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Abstract

1. Introduction

EMJ@ICS.UCI.EDU

Robotic ground vehicles for outdoor applications have achieved some remarkable suc
cesses, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1),
and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable re
liable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain.

3-D perception of terrain geometry with imaging range sensors is the mainstay of off
road driving systems. However, the stopping distance at high speed exceeds the effective
lookahead distance of existing range sensors. Prospects for extending the range of 3-D
sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range
sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to
long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties
of terrain that are critical to assessing its traversability, such as potential for slippage,
sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration
Rover (MER) mission have got stuck in sand dunes and experienced significant downhill
slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very
limited ability to discriminate traversable vegetation from non-traversable vegetation or
rough ground. It is impossible today to preprogram a system with knowledge of these
properties for all types of terrain and weather conditions that might be encountered.

Learning may alleviate these limitations. If 3-D geometric properties of obstacle vs.
non-obstacle terrain are strongly correlated with appearance in 2-D imagery (eg. color
and texture), then it may be possible to use close-range 3-D analysis to learn to predict
the traversability of terrain beyond 3-D sensing range based only on its appearance in
imagery. To have a simple moniker for this strategy, we call it learning from 3D geom
etry (Lf3D). In principle, information about mechanical properties of terrain is available
from low-level sensor feedback as a robot drives over the terrain, for example from contact
switches on bumpers, from slip measurements produced by wheel encoders and other sen
sors, and from roughness measurements produced by gyros and accelerometers in the robots
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Figure 1: LAGR vehicle (left) and Rocky 8 (right).

inertial measurement unit (IMU). Recording associations between such low-level feedback
and visual appearance may allow learning to predict mechanical properties from visual ap
pearance alone; we call this strategy learning from proprioception (LiP). While clustering,
neural nets, and related algorithms with a learning component have long been used for
image classification in the context of terrain typing (Manduchi, 2005), (Campbell, 1997)
and road-following (Rasmussen, 2002), learning specifically to assess terrain traversability
for ground robots has only begun to be addressed very recently (Wellington, 2005).

2. Architectures and issues

This paper is intended both as a position paper to outline what we see as some key
issues and approaches to learning for off-road navigation and as a report on initial results
for those approaches. We describe work in the DARPA-funded Learning Applied to Ground
Robotics (LAGR) program and the NASA-funded Mars Technology Program (MTP). Ar
chitecturally, these programs have a great deal in common, in that both use wheeled robotic
vehicles with stereo vision as the primary 3-D sensor, augmented by an IMU, wheel encoders,
and in LAGR, GPS; plus, they use closely related software architectures for autonomous
navigation. In this section we describe these architectures and how they need to change to
address Lf3D and LiP, and key engineering issues that are critical to reducing these ideas
to practice.

The pipeline in Figure 1 is a simplified illustration of the baseline navigation software
architecture used by both of these vehicles. Stereo image pairs are processed into range
imagery, which is converted to local elevation maps on a ground plane grid with cells
roughly 20 cm square covering 5 to 10 m in front of the vehicle, depending on camera
height and resolution. Geometry-based traversability analysis heuristics are used to produce
grid-based 'traversability cost' maps over the same area, with a real number representing
traversability in each map cell. The local elevation and cost maps are accumulated in a
global map as the robot drives. Path planning algorithms for local obstacle avoidance and
global route planning are applied to the global map; the resulting path is used to derive
steering commands to send to the motor controllers. This description illustrates both the
source of the myopia and the lack of in-depth terrain understanding of traditional systems:
1) the extent of the elevation map is limited to the distance at which stereo (or ladar) get
range data with acceptable resolution on the ground plane, and 2) the local map encodes
only elevation, possibly enhanced with terrain class information derived from color or other
properties of the image or range data, but with at best only crude prior knowledge of

2



JPL LAGR LEARNING

Far-field (infinity)

Figure 2: The learning from proprioception idea. ????

mechanical properties of each terrain class. Architectures similar to this have dominated
DARPA, Army, and NASA robotic vehicle programs to date, though details in each box
vary.

