end if

(38> end for (66) ond Procedure
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D|ff|cult|es wuth MP Implementatlon

Adaptlng to arbltrary data distribution

a lrregular communication pattern
o Partial sorting and queuing needed

= Code restructuring

a Loops broken
a Repeated core code lines
a Large amount of auxiliary code

= | ermination complicated

o Anticipate number of messages a node will receive

s Self-sending using shared memory

2 Use queues (sending to a node itself is expensive with MPI)

o Balance receiving, processing, and sending (need
MPI_THREAD MULTIPLE)

a Or learn the tricks of posting recv’s at the right place
ICS'06
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Regular vs. Irregular Communication Patterns i
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NavP Simple Example:MP or NavP?

(computation described at stationary locations)

s Our suggestion: MP is not necessarily a bad way to

implement, but NavP is a more structured way to
design and describe general purpose distributed
parallel algorithms

a2 NavP is the “source code”

a MP is the “target code”
= OK to have “jump”s in assembly code

= Likewise OK to have send/recv in MPI -- the “assembly code” for
distributed computing

a The compiler from NavP to MP exists
a The compiler from sequential to NavP is to be built

@

ICS'06



72

NavP Simple Example Step 4: Loop Back )

a Performance considerations

a Block algorithm (coarser level computations)
« Can be automated using loop tiling techniques

n Block cyclic data distribution (more parallelism)

= Can be automated (NavP code works for
arbitrary data distribution)

a FIFO pipeline (less signal/wait events)

L@
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NavP Simple Example: Start from Blo

(1) forJ =1 to num blocks

(1.1) hop(node_map[J]): load blk J tox|]
(2) forI=1toJ~—-1

(2.1)  hop{node_map[I])

(3) Call F(I.J,a.x)

(4) end for

(4.1) hop(node_map|J])

(5)  Call F(J.J.x.x); unloadx[|toblkJ
(6) end for

(1)Procedure F(I.J, a, x)

(2) for j = start(J) to end(J)

(3) fori = start(l) to min{end(I).j — 1)
@ (L[] — 3 L] + a6 + 1)
(5) end for

(6) if (I=1J) af1[j]] < a[1[]}/3

(7) end for

(8)end Procedure

(a) (b)
Fig. 6. Block pseudocode for the simple algorithm. (a) DSC; (b) The function F()

= A block algorithm is a good starting point
a cache performance for sequential code
a +coarse granularity for distributed code

= Can use manual programming
= Or use a loop tiling tool L @
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NavP Simple Example: Performanc

Speedup of simple example using navigational pipeline
T 12 : T ¥ T T

-{~ Block alg (50K)

-8~ Block alg + Block cyciic data (50K)
T -0~ Non-block alg (50K) : :
10| { —%— Block alg + Block cycic data (100K) |- ... ..o oo

Elapsed tme of simple example using navigational pipeline
400 T T ¥ T T T T 7 T
.11 [= Bockag GOk
-{— Biock alg + Block cyclic data {50K)

350°F-----i-----1- -3~ _o— Non-block alg {50K)
- : ' —%— Block alg + Block cyclic data (100K)

Speedup

1 2 3 4 5 6 7 8 9 10 11 12 0 2 4 6 8 10 12
Number of processors

Number of processors
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~NavP Simple Example: Block Cyclic Data Distribution  }

PEI PE2

block 1 2 3 4 5 6 7 8

block
cyclic

= Block cyclic data distribution is a
classical approach to load balancing

75 ICS'06



76

Summary: The Methodology of NavP |

= Presented the methodology and steps of
NavP

= Used a simple left-looking example to
exercise the NavP steps

= |Introduced the card-dropping transformation

a2 Contrasted the NavP implementation to
other possible implementations (MP or
DSM)

ICS'06
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Outline

Introduction

The NavP view vs. the SPMD view
Distributed sequential computing (DSC)
The methodology of NavP

Case Studies

The enabling technology of NavP
Comparisons, conclusions, and future work

ICS'06
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Section 5: Case Studies

Case selection rationale

* Solving linear systems accounts for the majority of CPU time
in numerical computation

