
NavP: Structured and Multithreaded
Distributed Parallel Programming

A Tutorial Presented to
ACWSIGARCH International Conference on Supercomputing (ICS'06)

Cairns, Australia, Saturday, 7/1/06

Lei Pan
Jet Propulsion Laboratory

California institute of Technology, USA

Jingling Xue
School of Computer Science and Engineering

University of New South Wales, Australia

I Outline C

n 4 Introduction
2. The NavP view vs. the SPMD view
- 6 4

X; Distributed sequential computing (DSC)

4. The methodology of NavP
5, Case Studies

6. The enabling technology of NavP
I , Comparisons, conclusions, and future work

JPL 9 . /

Section 1 : Introduction

Two memory models
SMP (Symmetric Multi-Processors)
cluster (Networked Computers)

a Hybrid SMP clusters are currently popular
LI 304 out of the top 500 fastest supercomputers are

clusters (as of June 2005 per top500.org)
B Cell (IBM) /Multi-core (Intel and AMD)

n Where are the threads?

shared memory distributed memory

I Introduction (cont'd)

Distribute parallel programming is a grand challenge
;1 Message passing and multithreading both needed, but very different
3 Message passing scalable for distributed memory but hard to use
~1 Other proposed approaches (e.g., DSM or HPF) somewhat easier but

not fast enough
Code ported to supercomputers does not work on PC
Parallelizing compilers are mostly for shared memory architectures

M Our ability to program the clusters is lagging behind
demand

$50K is about enough for a decent off-the-shelf cluster
$50K is only 115 -- 113 of a man-year for a good parallel programmer

r;r Parallelization of the nuclear code at DOE cost billions of dollars
LI in science and engineering, can create and collect complex data at

tremendous rates, but can hardly manage and analyze the data
LI Porting sequential game to onlinelcluster distributed environment is

expensive, and the ported code may not work well on new
architectures (e.g . , cell/multi-core clusters)

Outline

1 . Introduction

2. The NavP view vs. the SPMD view
-4 - Distributed sequential computing (DSC)
3 The methodology of NavP
1"-
_I-*

I... Case Studies

. The enabling technology of NavP
ii
.- Comparisons, conclusions, and future work

JPL 0 , /

I Section 2: NavP vs. SPMD Views b

H SPMD (Single - - Program - Multiple - Data)
o one piece of code for all processors

s NavP (Navigational - Programming)
CI the programming of self-migrating computations

JPL

I Distributed Computation: A 2-D Problem k

a Space for distributed computation: the Cartesian product of
time and network (the net itself can be multi-dimensional)
For simplicity, a phenomenon of distributed computation has
a 2-D representation

node 1 nodel node3 node4 s (space)

I NavP vs. SPMD Views: Simple Example b

Data distribution

(a) Sequential

(0.1) If (rank = n l)
(1) VI = diag(A)

send(vi,n2)

(2) v2 = Bvi
(2.1) send(v2, n l)
(2.2) End If

(b) SPMD

JPL
. -

I NavP vs. SPMD Views: Simple Example (cont'd) b

Line (2) no longer in between (1) and (3)!

Computation - Execution flow

node 1 node?

Sequential

n ion Colllput t '

- Dependency

node 1 node2
S

I A Computation I
A I - Execution flow I

/(1)\ I - Comrntmicaiion 8.
\ Sjmchrot~ izat ion

t if0 else if'()

Dependency & distribution SPMD

JPL @ . ,

I NavP vs. SPMD Views: Simple Example (cont'd)

(1) vl = diag(A)
(1.1) hop(n2)
(2) v2 = Bvi
(2.1) hop(n1)
(3) v3 = Av2

(c) NavP

PB hop(dest) -- pauses the t2

computation, moves the
computation locus to the t3

destination, and resumes the
computation

.r

v l and v2 are agent variables --
variables that follow the locus
of computation

,//, Computation
I

I
I \- Executior~ flow

I
I
1 . '\ ' . '.

NavP

JPL w

a The programming of self-migrating computations
Explicit navigational statements hop ()

a Stationary data is put in "node variables"
Carried data is put in "agent variables"

6~ Synchronization uses "events"

I Code does NOT move, computation does
M Overhead - book-keeping data (-200 bytes)

NavP vs. SPMD Views

H SPMD (single program multiple data)
o One piece of code for all processors
o Computations are described at stationary locations
o a.k.a. the Eulerian view
Q All existing models (MP, DSM, HPF) use SPMD

r NavP (navigational programming)
Q The programming of self-migrating computations
o The description of a computation follows the

migration of its locus

a.k.a. the Lagrangian view

I Analogy: Itinvary vs. Arrivals & Departures k
-- Arrivals & Departures: a description of

train information at locations - Itinerary: a description of trains
following their movement

[Arrivals & departures]

CUST:CJZCZJETPL hGT:IlLOMW
ITINERARY: ITIN
RECORD LOCATOR : MH4 4 3U

'7

ISSUE DATE: SEP 15 2004

19 SEP 0 4 - SUNDAY
TOUR
ELECTRONIC TICKET
COST EFFECTIVE NON REFUNDABLE
5 10 0 MIN FEE FOR CHANGES {ADDITIONAL AIRFARE HAY APPLY
NOR REFUNDABLE 5 9 4 . 4 0

AIR: MER. WEST FLT: 630 CONFIRMED COACH CLASS
LV: ORANGE COUNTY 123OP EQUIP-AIRBUS A 3 2 0 JET
RR: PHOENIX 147P NONSTOP

RLRHILES : 3 3 8
RESERVED SEATS-25D

(description at locations) AIR: ~ E R . WEST FLT: 824 CONFIRMED COACH CLASS
LV: PHOENIX 307P EQUIP-AIRBUS A320 J E T
AR: BOSTON 1052P NONSTOP
FOOD TO PURCHASE AIRHILES: 2300
RESERVED SEATS-IZE
DEPARTURE TERMINAL-4

TOUR
NO CAR NEEDED
MAX LODGING ALLOWED $ 1 9 2 etus TAX-

(try inserting hops in /'
& JPL cw

13 IC5'06

Trl

(a) Arrivals & Departures

I The information provided by one view can
be presented in another

t l
t2
t3
t 4

1 A view is ood for a purpose (taxi driver vs.
traveler); 8 PMD is good for client/server

s3

Tr3
Tr-4
Tr.3
Tr.4

(b) Itinerary

s4

Tr4
Tr3

sl

Trl
2
1'1-1
Tr2

s2

Tr2
Tr1
Tr2.Tr4
Trl.Tr3

Analogy: Describing a girl on a train
7 .