Figure 2 gives a deeper look at information available from stereo vision and how this
relates to Lf3D, LiP, and richer local map representations. In the image on the left, region
A represents where stereo vision gets range data of sufficient resolution to build a local
elevation map; color and texture information (collectively, 'appearance' is also available for
insertion in the map. Region B represents where the range data, even if it is available
at every image pixel, samples the ground too sparsely to create a useful elevation map;
image appearance is also available. Region C is beyond the range of stereo vision (i. e.
zero disparity), so only image appearance is available. Lf3D strategies as we conceive them
attempt to use the association of geometry and appearance in A to learn how to estimate
traversability in Band C. To make things concrete, in LAGR, A is about 68% of the image,
B is 9%, and C is 23%; conversely, on the ground plane, A extends to about 10 m, B from
10 to 50 m, and C from 50 m to infinity (right side of Figure 3). Thus, Lf3D attempts to
make inferences about small parts of image space (B, C) that represent very large parts of
map space. Section 3 describes our initial approach to this problem.

The inset at the bottom of the image in Figure 2 represents information available from
the proprioceptive sensors - the bumper, IMU, and wheel encoders. LiP adds this to the
local map as the robot drives over terrain. Initially, we have used this to learn an improved
traversability assessment function for regions in the local map ahead of the vehicle (ie. A),
replacing a hand-coded traversability heuristic based only on geometry. Section 4 describes
one version of this aimed at vegetated terrain in the LAGR program; Section 5 describes
a different approach aimed at slippery terrain on Mars. Our ultimate goal is to develop a
theoretical framework for estimating terrain traversability T that unifies the Lf3D and LiP
concepts and encompasses slippage, sinkage, and obstacle compliance.

Since LiP associates what the robot feels under its wheels and on its bumper now with
what it saw ahead of it sometime in the past, accurate robot position and heading estima
tion ('localization') is critical to this concept and a weakness of it. We have experienced
considerable wheel slip in both LAGR and MTP, which significantly degrades localization.
Visual feature tracking with the stereo cameras ('Visual Odometry' (Va) (Matthies, 1987))
can in many cases produce better short-term localization performance than the other, tra
ditional state estimation sensors onboard; it can also be used to get an estimate of slip.
We are using va for these purposes in both programs. Another critical issue in this whole
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problem domain is invariance of visual features to range, lighting, and weather conditions;
to date, we have treated this only with very simple color space normalizations

Proprioceptive proxies for traversability.
Traversability T is a random variable (E [0, 1]) associated with a certain cell c of the

map. Depending on context, we may take T(c) to be binary (0/1) or real-valued. For
example, we can think of T(c) as the probability that the robot can successfully move
out of cell s after deciding to do so. We could imagine a physics-based simulation model
which would determine this 'self-transition probability' given vehicle and terrain parameters.
Accumulating this T over a path would then tell us the cumulative probability of a successful
sequence of moves. Of course, lacking such a model, we consider T as a random variable
which is to be learned. Our learning strategy is to use the 'higher-quality' input examples
to produce training labels T, which serve as proxies for the unknown T. The proxy labels
are given to a learning algorithm which trains a regression model T that approximates T.
The regression model is then used to drive the robot. In Lf3D, map elevation statistics
{h} are used to provide the proxy T, which is estimated using appearance information
(normalized color in our case). In LiP, the proprioceptive inputs (such as bumper hits or
slip) are used to generate the proxy traversability index, which is then estimated using the
available appearance and geometry information from stereo images.

3. Learning of traversability from proprioception

The key goal in this work area is to learn which obstacles the robot can drive through
and which are impassable. Our motivation is scenes with stands of pliant vegetation that
can be pushed aside, as well as brush that is stiff enough to stop the robot. The threshold of
traversability depends on many factors and must in effect be learned. As we are interested
in terrain traversability, our current proprioceptive proxy T is therefore a 0/1 quantity.

A technical problem of blame attribution arises because roughly six map cells are over
lapped by the bumper at any time, so the nontraversable samples are contaminated with
data from traversable cells; a constrained clustering approach may be sufficient to separate
these two classes. Rather than solving the blame attribution problem directly, initially we
obtained training data from hand-labeled image sequences: a human identifies a mix of
traversable and untraversable map cells.