 Direct solvers are harder to parallelize than iterative solvers

Real-world examples
* Crout factorization: A “left-looking” matrix factoring

algorithm
 Cholesky factorization: A “right-looking” matrix factoring
algorithm
« Matrix multiplication: A lot of parallelism
Performance

« NavP implementations of the algorithms perform well
« NavP Cholesky code performs as fast as ScaLAPACK
 NavP matrix multiplication performs faster than ScaLAPACK

ICS'06



Case Study 1: Crout Factorization

= A left-looking algorithm to factorize symmetric matrices

A=

(1) For j=1..N
(2) For i—=1..5-1
(3) Kij — Ky — ¥121 Kuk,

(4) End For

For i=1..5-1
Té-m-f{.ij

)
)
) Kij = &5
) Kjj — Kj; —TKi;
) End For
0) End For

79

Sequential

UTDU
(1) For j=1..N
(1.1) hop{(node[j]); load (column j)
(2) For i=1.37-1
(2.1) hop (nodeli]); load (K,;)
(3) Kij — Kij - ; il\lzl\’l]
(4) End For
(4.1) hop(node[j]); unload (column j, Kyi{])
(5) For i=1.j-1
(7) Kij — _RT_
(8) K’jj — K’jj — Tlfz’j
(9) End For
(10) End For
DSC
JrL §
ICS'06 . y




Case Study 1: Crout Factorization (cont’d)

(1) For j=1..N (1) For j=1..N
(2) call col proc(j) (2) inject (col_proc(y))
(3 FEnd For (3) End For
(4) Procedure col_proc(int j) (4) Agent col_proc(int j)

(4.1) hop(nodelj]); load(column j)
{5) For i=1..7-1 (5) For i=1..7—-1

(5.1) hop (nodeli]): load (K,;)

. (5.2) I1f(5 >1 And i =1) waitEvent(evt,j — 1)

(6) Ki; — Ky — f_:_ll K Ky (6) Kij — Ky — ;.:.11 K Ky

(6.1) If(i=1) signalEvent(evt, )
(7) End For (7) End For

(7.1) hop(nodelj]); unload(column j, Ki;[])
(8) For :=1..7-1 (8) For i1=1..5-1
(9) T — Ky (9) T — K
(10) Ky — (10) Kij — =
(11) ij o IX’JJ — TK:’_j (11) I{jj +— ij _T-{{’ij
(12) End For (12) End For
{(13) End Procedure (13) End Agent
%0 DSC S0 DPC SPL




Elapsed time (s) - Crout

Case Study 1: Crout Factorization (cont’d)

MP implementation is left as an open problem
NavP code performance

Elapsed time of simple example and Crout Speedup of simple example and Crout

factorization using navigational pipeline factorization using navigational pipeline
- Sun Ultra60s 450MHz 256MB main memory 1GB vitual memory, 100Mbps Ethemet - Sun Ultra60s 450MHz 256MB main memory 1GB virtual memory, 100Mbps Ethemet
1800 4 i =T 400 12 1 [+ Crout3120_3120 marix
\ . Crout: 6360_6960 matrix ‘ ] : |
\ i | Crout 5040_5040 matrix |
1600 \ Crout: 5040_5040 matrix = 350 10 J_| 7 ‘ ‘
14m ]‘ =] ° | | Crout E960_B960 matrix |
\ « Crout: 3120_3120 matrix i 4300 E. ( | 1
\ | & | Simple example: Biockalg + Biockcyclic |
1200 | o Simple exampie: Block alg + Block = X g 1 dafa {S0K_S0Kmak) i |
\ cycic data (100K) 1250 o | 9 Simple example: Biockalg + Bockcyclic | & !
“._ Sy Bl ébck ag + Block ' —Q. data (100K_100K matrix) l Lo
1000 cyclic data (50K) 17 qE, £l e
800 | O 2 61 T
% 150 § - / <
N T E=] / |
600 3 k: 4 / |
\\ 1100 & = |
400 k: / |
m ) |
e O ; |
200 = —— ——-_‘_:_-*_.‘: 50 2 /6/ |
i . - 8 |
0 - - - 4 0
0 1 2 3 4 5 6 7 8 g 10 1 12 0 . . — . T T r T - i
Number of processors o 1 2 3 4 5 6 7 8 9 10 11 12
Number of processors
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Case Study 2: Cholesky Factorization :

A=GGT

= A right-looking algorithm to factorize symmetric
positive definite matrices

= Two nested loops, “scaling” to a “single” (G)

CO
CO

for different loops), followed by a “updating” on

all

umn in outer loop, “updating” to “all” the
umns in inner loop using the new G column

DSC code, a “scaling” on one node (different

the nodes. These are in loops.