- How do you want to
describe a girl sitting on a
train?
LI Hold a video camcorder and

sit next to her (Lagrangian)
o Station a line of people along

the railway to take snapshots
of her as she passes them in
the train, and assemble the
pictures into a video later
(Eulerian)

&&
JPL --

I Structured Distributed Programming:
I

-

Uniprocessor SpecialCase I

SendIRecv are goto in distributed programming

(0.1) If (rank = nl)
(1) vl = diag(A)

send(v1, n2)
recv(v2, n2)

(3.1 i",; lse =Av2 If (rank = 1 n)

(3.2) recv(v1, n l)
(2) v2 = Bvi
(2.1) send(v2, nl)
(2.2) End If

(a) SPMD (b) SPSD
JPL

The Software Crisis in the 1960s

Goto Statement Considered Harmful
o by Edsger W. Dijkstra, Communications of the ACM,

Vol. 1 1, No. 3, March 1968, pp. 147-1 48
CI Suggestion: Abolish goto and use structured

programming
M Send-receive considered harmful: Myths and

realities of message passing
by Sergei Gorlatch, ACM Transactions on
Programming Languages and Systems, Vol. 26 ,
Issue 1, January 2004

Q Suggestion: Use collective operations, e.g.,
broadcast, reduction, etc. to replace send and recv

We suggest to use hop ()

(0.1) If (rank = n l)
(1) v i = diag(A)
(1.1) send(v1, n2)
(1. EndIf

(1.) If (rank = n2)
(1. r: recv(v1, nl)
(2) v2 = BVI
(2.1) send(v2, n l)

recv(v2, n2)
(3) v3 = Av2
(3.1) End If

18

n Structured Distributed Programming
with SPMD problematic, unless:
CI Manage to have corresponding

recv() follow next to the send()
LI As a special case, use collective

operations, e.g., broadcast,
reduction, gather

NavP preserves Algorithmic
Inteqritv:
o Hop() does not change the

successive (in time) action as
described by the original
successive (in text space) action
descriptions, even though the
spatial location of the successive
(in time) action is changed

I NavP: Shared Variable Programming Beyond Shared Memory L

Shared Variable Programming
CI Inter-process communication and

synchronization managed through variables to
which two or more processes have access

rt SV Programming attractive because
reading and writing remote memory with
familiar assignment statements

a DSM uses SV Programming

JPL @

M SV Programming beyond shared memory
CI Algorithmic Integrity

M Global view of the distributed data
CI Data structure Integrity

PEO PE 1

s Node vs. agent variables

DSV: Distributed Shared Variable
A compound navigational statement

distlribu ted
agent. variable
DSV

non-shared
shared L_

l o a d temporary data t o agent v a r s
~ ~ ~ (D E s T)
unload temporary data from agent v a r s

non-dist.ribu tied
(none)
node variable

JPL

I Summary: NavP vs. SPMD Views h

Introduced the NavP view for distributed computing
(a.k.a. the Lagrangian view in fluid dynamics)

II Distributed computation is fundamentally Lagrangian
NavP is the programming of self-migrating
computations

a Send-receive as harmful as goto; use hop ()

a NavP preserves Algorithmic Integrity
Computation mobility (defined later) enables shared
variable programming beyond shared memory

JPL 0.
, - -1

I Outline k

"3 Introduction
P\

L. The NavP view vs. the SPMD view

3. Distributed sequential computing (DSC)
i; The methodology of NavP
5 - Case Studies

i: The enabling technology of NavP
7 Comparisons, conclusions, and future work

BI Computing with distributed data using a
single locus of computation

o But a cluster computer is for parallel
computing?
CI Yes, parallelism is considered later

LI DSC is by itself useful

LI DSC is a fundamental composing element of
NavP: a parallel program can be composed from
pipelined DSC threads

DSC: why?

~r Only few algorithms can be perfectly
parallelized (embarrassingly parallel);
sequential portions are unavoidable

B Granularity considerations
IS Re-implementing parallel code can be a

major effort, while distributed sequential
computing can handle large problems

EW Insight into distributed programming

JPL @

I Computation Mobility Ilk

The ability for the locus of computation to
migrate across distributed memories and
continue the computation as it meets the
required data

JPL @

I DSC: Data and Computation Rendezvous b

MEM 1
>

Thread x

i
'. J

(a) The Problem

MEM 1

i A 4 -
\ 1

MEM 2
\

. - - -
\

(b) DSM

MEM i
\

_ _ - - - - - -

\ /'

MEM 2
\

(d) DSC using computation mobility

I An Anatomy of MP and DSM b

~s MP code efficient in communication
e MP implementation restructures the original

code
o With MP, partitioning data means restructuring

code

DSM code the same as the original code
a Severe performance penalty with DSM

large data is moved to meet with small data

M Try something new?

JPL 0
..I

I DBlock Resolution and DBlock Analysis

BI DBIock: - Distributed code building Block
LI Any code block containing a DBlock is a DBlock

a DBlock Resolution: Make the data-computation
rendezvous happen

RI DBlock Analysis: Find an efficient rendezvous

(4
A DBlock And its data

I The Principle of Pivot-com~utes

s Principle of Pivot-computes: The
computation of a DBlock should take place
on the node that hosts the largest piece of
the distributed data that the DBlock
accesses
That node is called a pivot node

JPL

I DSC Proaram Transformation b

r How to implement a distributed program
from a sequential program?

Conduct DBlock analysis to determine which
DBlocks to resolve (granularity level matters)
Resolve those chosen DBlocks following the
principle of pivot-computes

g. If you do not want to restructure the
original sequential code, resolve the
DBlocks using computation mobility
LI Otherwise you handcraft computation mobility

to follow pivot-computes

I DSC Simple Example: A Left Looking Algorithm

gatheriug

101 ol0lol.l
0 producer cousulmer

Left-looking pattern

end do I* computations not communitive, nor associative *I

end do

-.

JPL

)SC Simple Example: A Left Looking Algorithm (cont'd)

hop (node Ii])

end do

i, j, mx are "agent variables"
m a[.] is a "node variable"

r Most hops are no-ops

1 DSC Real Example: Crout Factorization

Eliminates page faults by distributing the locus of
computation on multiple nodes

e Eliminates disk paging and replace it by
inexpensive and less frequent hops
A competing approach: paging to remote memory
LI "Adaptive and Reliable Paging to Remote Main

Memory," J. of Para. and Dist. Comp., 1999
o Violates pivot-computes; moves more data than needed

o A special case of DSM
o Does not reduce the number of page faults. Only

improves the service time for each page fault.
u Not a scalable solution; may cause remote memory

thrashing

r DSC Real Example: Crout Factorization (cont'd) k

-e What if the working set is too big for a
computer?
LI Partition the working set

LI Distribute the working set

o Have computation approach the partitions

Data for Kij Data for column j
col j put in agent variable
and go to meet the blocks

I DSC Real Example: Crout Factorization (cont'd) b

Need enough collective memory to host working set (not
entire matrix)
Use an additional PE to pre- and post-fetch

M Use 4 workstations to solve a problem of the size of 35
machines' collective memory

r DSC Real Example: Crout Factorization (cont'd)