Terrain representation
Our terrain representation attempts to capture some of the mechanical properties of

the environment, including the notion of penetrable versus impenetrable vegetation. The
space around the robot is represented by a regular three-dimensional grid, with a density
estimate associated with each voxel; intuitively, we expect that only low-density voxels will
be penetrable (see Figure 3). The voxel density grid is constructed from range images (such
as those obtained from stereo vision or LIDAR) using a simple ray-tracing algorithm: for
each voxel, we record both the number of passes (rays that intersect the voxel) and the
number of hits (rays that terminate in the voxel). The voxel density p is given by the ratio
of hits to passes. Since the ground may be non-planar, we also identify a ground voxel
in each vertical column; we assume that this voxel represents the surface of support for a
robot traversing this column. The ground voxel is determined using a simple heuristic that
locates the lowest voxel whose density exceeds some preset threshold.
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Figure 3: Side view of the voxel density map. For each voxel, we store the number of
hits (rays that terminate in the voxel) and the number of passes (rays that pass
through the voxel); the voxel density p is given by the hit/pass ratio. Three types
of voxels are highlighted in this figure: empty space (p = 0), an impenetrable wall
(p = 1), and penetrable vegetation (0 < p < 1).

Each map cell c has an above-ground density column [PI P2 .. , PH] where H is a function
of c. For simplicity we prefer to work with fixed-dimension feature vectors. Accordingly, we
work with these features: p*, the maximum density; p**, the next-highest; h*, the height of
p*; and h**. We also use p*, the number of passes associated with the density p*, and an
indication of its confidence. The average color values associated with a map cell would also
be a good feature, but we have not experimented with this.

Learning algorithm
We are using Support Vector Machine (SVM) learned omine. The SVM uses a radial

basis function kernel. We apply cross-validation to tune its parameters b = 10, C = 1 are
the best parameters selected). The training data consists of 2000 traversible and 2000 non
traversible examples. The resulting model has 1381 support vectors. Tests are performed
on an independent image sequence which contains roughly 2000 examples. We achieved a
classification accuracy of 14% on the test set. We are encoding the SVM output into a
lookup table (LUT) for speed of classification and simplicity, but a reduced-set SVM would
be easy to substitute. SVM traversability classification results are incorporated into the
planner as a cost based on the margin to the decision boundary (????). The results of SVM
classification and the LUT are shown on Figure 4.

4. Learning of traversability from 3-D geometry

In this section we use appearance information from the image plane to correlate to the
correspondent geometry informaion (height) in the map available at close ranges so that to
predict the average height at far range, i.e. we use the geometry as a traversability proxy for
learning (the Lf3D scenario). In general, in L£3D, we use the locations of pixels to compute
a traversability proxy i', which is linked to the pixel appearance u. In this case i' is a
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Figure 4: SVM learning results. (a) and (b) Sample camera image and its projection into
a 2D local map (each cell shows the average color of all pixels that project into
a voxel column). (c) Cost lookup-table generated through off-line training. (d)
Cost map infered from the voxel density grid; green cells are traversable, red cells
are non-traversable.

function of the heights of all pixels landing in one (0.2m)2 map cell. When at least 10 pixels
land in one cell, their height standard deviation becomes resolvable: a large value indicates
rough ground or obstacles. The standard deviation z can then be used as a heuristics to
compute a traversability proxy in [0,1] for the cell, which is associated with the appearance
u of all pixels mapping to that cell.

Currently, we use only two appearance-based features: the average R, G, B color within
a. map cell, normalized to sum to unity, leaving two degrees of freedom (the normalized R
and G are used). Training data for the experiments described below was gathered from 10
consecutive fi:ames ("'4500 training examples). We consider below two approaches based
on unsupervised clustering and on supervised Mixture of Gaussians (MoG).

4.1 Unsupervised K-means

As the geometry based proxy is based on heuristics (and therefore not absolutely reli
able), the first approach we take is of unsupervised clustering of the input data and deducing
the traversability from the height standard deviation z within each cluster. We perform a
K-means clustering with K = 5 (Figure 5). For each datapoint, the resultant traversability
cost is evaluated, as follows:

Z(Ui) = 'L,f=1 zke-rl,k/u2/ 2:f=1 e-r'f,k/u2 ,

where Zk is the average standard deviation value per cluster and Ti,k is the distance of the
point to the center of the cluster. In other words, the z value of a point is an interpolation
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of the average Z values in each cluster using the distances of this point to the centers of the
K cluasters. A threshold for classification Zthr is set, so that 65% of the data is traversible.
Points with Z ~ Zthr are considered as traversable, and otherwise as non-traversable. The
parameter (J is selected using cross-validation. Clssification accuracy is 7%, for (J = 0.5
(we are reporting accuracy on the same sequences as the idea is to extrapolate colors
corresponding to the near and mid-field to the far field in the same image).