= In DPC code, parallel “updatings” interspersed
with sequential “scalings.”

82
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s Right-looking data
accessing pattern

T AN\
0 000ee
O producer . consumer L
= Interleaved parallel
and sequential steps

83
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Case Study 2: Cholesky Factorization (cont’d)

PEI PE2 PE3

scaler

updater
]
[
updater
updater
|

scaler

l
I
|

— scaler

updater
*
I
updater
updater
]

ICS'06

JPL
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Case Study 2: Cholesky Factorization (cont’d)

(1) for k=1 ton

(2) if (rank == 1)

(3 Viec(k :n) = A(k : n.k)
(4) Vloc(k . n)/ = Vloc(k)
(5) A(k :n. k)= vis.(k : n)
(6) end if

(7 barrier

(8) call updating(rank,k.n)

(9) barrier

(10) end for

(11) updating(int rank,int k,int n)
(12) viee(k+1:n) = A{(k+1:n,k)

(13) for j=k+rank ton by p

(14) Wloc(j n)xA(_} :D.,j) _
(15) Wioc (J . n) — = Viec (J )Vloc(j : n)
(16) A(j i m, j)= Uloc(j : Il)

(17 end for

(1) for k=1 ton
(2)
(3)

(&) Ak :n.col(k))/ = /A(k,col(k))

(8)

(6)

(N

(7.1) for rank=1 to p

(8) inject(updating (rank. k. n))
(8.1) end for

@

(9.1) hop(nodemap(k + 1))
(9.2) waitEvent (Evt, k + 1)
(10) end for

(11) updating (int rank.int k,int n)
12) Viec(k +1:n) = A(k + 1 : n,col(k))
(12.1) hop (node_map(k + rank))

(12.2) waitEvent (Evt, k)

(13) for j=k+rank:p:n

(14)

(15) A(j :n,c0l(3))— = Viee(J)Viec(] 1 m)
(186)

(17) end for

(17.1) signalEvent (Evt, k + 1)
(18) end (18) end
DSM I NavP
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Case Study 2: Cholesky Factorization (cont’d)

PE1 PE2 PE3 PE1 PEl PE2 PE3 PE1

s (space)r

DSC DPC

ICS'06




(VAh=lLg=licol=p:p:n:l = lf’ug‘;!h(rw/)l ChOIQSky Factorization: MP Code '

(2)while ¢ <= L

(3) if b == colly)

(4)  Aoelk in.g) J = Aloclh.q)

(sy if bk < n

(6) Send {Agpelh :nog). right)

(7) end if ﬁ Both loops

(8) k= 1« + 1 broken into smaller

(9) for i=q+1:L ones over locally owned
(10) ro= col(i) columns;
13y apoeth i) = = Aoelr ) e (1) 2). if()/else if() for different
(13) ¢ =q+ | nodes;
(14) else 3). Local column index
(15)  Reev(grgelh iy e fi) start from 1;
(16) = proc which sent kth ( col 4). Termination condition
(17) S =inder of right’s final col complicated.
(18) if right # o and k < 3 5). Repeated core code
(19) Send (groelh o n). right) ) /

(20) end if

(21) for i=gq: L

(22) r o= col(i)

(23) Mol 11,8 — = G1o6(T)1oelr - 1)
(24) end for

(25) k=k+1

(26) end if

(27)end while

oL @

Golub & Van Loan “Matrix Computations’]




Case Study 2: Cholesky Factorization (cont’d)

The NavP code performs as well as the MP code or ScaLAPACK.