(1) For *; = 1 t o 2\-

(1 1) luitd ~ . ~ l l l l l l l l ;
(2) o r i = 2 to j - 1
(2 . 1) I l u p to 1 i
(2.2) l o i \ t 1
(3)

1 - 1

I - , - C, =. , h, [C!.]
(4) 1 < 1 1 (1 FOY

(4.1) 1 . I 1 . 0 1 1 1 1 1 1 1 1 j

(4.2) 1 1 1 1 1 t , i t < l c r ~ l ~ i ~ i r ~ l .i

(5) i = l tt, j - 1
(61 I '
(7) 7' I<:, - -

kit

(8) li,, - 1 - l ' I<l . l
(9) Elll(1 F[.K
(10) I;ll(l Fur

Sequential Crout DSC Crout wlo fetching

ICS1O6
JPL @

(1) For j = 1 . . S

(2) For i = 2 . . j - 1

(3) - I<zj - z;z; .f<liI<lJ
(4) Etld FO/*

(5) For i = l . . j - 1
(6) 1' c Iiij
(7) T I<zj - - I\-$
(8) I<jj - I<jj - Y'I<:-j
(9) Erd For*
(10) Er~d For

(I) For. j = 1 . .X
(1 . 1) hoy~ j r ~ o t l c * [j])

(1 . 2) I f (h o p] f i 4 (/ trrOi.oss ,t oc1r)
(1.3) i)) jt I, Tl-R(&j))
(1 .4) tr+rcitEvc I ! t (I O b (
(1 . 5) E~ltl i f
(1.6) /orctl(r*o/trrrtr~ . J) t

(2) For i =&...I 3 - - 1
(2.1) Ir 01) (r~otlr* [i])

(2.2) 1 d (I<$)
(3) ICij - I - '- lcli lcl
(4) E~ztl .Frnx

(4 . 1) / I op (l t)di3 [.;I)

(4 . 2) 1 / 9 7 (0 1 i - 1)

(5) For i = l . . j - 1
6) 7' I{ij
(7) T - - A*. .

L t

(8) I<jj KjJ - IIIidj
(9) End For-
(10) EM/ For

3 8 Sequential Crout rcsTo6 DSC Crout with fetching JPL
. , -,

DSC Real Example: Crout Factorization (contgd)

Performance of DSC Crout Factorization

I 1 I I I I 1 I I I
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Size af Matrix (Number of Rows) x lo4

1). Both loops broken; Message Passing Crout

(1) F O ~ x.= I . . P (17) n(l (Y+ (c+ol j. k)
(2) I f p = = k (6 ') o i = .. Ik- - 1
(3) FOI. ; = lk .. Ik+1 - l (7 ') I i i j +-- ATij - xi-.-l ICliIi/j 1 - 1

(4) Srvr tl ((a 0 1 j. k - 2) (£3') Erlti For*
(5) (c*ol j . k - 1) (1 8) r (I j { k - I)
(6) For i = lk . . . j - 1 (1 9) E ~ r t l For
(7) I<. r .! . +-- I<*j - I= 1 IiliIClj
(8)

(20) Elsr 1 f 11 == Xz - 1
Eld For

(21) For 11, = Ik .. lk+l - l
(9) For i = l . . j - l (22) R(rr (col j . { I } . k - 2)
(10) 1' +- i C i j (6 ") For. i = I k - l ..Ik - 1
(1 1)

'1 ' 1Cij -
1 (7") I<] + ICij - 1=1 '- I<[

(1 2) ICjj + I<jj - I ' J ! < ~ ~ (8 ") E11d Fol
(13) Ellrl! For (23) S<.rr tf (col j. { K d d) . k)
(14) E.ud For (24) E l For
(15) EEsoIf 11 == k - 2 (25) E I f
(1 6) F o ~ . r r t = I ~ . . l ~ + ~ - l (2 6) Eid F01-

2). if()/else if() for different nodes. (code for fetching not shown)

40 ICS'O6

I

1 Analoqy: Drums or Drummer? k

- Programming the drums?

I Analoav: Drums or Drummer? (cont'd) h

- Or the drummer?

1 Summary: Distributed Sequential Computing

lntroduced DSC: Distributed Sequential
Computing

n lntroduced Computation Mobility

lntroduced DBlock and DBlock analysis
lntroduced the Principle of Pivot-computes

B Used simple as well as real-world examples
to show why DSC using NavP is efficient,
scalable, and easy

s MP is not a good fit for DSC

Outline

Introduction
The NavP view vs. the SPMD view
Distributed sequential computing (DSC)
The methodology of NavP
Case Studies
The enabling technology of NavP

Comparisons, conclusions, and future work

-

JPL

I The NavP Buildinn Blocks h

Applications

Tool kit for converting
Methodology sequential code into

(NavP) distributed parallel
programs (NavP Tool kit)

!

Enabling Technology:
Computation Mobility

(MESSENGERS)

Network of Workstations, Cluster, or the Grid

The NavP Steps

-'?

ential

I The NavP Steps

1. Data distribution
Affinity graph by code instrumenting
Partition the graph to get data mapping
Distribute data to DSV

2. Distributed Sequential Computing (DSC)
Insert migration statements (hop(.))
Small data to meet with large data
Computation made coarse grained

3. Distributed Parallel Computing (DPC)
Decompose into and pipeline DSC threads
Insert signalEvent0 and waitEvent()

4. Loop back for feedback and refinement
Redistribute data to find a balanced point
between degree of parallelism and cost of
communication

JPL

DSC Distribution

JPL
-

I Step 1: Data Distribution

Affinity graph (sequential program "instrumentation" -
obtain data access pattern info. from execution)

In contrast to using the dual of a mesh

A(affinity), C(continuity), R(regularity) edges in
affinity graph
k-way graph partitioning

I panit ion
I

I

Summation

More later.

- - - .
partition

(131
Dot product Transpose

JPL

I Step 2: Sequential to DSC h

~s Insert hop() statements to resolve the
DBlocks chosen from
R DBlock analysis

14 Following the Principle of Pivot-computes
(i e , smalled-sized data hops to meet with
large-sized data for each DBlock)

I Step 3: DSC to DPC

NavP code transformations

WO PM PE 1 PE2 PEO PE1 PI2

(a)

sequential
fb)

DSC

(c)

mobile pipeline

(d)
pipeline
phase-shifting

ICS'O 6

I Step 4: Loop Back b

block

block
cyclic

M Refinements
CI Block data distribution

to block cyclic data
distribution

CI Refining or coarsening
granularity level of
computation

B Find a balancing point # of cyclic blocks

end do I* computations not communitive, nor associative *I

end do

JPL @

Affinity graph:
o A edges fully connect the graph

C edges connect the neighbors

I k-way graph partitioning

% Result: Block data distribution

I NavP Simple Example Step 3: DSC to DPC b

a Long DSC thread cut into
shorter ones and pipelined

Thread thrd(j)
hop(node[jI); mx = a[iI

simal(e, 1)
d o i = 1 toj -1

hop(node [i])
d o j = 2 t o n wait(e. i)

iniect(thrd6)) mx = (mx+a [il)*j/(i+i)
end do end do

hop(node[jI); a[jI = mx
a[iI = a[jI/j

_____--- - - - -__ ----- --- - - --
/<---' --_ - - signal(e, i)

JPL @
.-<'

NavP Simple Example (cont'd) h

a conventional vs. mobile pipelines
CI factory work vs. farmland work
CI carpet cleaning vs. laundry

CI Chinese banquet vs. western buffet

e d c b a location

El-

Figure 4 .?. The co~nparison of ts~vo pipelines. (a,) Conventional. (1,) hlobile.