4.2 Supervised MoG-based discriminants

It may be preferable to constrain the cluster membership a priori (using T up front)
rather than extracting clusters after the fact. At the expense of some reliance on a prior nile
about association based on T, we may extract more stable and homogeneous clusters. We
have experimented with three approaches: introducing T-based cannot-link constraints into
K-means (Wagstaff, 2001), stratifying the cluster memberships according to T within the
EM algorithm in a semi-supervised framework (McLachlan, 2000) and adopting a two-class
discriminant-based approach with populations determined by T.

In the discriminant approach, rough thresholds based on T are used to form sets of
positive and negative examples: To = {(u, z) : Z ~ Zthr}, 11 = {(u, z) : Z > Zthr}. We
selected a value of Zthr ofOA so that 65% ofthe training data belongs to the traversable class.
It is also conceivable to define a 'borderline' traversability class by using two thresholds.
Two separate MoGs Po (u) and PI (u) are fit to the two training sets, and we declare a pixel
traversable if logpO(U)jPI(U) < L. Confidence is related to APO(U) + (1 - A)PI(U) where
A = Pr(T = 0), (A = 0.35 for our dataset) (do we need the confidence???). We have used
K-component (K = 5 for each class), full-covariance Gaussian mixtures to parameterize the
two distributions, and fit the parameters by maximum-likelihood using the EM algorithm
(Figure 5). The prior probability is set at 65% for traversible and 35% for nontraversible.
The test error achieved is 6%. Training time for N = 1000 is about 40 ms in an unoptimized
code. Evaluation time for 5000 pixels (about 9% of a 192x256 pixel image) is less than
10 ms, which easily permits training and evaluation at our path-planning rates of 2-5 Hz.

Note that both approaches classify terrain in the image space; i.e., each pixel in each
frame is assigned a value for the traversability proxy T. In order to use this result for
navigation, these values must then be projected back into the map. This presents us with
two issues: how to combine traversability data from different sources, and how to determine
the 3D location of 2D image points. For data fusion, we currently use a simple hierarchical
scheme, in which traversability measures derived from geometry (the training set) take
priority over traversability measures infered from appearance (the query set). Two methods
are used for projecting pixels from the image into the map: when the pixel has a non
zero disparity value, 3D locations are computed from triangulation; when no disparity is
available, pixels are projected onto a nominal ground plane. Both forms of projection are
somewhat problematic: triangulation leads to large range errors when disparity values are
small (i.e., when objects are far away), and the environment may not be planar. Thus, the
question of how best to use classified images for navigation remains open.

The results of both algorithms are shown on Figure ?? How are the results incorpo
rated in the planner??? The main limitation of these methods at present is the limited
information content of the appearance features used. Introducing local texture measures

7



J. P. L. AUTHOR ET AL.

0.32 0.3<" 0.36 0.38 0.4. 0.<:'41
norma~.1:t~d rEId

~
~ 1;l.36~' ., ...... ,\. ,·,,,"'·,.. ·• .... ,·x

] 0.3.:.'· .. ·,.. .., ....'",:·· ....···c'0><'~····
~ 0" e-......"..-c.....""

~
::;. :>.36 •

] 0.34.1- .... ,...... ,\

]o"rE~~~==s·

,.4

K-Mean cluster centers

C.3

0.3 0.32 U4 l.36 0.38 O.f 0.42 0.44 0.46 0.48 l.5
normalized red

0.38 ..
q
$
$

~ 0.36

'{j
ID
N
'n 0.34
rl
!II
E
~ 0,32
c

Figure 5: K-means (left) and MoG (right) algorithms. (??? how to describe this)

should substantially improve classification accuracy and robustness, at which point new
algorithmic tradeoffs could be evaluated. It remains to be seen which of the two approaches
would be more successful for navigation after applying learning from proprioception (for
example, as described in Section 3) to learn the traversability proxy rather than using cost
heuristics to estimate it.