Speedup of Parallel Cholesky Factorization (7.000X7 000 matrix}

Speedup of Parallel Cholesky Factorization (5,000X5,000 matrix)

12 T T Y T T t Y T T Y 12 Y T ¥ i Y T T Y Y Y
g1l =8 MESSENGERS | 0 .. .l il il 118 MESSENGERS | ...0..c.o 2l

-0- MPI : ~0— MPI : i : . :

. Scal APACK - Q- Scal APACK
o £33
8 3
QO @
& 2
7y &

1 2 3 4 5 6 7 o 4 10 11
Number of Workstations Number of Workstations
ICS'06
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88

.

Y — L

In DSM, global sync with barriers

t2

| L
|
| |
| |
|

| 1

In NavP, local sync with events

NavP uses SV programming as DSM does, but it does not use barriers

ICS'06

L@



= Sequential

Case Study 3: Matrix Multiplication

(1)
(2)

(3)

(4)
(5)

for i=0top—-1
for j=0 top—-1

Cij — Ai B_]

end for
end for

=« Abundant parallelism. But doall's
work for distributed memory?

n Cache A and B everywhere; or
o Contention

89

(1) doall i=0,N-1

(2) doall j=0,N-1

(3) C(i,j) = 0.0

(4) do k=0,N-1

(5) C(i,j) += A(i,k) * B(k,j)
(6) end do

(7) end doall
(8) end doall

ICS'06
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(1)
(2)
(3)
(4)
(5)
(6
(7)
(8)
(9)
(10)

(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)

do k=0,N-2
doall node(i,j) where 0<=i,j<=N-1
if i>k then '
A — east(Ad)
end if
1f j>k then
B « south(B)
end if
end do
end do

doall node(i,j) where 0<=i,j<=N-1
C=AxB
end do
do k=0,N-2
doall node(i,j) where 0<=i,j<=N-1
A — east(A)
B — south(B)
C+= A *x B
end do
end do

ICS'06

s Gentleman’s Algorithm
a How did this guy get here?




(1) hop(node(0))
(2) inject(RowCarrier)

(1) RowCarrier
(2 do mi=0,N-1

(3) do mj=0,N-1

(4) hop (node (mj))

(5) if(mj=0) mA(x) = A(mi,*)
(6) t = 0.0

(7) do k=0,N-1

(8) t += mA(k) * B(k)
(9) end do

(10) C(mi) = t

(11) end do

(12) end do

(13) end

Case Study 3: Matrix Multiplication (cont’d)

91

HuodeID: O 2
o T~
AO0 AQL AD2 coo co1 co2
B0O — ] Bol —" B2 N
-
o
Al0 All Al2 | T™cy0 cli c12
B10 B11 B12
e —— [ENE— >
—
A0 A21 A22 | JcC20 ca1 c22
B20 B2l B22
Figure 5.16. DSC.
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Case Study 3: Matrix Multiplication (cont’d)

(1) hop(node(0)) HnodeID: 0 1 2
(2) do i=0,N-1

(3) inject (RowCarrier(i)) 00 o1 €02
(4) end do BOO BO1 BO2

AOQ A0l AG2 EE—

(1) RowCarrier(int mi)

@ B - Adai,n I o i
(3) do mj=0,N-1

(4) hop(node(mj)) Al0 AILAI2

(5) t=0.0 €20 c21 c2
(6) do k=0,N-1 B20 B21 B22
(7) t += mA(k) * B(k) o At Ao

8 ond do A20 A21A22

(9) Clmi) = ¢

(10)  end do Figure 5.18. DSC with pipelining.

(11) end -

92 ICS'06



Case Study 3: Matrix Multiplication (cont’d)

(1) do mi=0,N-1

(2 hop(node(mi))

(3) inject(RowCarrier(mi))
(4) end do

(1) RowCarrier(int mi)
(2) mA(*x) = A(*)
(3) do mj=0,N-1

(4) hop(node ((N-1-mi+mj)%N))
(5) t =0.0
(6) do k=0,N-1
(7 t += mA(k) * B(k)
(8) end do
(9) C(mi) = ¢t
(10) end do
(11) end
93
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Case Study 3: Matrix Multiplication (cont’d)