I NavP Simple Example (cont'd)

B Complexity
Storage on each node: O(N/P) (not O(N))

Q Total communication: O(N*P) (not O(N2))

Algorithmic integrity
M Other solutions
a cache all entries (O(N) storage)
D recommunicate (O(N2) communication)

a loop interchange (change algorithm structure)

--

JPL

I NavP Simple Example: Pipeline Parallelism

Using shared memory or DSM

p o s t (~ ~ (l))
doacross j = 2 to n

d o i = 1 t o j - 1
wait (EV(i))
a[i] = (ab]+a[i])*j/(i+i)

end do

B Problems:
Either: not a scalable
solution if some nodes are
required to cache the entire
array (P(N) storage)

Or: not an efficient solution if
a[i] entries are pulled to the
nodes whenever needed
(GZ(N2) communication)

end do

-

JPL

I NavP Simple Example: Direct Message Passing Pipeline

w Problem: mismatch between data flow and
computation sequence

II Possible solutions:
CI Either: cache all entries (B(N) storage, not scalable)
LI Or: sendlrecv the same entry multiple times

(B(N2) communication, not efficient)
LI Or: loop interchange (not trivial and maybe dangerous)

JPL @

m gathering

0 producer e consutner

(a) Left-looking pattern

ICS'O 6

scattering rn
producer 0 consumer

(b) Right-looking pattern

JPL

pavP Simple Example: Swap the Loop to Make Right Looking

-- Relying on loop interchange is dangerous. What
if your boss stepped in and said: "Oh, for better
stabilitylconvergence, we'd like to add a new
line in the algorithm ... ?"

end do

New line that
changes dependency.
Neither left- nor
right-looking now.

abl = ab]/j All vour C previous efforts are wasted!

end do

- NavP handles the above situation easily (just
add that line in to t h e NavP code)

62 ICSOOG

7 NavP Simple Example: MP Mimicking NavP h

Anything that NavP can do can be done with
MP and vice versa

$I But there may be problems:
LI Loop is interchanged
LI Send()/Recv() behavior like gotollabel

a Small perturbation in the original algorithm could
result in large deviation in MP code (Algorithmic
Instability)

--

JPL

I NavP Simple Example: Card-dropping Transformation

-- Transform from DSC code to MP code
.- From MP to DSC, use card-collecting transformation

-. Animation by Wendy Zhang

end do

end do

1 for j = 2 to N

(2) for i = l t o j - 1

(3) a[j] - j * b[j] + a[i]) / i j + i)
(4) elid for

(5) a[j] - a [j] ,i j
(6) cnc i for

1 i - rank
(2) if (i! = 1)
(3) send(all]. node [l])

~ e c v (x . node[i - 11
a[l] - x / i

(6) euct if

(7) for j = i + l t o N
if (r ank == node[l]) (8) l;_.

(9) Recv(x. nodelj])
(10) else
(11) Recv(x.node[i - I])
(12) encl if 1
(13) x - j -k (x + a[l]) / (j + i)
(14) ~ e n d (x . node[i + 11)
(15) erld for 4'

Original sequential q
Sendlrecv behave like goto, so the code structure (1))

changed MP
81 MP program is parallel, hence is harder to debug

than the DSC program
6 5 ICS'O 6

JPL

I NavP Simple Example: Small Perturbation in Oriainal h

d o j = 2 t o n b y 3
d o i = l t o j - l b v 2

** a[-] = (ab]+a[iI) j/(i+i)
end do

end do

JPL 0 -,

I means large deviation in MP

I

(1) i - r a n k
(2) if ((i - 2)%3 == 0)
(3) Send(a[i] . node[l] j
(4) Recv(x. n o d e [l e f t i (i)])
(5) a[%] - x / i
(6) t .~lcl if

(7) if (fi - i)'/i2 == 0)
(8) for j = r i g h t - j f i) to N by 3
(9) i f (rank == node[l])
(10) Recv(x, node[j])
(11) else
(12) Recv(x.node[lef t i f i)])
(13) eilcl if

(14) x - j -+. (x +a[l])/(j + i i
(15) Send(x. node[min(right i~ i I . j)])
(16) ~ u c l if
(17) enrl for

j;' the 1st r ~ - o / I (c to this PE's it. f t
(18) iiit Fwict,ioli l e f t i (i n t i)
(19) i l - i - 1
(20) wl~ilc ({ii - 1)?:12 ! = 0)
(21) il - i l - 1
(22) cilcl u~liile

/ / thr 1s t i t ~ l l u c to thiz FE's right
(25) lilt Fr~l~ct.ioil r igh t - i (in t i 1
(26) i 1 - i + l
(27) xvllil~ ((i l - l] (X 2 ! = a)
(28) i I - i i + I
(29) eucl while

li thr, 1st j cicrli~r to f1ri.c. FE's right
(32) iilt. F~inct.ion right -j (i n t i)
(33) i l - i + l
(34) while f l i l - 2) % 3 ! = O]
(35) ii - i l + I
(36) e l i c l wllilc

Algorithmic Instability!
L.

(38) clld Funct.io11

6 7 ICS'C :
PL

, ' send t o the rzotit- t h t hosts (ct[l]
(11 recv-cnt - 0
(2) f~br 11 = 1 t o loca l cn t
13) 12 - oa[l t j , J - gjl2j
(41 recv cnt - recv cnt + N - J

(53 I f (j ! = l i
(6) recv-cnt - recv cn t + I
(7) i f I r a n k ' = nodemp[l] I

(8) ~end ia [l l] . 3 . ntdemrap[l])
(9) c ~ t l if
(10) f.lh('

(11 1 recv-cnt - recv-cnt - 1
(12) enqueueiQ[ranb],a[ll].J.l~
(13) c w t 1 if
(14) c i k c l f ~ ~ r

1. tmnputt r f ' (~ . l? t f
(15) 12 - oa[i]
(r 6) g2 - g[12]
(17) h w 11 = 2 t o loca l cn t
(18) 1 3 - oa[l l] , g3 - g[l3]
(19) if ig2 + 1 == g3)
(203 recv-cnt - recv-cut - I N - g3 + 11
(21) cwtl if
(221 gz - g3
(23) cinl ftr~