5. Learning of slip from proprioception

Slip is a measure of lack of progress of the vehicle and can be defined as the difference
between the commanded velocity (estimated by the vehicle's kinematics) and the actual
velocity (estimated in our case using YO). As mentioned above, considering slip in the
total traversability cost is important because the robot's mobility on certain terrains can
significantly degrade, especially as the slope angle increases (Lindemann, 2005). So, it would
be cost-effective to predict the amount of slip before entering a particular terrain.

Slip learning is a typical example of the abovementioned proprioceptive learning frame
work: information about the terrain geometry and appearance at some location is collected
from the stereo imagery and is correlated to the rover's slip (a propriocetive measurement)
when the rover traverses this location. Both appearance and geometry are needed, as slip is
a function of terrain slopes, but also depends on the terrain type traversed (Bekker, 1969).

Slip learning framework

Slip is learned in a Mixture of Experts framework in which the terrain type is classified
first using appearance information and then the slip, as a function of terrain slopes, is
learned (Angelova, 2006). The rationale for doing that is: 1) one can safely assume that
terrain type and appearance are independent of the terrain slopes; 2) introducing structure
in the problem helps learning in very high dimensional spaces which would require a lot of
training data. In this paper we describe mainly the problem of learning slip as a function
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Figure 6: K-means (top left) and MoG (top right) classifications using elevation-based
traversability proxy. Input image (bottom left) and the k-means results re
projected into the map (bottom right); note that this map extends out to around
45 m (the effective limit for stereo disparity). Pixels from the training set are
shown in green (traversable) and red (non-traversable). Classified pixels are
shown in blue (traversable) and magenta (non-traversable).

of slopes when the terrain type is known. We give also a brief outline of the terrain type
classification algorithm, which is a subject of our current work.

As slip is a nonlinear function of terrain slopes, we use the Locally Weighted Projective
Regression method (Vijayakumar, 2005). We prefer it to other nonlinear approximation
methods, such as Neural Networks, because it can be easily extended to online learning.
The slip S is approximated as follows:

where x are the input terrain slopes, K(x, y) = exp(_llx~YI12) is a smoothing kernel, Xc

are the centers of local neighborhoods, called receptive fields, where local linear regression
models are evaluated, r is the number of linear projections, here r :::; 2. The learning
proceeds by assigning receptive fields to cover populated regions of the input domain and
then estimating a local linear regression (i.e. estimating the parameters b~, pi) in each
receptive field weighting all training point with their correspondent weights to the receptive
field center Xc, thus giving more weights to point within or closer to the receptive field
(see Angelova, 2006, for details). The parameter A, which defines the receptive field size, is
selected using a validation set, and varies dependent on the dataset.

We use a 2D cell map representation (a cell is of size 0.2m x 0.2m; the map has a 15m
look-ahead). The average elevation per cell is used to compute a best plane fit for a location
(a 6x6 neighborhood of cells centered at the location's cell). The slope itself is decomposed
into longitudinal (along the forward motion direction) and lateral (perpendicular to the
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forward motion) components with respect to the rover's position, referred to as pitch and
roll, since they correspond to the pitch and roll of the vehicle. VO is used for localization
and the vehicle's attitude (received from the IMU) gives an initial gravity leveled frame to
retrieve correct longitudinal and lateral slope angles from the terrain (Angelova, 2006).

Figure 7 shows learning and prediction of slip in X (along the forward motion direction)
as a function of slopes for soil and gravel terrains (Angelova, 2006). Training is performed
on the first portion of the traverse, testing - on the second. The average Root Means
Squared (RMS) error is provided on top of each figure (slip is normalized by the average
velocity per step to get the results in %). These results are very promising given the amount
of noise involved and the learning scenario selected (notice that there are combination of
roll and pitch angles for the gravel data which were not seen during training, which makes
it much harder to generalize). Figure 8 shows preliminary terrain classification results

. using a texton-based approach (Varma, 2005) performed in the image plane. Despite some
classification errors, the method is successful in discriminating visually similar terrains at
close range which serves well the purposes of slip prediction. For now, the system is working
offline, but we are exploring methods to speed up the terrain classification algorithm and
integrate it into the whole navigation system.

6. Discussion
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