VnodelD:
C00 Co1 f )
0 BO2
B — Em— o A0 A(i A02 BI?
& froren
* ﬁ\l
Clo Cl11 Cl2
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Bl10

Figure 5.22. DSC in the second dimension.
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Figure 5.24. DSC pipelining in both dimensions. JPL
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Figure 5.26. Phase shifting in both dimensions.
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Case Study 3: Matrix Multiplication (cont’d) }

= NavP is amenable to incremental parallelization

DSC

Pipelining : MatrixMult1.swf
Phase shift: MatrixMult2.swf
2-D DSC

2-D Pipelining: MatrixMult3.swf
2-D Phase shift: MatrixMult4.swf

g o o o0 o

s Final NavP implementation fast

Intermediate codes have good performance and

' hence useful as end products
= A mechanical process that provides simple

incremental steps
o Gentleman’s Algorithm was an abrupt jump

ICS'06
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Case Study 3: Matrix Multiplication (cont’d)

Speedup of matnx multiplication on 3x3 PEs

SUN workstations I |
with 100 Mbps
7L i
6F |

Speedup
o

The NavP c‘i'}a‘e‘perfbrmfafste“r' than the MP code or Scal]APACK.

:’ : | —+ ScalAPACK
—— NavP 2D DSC
_ : © | —— NavP 2D pipeline
2h -~ NavP 2D phase-shift | . .. ]

-’ L i £ i i
1000 2000 3000 4000 5800 6000 7000
Matrix order
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=

Reason for NavP superior performance
a multithreading (functionality factored out from application code)

Case Study 3: Matrix Multiplication (cont’d)

b04

b75

b66

b57

a50 as57
a60 a67 66 |
a70 a7 a’6 a7s
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Case Study 3: Matrix Multiplication (cont’d) |

= "Local services” factored out from
applications and put into daemon
o multithreading
a self-hopping (in contrast to self-sending)
= Analogy: business travelers vs. hotel
managers
a use the NavP view for travelers
o use the SPMD view for hotel managers
o local services are managers’ job
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Summary Case Studles

. Presented three case studies: Crout

factorization, Cholesky factorization, matrix
multiplication

« The NavP implementations are as fast or faster

than the MP implementations

a especially true when both coarse level
parallelism (across nodes) and fine grained
parallelism (multithreading) are needed

= Mobile pipelines are able to easily parallelize

algorithms that are difficult for conventional
approaches

= NavP is amenable to incremental parallelization
= NavP transformations are mechanical and

possibly automatable

ICS'06
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Outline

Introduction

The NavP view vs. the SPMD view
Distributed sequential computing (DSC)
The methodology of NavP

Case Studies

The enabling technology of NavP
Comparisons, conclusions, and future work
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Section 6: Enabling NavP

= MESSENGERS: developed at UC Irvine
= | he daemon system
= The compiler

= Data distribution for migrating
computations

103 ICS'06



Enabling NavP: The Daemon System

= Developed at UCI
= Daemon network
Messengers hop(L1) » Hop() statement

Agent variables vs.
node variables

Logical
Network

Daemon | daemon | daemon | | | daemon
Network ' |

Physical
Network
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Enabling NavP: The Daemon System (cont’d)

s Queues:

2 ready queue

o event queues

a communication queues
a injection queue

« User level multithreading:

o Queuing operations transparent to users

a waitEvent(evt)

= put calling agent to event queue, if evt not signaled
« calling agent continues, if evt already signaled

a signalEvent(evt)
= move waiting agents to ready queue

ICS'06




Messenger
Control Block (MCB)

fe e — e —— — e e v e e e e e v — — o

e MESSENGERS Overhead Over
MPI

o MCB size: 220 bytes
a Marshalling and demarshalling

a Context switching among agents
__________________ (user level multithreading)

Messenger heap

Figure 6.1. Messenger structure.