; tht r~ocii that l ~ o s i s fhr 1 ~ t t-!dry
(24) if frank -- node_map[l] 1

(2 5) fox 11 = 2 t o fl
t ' r h r k tf u a y qutzcrd h n . ~ fhrs teratry
(26) 11 - f lg -0
(27) f o r 12 = 1 t o n u n o d e s
(28) if [Q[l2] not empty\
(29) i f l3.t found)
(30) dequ%ue(Q[l2],x, j i 1
(31) Call request p r o d 1, j. x r
(32) l l l l g - 1
(33) break
(34) owl i f
(35) crrd if
(36) cncl for

' ; not I n the rlrletica. *,> rcccrrt
(37) i f l l l f l g = = O)
(383 u-l~ilc.lrecv cnt 01
(39) recv(x. 3. A N Y S R C I
(40) s r c rank - t h e sender's rani

(42) recv-cnt - recv-cnt - 1

f 42) 1 - 1
,'i r f rt ru2r'cd ILL^ fh* (118r . 6 t t y u ~ ~ t c ~t
(43) i f { l l != j i

(44) enqueueiQ[src~ank]. x. J , 1)
{45) f'l%(*
(46) break
(47) c~rtl i t
(48) c>utl wl~ilr~
(49) Cal l request_proc(i, j. x i
(50) (*IIXI if
(5 1) t>rlcl for
(52) ~ 1 i t 1 if

:; rtcr7z.c untd al l rr~sy.* rttuttuif

(53) w l ~ i l i ~ ~ r e c u - c n t . 0)
(54) recvrx, 3, I . ANY S R C)
(55) recv-cnt - recv-cnt - 1
(56) Ca l l request procr r .1.x)
(57) m r r f wltilr-

(58) Proc-4vlrrn~ reques t procii. j . x)
(59) for 11 = i t o j - I
(60) if (rank == nodenap[l l] I
(61) x - - J t i x + a ~ l [l l]]) Ij+ir
(62) c b l s c ~

(63) break
(59) olrd if
(60) r b r ~ c l for

(61) if (3.1 == J h d rank == node mapb])
(62) a[l[~11- x:j
(63) chs.
(64) send(x, J . 11. nodemap[ll])
(65) clud if
(66) t.ud P rtrc.fuilt1.c.

I Difficulties with MP lm~lementation

BI Adapting to arbitrary data distribution
3 Irregular communication pattern

Partial sorting and queuing needed

Code restructuring
LI Loops broken
LI Repeated core code lines
LI Large amount of auxiliary code

%I Termination complicated
o Anticipate number of messages a node will receive

BR Self-sending using shared memory
LI Use queues (sending to a node itself is expensive with MPI)

Deadlock
LI Balance receiving, processing, and sending (need

MPI - THREAD - MULTIPLE)
LI Or learn the tricks of posting recv's at the right place

ICS'06
JPL @

1 Regular vs. Irregular Communication Patterns

com tmuon
1 7 - 3 1 S f! J 6 1 1 3 5

n l
1

t2

t l 11

I NavP Simple Example:MP or NavP?

w MP is excellent for client-server applications
(computation described at stationary locations)

PO Our suggestion: MP is not necessarily a bad way to
implement, but NavP is a more structured way to
design and describe general purpose distributed
parallel algorithms
LI NavP is the "source code"
3 MP is the "target code"

a OK to have "jump"s in assembly code
I Likewise OK to have sendlrecv in MPI -- the "assembly code" for

distributed computing

LI The compiler from NavP to MP exists
o The compiler from sequential to NavP is to be built

I NavP Simple Example Step 4: Loop Back

%I Performance considerations
o Block algorithm (coarser level computations)

Can be automated using loop tiling techniques

Block cyclic data distribution (more parallelism)
~rr Can be automated (NavP code works for

arbitrary data distribution)
o FIFO pipeline (less signallwait events)

I NavP Simple Example: Start from Block Algorithm

1 forJ = 1 t o num-blocks
(1.1) hop(node_map[J]): loadblk J t o x[]
(2) f o r I = l t o J - 1
(2 . 1) hop(node_map[~])

(3) Call F(1. J. a. x)
(4) end for
(4.1) hop(node_map[J])
(5) Call F(J.J.x.x);unloadx[]toblkJ
(6) end for

I

(1)Procedure F(I . J. a. x)
(2) for j = start (J) to end(J)
(3) for i = start(1) to min(end(1). j - 1)
(4) x[l[j l l - j * (xP[jll + a[l[ill,/Cj + 1)

(5) end for
(6) if (I = J) a[l[j]] +- a[l[j]]/j
(7) end far
(8) end Procedure

Fig. 6. Block pseudocode for the sirliple alg~rit~hm. (a,) DSC; (b) The function F()

4 A block algorithm is a good starting point
cache performance for sequential code

LI +coarse granularity for distributed code

Can use manual programming
s Or use a loop tiling tool

7 3 ICS'OG

I NavP Simple Example: Performance k

Elapsed ttme of simple example using navigatronal pipelm
400 1 I I I f I I I I 1 I I

'+ ~ k c k alg' (50K) '
4 B M alg + Block cyclic data (NK) .

. -e- Non-block alg (50K)
I jli. B W alg + B h k cyclrc data (100K) I

Number of processors

Speedup of simple example using naqatinal pipelane
I f I I 1 I

"0 2 4 6 8 10 12
Number of processors

NavP Simple Example: Block Cyclic Data Distribution

block

block
cyclic

M Block cyclic data distribution is a
classical approach to load balancing

JPL

s Presented the methodology and steps of
NavP

s Used a simple left-looking example to
exercise the NavP steps
Introduced the card-dropping transformation
Contrasted the NavP implementation to
other possible implementations (MP or
DSM)

I Outline

7 " Introduction
2. The NavP view vs. the SPMD view
p: ". - Distributed sequential computing (DSC)

4 The methodology of NavP
5. Case Studies

The enabling technology of NavP
r Comparisons, conclusions, and future work

-

JPL.

I Section 5 : Case Studies b

Case selection rationale
Solving linear systems accounts for the majority of CPU time
in numerical computation
Direct solvers are harder to parallelize than iterative solvers

Real-world examples
Crout factorization: A "left-looking" matrix factoring
algorithm

* Cholesky factorization: A "right-looking" matrix factoring
algorithm
Matrix multiplication: A lot of parallelism

Performance
NavP implementations of the algorithms perform well
NavP Cholesky code performs as fast as ScaLAPACK
NavP matrix multiplication performs faster than ScaLAPACK

JPL

I Case Study 1 : Crout Factorization b

A left-looking algorithm to factorize symmetric matrices

A = U T D U

(I) For j = = l . . N

(2) Fur i = l . . j - 1

(3) Kij + lizj - c;:: K l z K l j
(4) End For

1 (5) For i = l . . j - 1
(6 1 T +- K,,
(7)

T
h",j +- -

h'i z

(8 K3j + KJJ - TICij
(9) End For
(1 0) E17d For

(1) For j = 1 . . N
(1 -1) h o p (node [j]) : load (colz~rnn j)
(2) For i = l . . j - 1
(2 . 1) l zop (nodc [i]) :
(3)

2 - 1
Kzj -KzJ KIZKIJ

(4) End For

(4 . 1) hop(nolle[j]); u n ~ o n d (c o 1 u r n n j , K z i [])

(5 For i = 1 . . j - 1
(61 T +

(7)
T hFZj -

h'iz
(8) K J 3 + - T I C t J
(9 E r ~ d For
(10) End For

Sequential DSC

I Case Study 1: Crout Factorization (cont'd) b

(1) For j = 1 .. iV
(2) call c o l p r o c (j)
(3) E n d F o r

(4) Procedure col-proc(i~2t j)

(5) For i = 1 . . j - 1

(6)
2 - 1

KzJ + Kzj - El= , liliKlj

(7) End For

(8) F o r i = l . . j - l
(9) T t K j
(10) T .Ka3 +- -

Ki,
(1 1) h;, + h; - T K z J
(12 1 End F o r
(1 3) Erad Procedure

(1) F o r j = l . . N
(2) i n j e c t (cul-p7-0c(j))
(3) E ~ z d For

(4) .Agent col_proc(int j)
(4 . 1) h o p (n o d e [j]) : lond(co1urnn j)
(5) F o r i = l . . j - 1
(5-1) hop (node [i]); load (K,,)
(5 . 2) If (j > 1 A n d i = 1) w a i t E u e n t (e r * t , j - 1)
(6)

2-1 KJ +- LJ - C,=, KliIii,
(6 . 1) If (i = 1) signnlEtlent(e~!t. j)
(7) End For

(7 . I) hop (n o d e [j]) ; U ~ Z ~ O U ~ (col umn j, Kii [I)

(8 For i = l . . j - 1
(9) T + K,,
(1 0) T K Z j + -

Ki i
(11) h;, 4-- h;, - Tli,,
(1 2) E n d For
(1 3) End Agent

DSC DPC

I Case Studv 1: Crout Factorization (cont'dl b

- MP implementation is left as an open problem

..= NavP code performance

Elapsed time of simple example and Crowt Speedup of simple example and Cmut
factorization using navigational pipeline factorization using navigational pi peli ne

- Sun UltraGDs WMHz 255MB main rnemary 1GB vinual memory, 1WMbps Ethernet - Sun UltmWs 49MHz 2561118 rnaln memory 1GB virtual memory, 1WMbps Ethernet

- -. -- .- -. . . ~*

I
Cmut 6960-6960 matm

-
CmR 5040-5040matm

- - . CmR 31m-3120matm

- - ,Sinple sample' Bhk alg + B b k 11
qck data (1WK)

1
!

i T
Smple ample: B b d r alg + Bbck I

cyck data (MI 1: $ -

i--

i
4

i
-

Y -

-
- *-

T - 4

S~lrpk example Backalg * h k c y c h c

1 -Snrplesxanym mekalg + Bloekcychc I data ,loOK lOOKmaP1k1

Number of pmeessors

I Case Study 2: Cholesky Factorization h

H A right-looking algorithm to factorize symmetric
positive definite matrices

B Two nested loops, "scaling" to a "single" (G)
column in outer loop, "updating" to "all" the
columns in inner loop using the new G column

BB In DSC code, a "scaling" on one node (different
for different loops), followed by a "updating" on
all the nodes. These are in loops.

D In DPC code, parallel "updatings" interspersed
with sequential "scalings."

JPL

I Case Study 2: Cholesky Factorization (cont'd)

a Right-looking data
accessing pattern

scattering I
I

a Interleaved parallel
and sequential steps

producer e consumer C- ,-. O3 I - . - + I
I
I
I
1

t

Space
-----_.--_.I-- +

--

JPL

I Case Study 2: Cholesky Factorization (cont'd)

(1) fur k = I t o n
(2)
(3)
(4) ~ (k : n. col(k) j / = JA(L. col(k))
(5)
(6 1
(7 1
(7.1) f o r r a n k = l t o p
(8 i n j e c t (updat i n g (rank. k. xi))
8 1 end for
(9)
(9.1) hop (nodemap(k + I))
(9 .2) waitEvent (Evt. k + I)
(10) end for

(11) updat ing (i n t rank, i n t k , i n t n)
(12) vloc(k + t : n) = A(k + I : n. col (k))
(12.1) hop(node_map(k+raak))
(12.2) waitEvent (Evt. k)
(13) for j = k + r a n k : p : n
(14)
(15) A (j : n.col (j}) - = v ~ o c ~ j ~ ~ ~ ~ ~ (~ : n)
(16)
(17) end for
(17.1) signalEvent (Evt, k + I)
(18) end

i

DSM

(I) for k = l t o n
(2) if (rank == I)
(3) vl,, (k : n) = A (k : n. k)

(4) vloc(k : 4 / = J6m
(5) A(k : n, k) = vl,,(k : n)
(6 1 elid if
(7) b a r r i e r

(8) call updating (sank, k, n)

(9) b a r r i e r

(10) end for

(11) upda t ing (i n t rank, i n t k, i n t n)
(12) v l , , (k + l : n) = A (k + i : n , k)

(13) for j = k + r a n k t o n by p
(14) : n) = A (j : n, j)
(15) wl,, (j : n) - = vloc (j)vloc (j : n)
(16) A (j : n, J) = vloc(j : n)
(17) elid for

(18) elid

NavP

I Case Study 2: C holesky Factorization (contgd)

I

DSC

PEI PE2 PE3 PE1
... -

s (spare)

DPC -.

JPL

I Case Study 2: Cholesky Factorization (cont'd) k

The NavP code performs as well as the MP code or ScaLAPACK.

Speedup of Parllel Cholesky Factorization (5.ClOOX5.050 mdrk)
12 I I I 1 9 I I I I I 1

Nuniber of Workstations

Speedup of Parallel Chdesky Factotization [7.000X7.000 matrix)

' 1 2 3 4 5 6 7 8 9 10 11 12
Number of Workstations

1 Case Study 3: Matrix Multiplication

Sequential

(1) for i = O t o p - 1
(2) for j = O t o p - 1

(3) Cij = AiBj

(4) end for
(5) end for

Abundant parallelism. But doall's
work for distributed memory?
CI Cache A and B everywhere; or

CI Contention

(1) doall i = O , N - 1
(2) d o a l l j = O , N - 1
(3) C (i , j) = 0 . 0
(4) do k=O,N-I
(5) C (i , j) += A (i , k) * B (k , j)
(6) end do
(7) end doall
(8) end doall

JPL

I Case Study 3: Matrix Multiplication (cont'd) h

(I) do k=O,N-2
(2) doall node(i,j) where O<=i,j<=N-I
(3) i f i > k than
(4) A -- east(A)
(5) end if
(61 lf j>k then
(7) B -- south(B)
(8) end if
(9) end do
(10) end do

(11) doall node(i,j) where O<=i,j<=N-1
(12) C = A * B
(13) end do
(14) do k=O,N-2
(15) doall node(i,j) where O<=i,j<=N-1
(16) A aast(A)
(27) B south(B)
(18) C + = A * B
(19) enddo
(20) end do

Gentleman's Algorithm
o How did this guy get here?