106 ICS'06



Enablmg NavP The Daemon System (cont d) '-

= A deS|gn based on DSM
= Use DSM right

a large data in local memory

o small data on DSM

o utilize the great consistency protocols
o easy daemon implementation

DSM f\
i
1
]

i
Local Hm !
1
1

memory

DSM for pointers

107

\Ez:a—)cmml el

A[] P T T B Ak{} | o 7] Iemory
threadl thread?
x ¥y z
DSM for agent variables

DSM

DsSM

Figure 6.4. Variable assignment on the DSM-based system.
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Enabhng NavP The Compller )

- Enablmg moblllty
Function breaking in source to source compiling

logical program counter)

o efficient

o as secure as MP
em: code size explosion

Potential prob

Code does not move, computation does (with a

(1) s1
(2) hop()
(3) 82

(a)

(1) func f1 (mcb)
(2> =1

(3) mcb— >nextfunc=2 (8) end func
(4) ... /% codeforhop() * /

(5) end func

(6) func £2(mcb)
"M 52

Figure 6.2. Compilation of straight-line code.
(b) Functions from source to source compilation.

108
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Enabling NavP: Data Distribution for Migrating Computations |

s Instrument the sequential program with a small input
Affinity multigraph:

a Nodes are array entries

Affinity multigraph edges:

a an A edge between the LHS and a distinct RHS
o a C edge between every pair of distinct RHSs

a a C edge between consecutive LHSs

a an R edge between neighboring array entries

Affinity multigraph edge weights:

o A edge: 1

o C edge: infinitesimal (to break ties)

a R edge: between 0 and 1 (to regulate the shape)

Affinity graph partitioned (using Metis)

ICS'06
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Enabling NavP: Data Distribution for Migrating Computations

10

12|

14

16

110
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Matrix transpose

Each gray scale is a

partition

In contrast, conventional

approaches partition the

dual of a mesh

o specific data accessing
pattern of an algorithm
plays no role

P
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phase | only: row sweeping

ADI Integration

mE_ N

5 5
_10 _10
|
15 ” 15
20 i 20
10 20 30 40 50 80 10 20 30

111

phase | and || combined:
o only pipeline parallelism

o but no data redistribution in
between two phases

=]
5
10
204“".5‘ i B Wﬂ: 1 HEEE
10 20 30 40 50 60

i
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phase Il only: col sweeping
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14

16

18

Crout dense matrix

" |

14

16

18
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L]

Crout banded matrix

' Enabling NavP: Data Distribution for Migrating Computations
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Summary: Enabling NavP |

= Presented the NavP daemon system and
compiler

= Computation enabled with overhead that is
insignificant in all our case studies

= Data distribution for migrating computations
uses the knowledge of data accessing
pattern specific to a sequential algorithm

' PL @
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Outline |

1. Introduction

2. The NavP view vs. the SPMD view

5. Distributed sequential computing (DSC)
4 The methodology of NavP

5. Case Studies

¢. The enabling technology of NavP

7. Comparisons, conclusions, and future
work

L @
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MP or DSM versus NavP

= NavP and DSM both s NavP and MP both follow
use Shared Variable the principle of pivot-
(SV) Programming. computes (the pivot node
Easy to use. that owns the large sized

data computes). Scalable.

= MP and DSM:
computation mobility must
be hand-crafted, because
models do not support
migration.

SPMD view
DSM Handcrafted N MP
Computation Mobility

A Relationship
Triangle




OpenMP versus NavP

. ) fpragma omp parallel
= Structured multithreading

« For shared memory (SMP)

s Uses the SPMD view
= Uses barriers

me = omp_gel_thread num () ;
total = omp_getnum threads () ;
if (me==0)
printft*I am the boss.”);
else if {(me==1)
specialTask {) ;
else
/* Each of the tasks 2...total —1 applies
somefunction to part of the input values,
The input values are asaigned alternately to
the tasks such that all values are dealt with. *
Jor (i=me; 1< N; i+ = tolal — 2}

someFunction (A(1]);

Flg. 44 Structure of an OpenMP program Fig. 4.5 Work sharing by thread numbers.
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Parallelizing Compilers versus NavP

& Current parallelizing

compilers use the SPMD view

= Skew the loop and change
the code with complicated
loop transfermations (e.g.,
affine)

NavP

=« skew the loop but still keep
the original loop bounds

NavP is not a competing
technology, rather it can help
parallelizing compilers to
express parallelism well

oL @



OO versus NavP

= Encapsulation puts a shield around an object

a Object users or subtype builders do not or cannot
care about the implementation details