JPL 0 ,/

I Case Study 3: Matrix Multiplication (cont'd)

(1) Rowcarrier
(2) do mi=O,N-1
(3) do mj=O,N-I
(4) hop (node fm j 1 1
(5) i f (mj=0) mA(*) = A (m i ,*)

(6) t = 0 . 0
(7) do k=O,N-I
(8) t += mA(k) * B(k)
(9) end do
(10) C(mi) = t
(11) end do
(12) end do
(13) end

Figure 5-16. DSC.

JPL @

I Case Study 3: Matrix Multiplication (cont'd) h

Figure 5.18. DSC wit11 pipeliiiirig.

(1) hop(node(0))
(2) do i=O,N-I
(3) inject (RowCarrier (i))
(4) end do

(1) RowCarrier (int mi)
(2) mA(*) = A (m i , *)
(3) do mj=O,N-1
(4) hop (node (rn j))
(5) t = 0.0
(6) do k=O,N-i
(7') t += mA(k) * B(k)
(8) end do
(9) C(mi> = t
(10) e n d d o I

(11) end

I do mi=O,N-I
(2) hop (node (mi))
(3) inject(RowCarrier(mi))
(4) end do

I Rowcarrier Cint mi)
(2) mA(*) = A (*)
(3) do mj=O,N-1
(4) hop (node ((N- l-mi+mj) m))
(5) t = 0.0
(6) do k=O,N-1
(7) t += mA(k) * B(k)
(8) end do
(9) C (m i) = t
(10) enddo
(11) end

Figure 5.20. Full DPC through phase shiftling.

JPL @.

I Case Study 3: Matrix Multiplication (cont'd) h

Figure 5.22. DSC in the second dimension.
ICS'06

JPL @ A

I Case Study 3: Matrix Multiplication (cont'd)

Figure 5.21. DSC pipelining in both dimensions. JPL @

I Case Study 3: Matrix Multiplication Icont'd) Ilk

Figtire 5.26. Phase shifti~lg in both dimensions.
ICS'06

Case Studv 3: Matrix Multiplication (cont'd) b

B NavP is amenable to incremental parallelization
DSC

o Pipelining : MatrixMultl .swf

o Phase shift: MatrixMult2.swf

2-D DSC
o 2-D Pipelining: MatrixMult3.swf

o 2-D Phase shift: MatrixMult4.swf

IIP; Final NavP implementation fast
Intermediate codes have good performance and
hence useful as end products
A mechanical process that provides simple
incremental steps

Gentleman's Algorithm was an abrupt jump

JPL

I Case Study 3: Matrix Multiplication (cont'd)

Speedup of matrix multiplication on 3x3 PEs
9 1 I I I I

SUN workstations
with 100 Mbps

The NavP c performs faster than the MP code or Sca APACK.

+ ScaLAPACK
ft NavP 2D DSC
--- NavP 2 0 pipeline

7 I I I I I

1000 2000 3000 4000 5000 6000 7000
Matrix order

I Case Study 3: Matrix Multiplication (cont'd) b

Reason for NavP superior performance
3 multithreading (functionality factored out from application code)

1 Case Study 3: Matrix Multi~lication Icont'dl h

B "Local services" factored out from
applications and put into daemon
o multithreading
D self-hopping (in contrast to self-sending)

a Analogy: business travelers vs. hotel
managers
o use the NavP view for travelers

use the SPMD view for hotel managers
local services are managers' job

I Summary: Case Studies hl

B Presented three case studies: Crout
factorization, Cholesky factorization, matrix
multiplication

I The NavP implementations are as fast or faster
than the MP implementations

especially true when both coarse level
parallelism (across nodes) and fine grained
parallelism (multithreading) are needed

e Mobile pipelines are able to easily parallelize
algorithms that are difficult for conventional
approaches

I NavP is amenable to incremental parallelization
B NavP transformations are mechanical and

possibly automatable
101 ICS'06

-

JPL

I Outline

F
6 & Introduction

Am The NavP view vs. the SPMD view
-$. Distributed sequential computing (DSC)
1P

+ The methodology of NavP
P-

:I. Case Studies

6 The enabling technology of NavP
7. Comparisons, conclusions, and future work

-"
' \

JPL
,

I Section 6: Enablina NavP

MESSENGERS: developed at UC lwine
M The daemon system

H Data distribution for migrating
computations

ICS'O 6

Enabling NavP: The Daemon System h

Messengers

Logical
Network

Developed at UCI

...
Agent variables vs.
node variables

Physical
Network

Daemon network

k Hop() statement

Daemon daemon 1
Network

daemon EIl
/ Host 2 ' I Host 3

I Enabling NavP: The Daemon System (cont'd)

B Queues:
CI ready queue
a event queues
LI communication queues
o injection queue

H User level multithreading:
LI Queuing operations transparent to users
CI waitEvent(evt)

B put calling agent to event queue, if evt not signaled
B) calling agent continues, if evt already signaled

CI signalEvent(evt)
r move waiting agents to ready queue

JPL @

I Enabling NavP: The Daemon System (cont'd) k

I
Messenger
Control Block (MCB)

- - - - - - - - - - - - - - - - - - .

Agent variables
- - - - - - - - - - - - - - - - - -

Offset vector
- - - - - - - - - - - - - - - - - -

Messenger heap

Figure 6.1. hfessenger structure.

MESSENGERS Overhead Over
MPI
D MCB size: 220 bytes

Marshalling and demarshalling

Q Context switching among agents
(user level multithreading)

JPL .

Enabling NavP: The Daemon System (cont'd) h

%I A design based on DSM
~sl Use DSM right

large data in local memory
D small data on DSM

utilize the great consistency protocols
easy daemon implementation

DSM
DSM for pointe~~

Local H Local

I
I

thread-?

I I
DSM

DSM for agent variables

X Y z
I 1 I I [1

DSM I) c I

Figure 6.4. Va.riahle assignment on the DSh1-based system.
JPL a

Enabling compuation mobility
Function breaking in source to source compiling
Code does not move, computation does (with a
logical program counter)
LI efficient
LI as secure as MP

H Potential problem: code size explosion

(1) func f I (mcb) (6) func f2 (mcb)
(2) SI (7) S2
(3) rncb- > next-f unc = 2 (8) end fu~rc
(4) ... / u codeforhop() * /
(5) end func

Figure 6.2. C:ompilat ioil of st raight-line tr~dc. (a) ~IESSENGERS source rotlc.
(I ,) Fu~ic.t~io~is fronl source to so1irt.e compiliit ioil.

108 ICS'06
5

'4

I Enabling NavP: Data Distribution for Migrating Computations

Instrument the sequential program with a small input
Affinity multigraph:
LI Nodes are array entries

Affinity multigraph edges:
LI an A edge between the LHS and a distinct RHS
LI a C edge between every pair of distinct RHSs
LI a C edge between consecutive LHSs
CI an R edge between neighboring array entries

r Affinity multigraph edge weights:
LI A edge: 1
LI C edge: infinitesimal (to break ties)
LI R edge: between 0 and 1 (to regulate the shape)

Affinity graph partitioned (using Metis)

JPL

I Enablina NavP: Data Distribution for Miaratina Com~utations k

2 -- Matrix transpose
4 - - Each gray scale is a
6 partition
8 - In contrast, conventional

I approaches partition the
dual of a mesh

specific data accessing
pattern of an algorithm
plays no role

Example: ADI Integration k

phase I only: row sweeping
c P b

- phase ll only: col sweeping
c P b

phase I and I I combined:
only pipeline parallelism

LI but no data redistribution in
between two phases

I Enablinq NavP: Data Distribution for Migrating Computations

- Crout dense matrix - Crout banded matrix

I Summary: Enabling NavP k

B Presented the NavP daemon system and
compiler

ie Computation enabled with overhead that is
insignificant in all our case studies

m Data distribution for migrating computations
uses the knowledge of data accessing
pattern specific to a sequential algorithm

JPL

I Outline k

Introduction
The NavP view vs. the SPMD view

Distributed sequential computing (DSC)
The methodology of NavP
Case Studies
The enabling technology of NavP

Comparisons, conclusions, and future
work

JPL

I MP or DSM versus NavP h

4 NavP and DSM both BJ NavP and MP both follow
use Shared Variable the principle of pivot-
(SV) Programming. computes (the pivot node
Easy to use. that owns the large sized

data computes). Scalable.
s MP and DSM:

computation mobility must
be hand-crafted, because
models do not support

Computation Mobility

JPL

I OpenMP versus NavP

Upwagma o w garallel
L Structured multithreading

I
B For shared memory (SMP) '

nre r ump~e?-rkrecld~um () ;

P Uses the SPMD view
total = omp~rctaum~hnadP (1 ;

a Uses barriers

I prha#th;f nm the boss.');

e h #,f (mt==l)

$pechl Task (] ;

ebe

/ * Each of the tasks 2. . .Cotd- -1 applies

s.ornefincticln to past af the input values,

The input values are asaigned alternately to

the t a s k s such that all values are dealt with . *

fur (i= me; i < N ; i f = total - 2)

somchru:tSon (A [a] 1 ;
1

Fig. 4.4 Structure of an OpenMP program. Fb. 4.5 Work sharing by t h a d numbers.

116 ICS'06
JPL

,

I Parallelizing Compilers versus NavP

u Current parallelizing
compilers use the SPMD view
P skew the loop and change

the code with complicated
loop transfermations (e.g.,
affine)

n NavP
B skew the loop but still keep

the original loop bounds

NavP is not a competing
technology, rather it can help
parallelizing compilers to
express parallelism well

JPL

00 versus NavP

Encapsulation puts a shield around an object
o Object users or subtype builders do not or cannot

care about the implementation details
o Modules can be built independent of each other
o Bug sources can be isolated

* 00 view is independent of NavP view
NavP view degenerates on one PE, but 00 view
does not

o Methods of an object will see DBlocks as
distributed computation is introduced, so choosing
NavP or MP is still an issue

M 00 does not solve the problem rooted from
distributed computing

118 ICS'06
JPL

I NavP Advantages

Performance
o Fine grained parallelism within a node, coarse grained

parallelism across nodes

o NavP code performs as fast as or faster than MP code

Ease of use
o Code structure an invariant in NavP transformations
D Incremental parallelization
o New sources of parallelism (mobile pipelines)

Backward uniprocessor compatibility
o "Local service code" factored out from application

A uniform programming model
o No need to do hybrid programming on SMP clusters

No need to ~ortlrewrite code for new architectures

I NavP Potential l m ~ a c t k

The SPMD view is popular for historical reasons
CI Computers were not widely connected

Programs ran on a single CPU for their lifetime
Today single PEs is only a special case

The "world" is connected, and computations "flow" around
The MP view is no longer convenient (the "assembly language")

NavP to break MPl's "monopoly"
CI MP dominates because other attempted approaches do not

scale
The usefulness of computation mobility suggests a change

NavP is from a very simple observation
But it calls for a revolution in hardware, compilers, and tools

R Because migration is not a first-class operation at low level yet

I Summary of Results k

NavP enables structured distributed programming
NavP can parallelize algorithms that are otherwise
difficult or even on surface appear impossible to
parallelize

E NavP provides greatly improved programmability
with negligible performance degradation

~r NavP is a uniform approach
o No more complicated hybrid programming

No more code rewriting for each new generation of
supercomputers

JPL

I The World without NavP

Application Programs

Pthreads Java Threads OpenMP MPI PVM 1 /,/
"i

Shared Memory Message Passing

\ \
____----- Cluster ;...

SMP CC-NUMA / \
Myrinet ATM

- - - - - - -

Concrete Architectures

(Adapted from Leopold 200 1)

I NavP Contribution k

Application Programs
Exploit both fine
(multithreadinq)

1
i - - - - - - - - - and coarse

(pipelined tasks)

i i i
grained

Pthreads Java Threads OpenMP MPI PVM NavP parallelism
P Allow people to

Threads use the most
advanced
computers

Shared Memory Message Passing computation mobility being
overwhelmed by
the complexity

./- Cluster
/ of rewriting their

-_-T_-----

SMP CC-NUMA /"\
Myrinet ATM

codes with each
- - - - - I new generation

of architectures
\

Concrete Architectures

(Adapted from Leopold 200 1)

ICS'06

1 NavP Future Work k

Compiler for DSC (2D optimizing compiler)
o heuristics for choosing the right DBlocks to resolve
R spatial optimization (as opposed to temporal)
Compiler for mobile pipelines
CI coarsening the dependency relationship to threadltask level
NavP totfrom SPMD translators
LI card dropping and card gathering
Support computation mobility on large-scale SMP clusters
R more efficient daemons for SMP/Cell/Multicore
o priority queues for local and global traffic control
New language bindings (e.g., Fortran)
3 MP is advantageous in this regard

NavP for the Grid (a security mechanism)
Supporting domain decomposition and ghost boundary at system
level
Automatic coarsening of communication at system level JPL @

ICS'06 - e /

Caution

r NavP is still a manual programming
approach as of today

Distribution parallel programming remains
an art, just as sequential programming
NavP may help express irregular
communication patterns, locality of access,
and parallelism well, but the optimization of
the quantities continues to be tough math
problems

r Only the tip of a huge iceberg. No silver
bullet!

125 ICS'OG
JPL @

I Comments, Questions, and Discussions b

Thank you very much!