2 Modules can be built independent of each other
o Bug sources can be isolated

= OO view is independent of NavP view
a NavP view degenerates on one PE, but OO view
does not

o Methods of an object will see DBlocks as
distributed computation is introduced, so choosing
NavP or MP is still an issue

= OO does not solve the problem rooted from
distributed computing

L @
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NavP Advantages

a Fine grained parallelism within a node, coarse grained
parallelism across nodes

a NavP code performs as fast as or faster than MP code

= Ease of use
a Code structure an invariant in NavP transformations
a Incremental parallelization
a New sources of parallelism (mobile pipelines)
a Backward uniprocessor compatibility
a “Local service code” factored out from application

= A uniform programming model
a No need to do hybrid programming on SMP clusters

a No need to port/rewrite code for new architectures
JPL
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NavP Potential Impact

= The SPMD view is popular for historical reasons

a Computers were not widely connected

a Programs ran on a single CPU for their lifetime
= Today single PEs is only a special case

o The “world” is connected, and computations “flow” around

o The MP view is no longer convenient (the “assembly language”)
= NavP to break MPI’s “monopoly”

o MP dominates because other attempted approaches do not
scale

= [he usefulness of computation mobility suggests a change
o NavP is from a very simple observation
a But it calls for a revolution in hardware, compilers, and tools
o Because migration is not a first-class operation at low level yet

L @
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Summary of Results

« NavP enables structured distributed programming
= NavP can parallelize algorithms that are otherwise

difficult or even on surface appear impossible to
parallelize

= NavP provides greatly improved programmability

with negligible performance degradation

NavP is a uniform approach
a No more complicated hybrid programming

a No more code rewriting for each new generation of
supercomputers
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The World without NavP

Application Programs

S O Y A 1 B S i A e
i IV
x § / g gf ;! Skeletons X F
\13/ §;l!;/ // \ /;j

Pthreads Java Threads OpenMP MPI PVM

7 |

Threads

Shared Memory Message Passing

/\\ _

e Cluster

— CC-NUMA /T
mmmmmmmm NN e A
N A RN

Concrete Architectures

(Adapted from Leopold 2001)
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NavP Contribution

Application Programs

\ \\ | / f Skeletons f
il Vi | ‘;/ // X‘"\ !i

i
A

Pthreads Java Threads OpénMP MPI PVM NavP

J—

o —7

S 1 |
|

& Exploit both fine
(multithreading)
and coarse
(pipelined tasks)
grained
parallelism

s Allow people to
use the most

Threads™ i /
\ L/ advanced
L/ : _ computers
Shared Mizlgrz\ Message Passing computation mobility itk t being
A\ DSM \ / overwhelmed by
\\ T~ the complexity
S N C‘/‘-‘S‘er\ of rewriting their
SMP ~—  CC-NUMA / codes with each
| \ Myrinet ATM .
,,,,,,,, SN / N e A new generation
/ % \ \ / t\ /] i
/N /TN of architectures

Concrete Architectures
(Adapted from Leopold 2001)
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NavP Future Work )

Comp|ler for DSC (2D optimizing compiler)
o heuristics for choosing the right DBlocks to resolve
o spatial optimization (as opposed to temporal)
g Compiler for mobile pipelines
o coarsening the dependency relationship to thread/task level
« NavP to/from SPMD translators
o card dropping and card gathering
=  Support computation mobility on large-scale SMP clusters
o more efficient daemons for SMP/Celi/Multicore
a priority queues for local and global traffic control
= New language bindings (e.g., Fortran)
a MP is advantageous in this regard
= NavP for the Grid (a security mechanism)

® Supporting domain decomposition and ghost boundary at system
level

= Automatic coarsening of communication at system level JPL
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Caution

= NavP is still a manual programming
approach as of today

a Distribution parallel programming remains
an art, just as sequential programming

= NavP may help express irregular
communication patterns, locality of access,
and parallelism well, but the optimization of
the quantities continues to be tough math
problems

= Only the tip of a huge iceberg. No silver
bullet!

wPL @
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Comments, Questions, and Discussions

Thank you very much!
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