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Abstract 

The problem considered is 

  ),()()(
)(

)( 21 xxxforxhbxya
dx

xdy
xy   

subject to a point-value condition of the type y(xC) = yC, where y(x) is the function to be solved 
when all other parameters and functions are given. In principle, this problem is solvable using 
elementary textbook methods (separation of variables). In practice, two difficulties are 
encountered. The first difficulty is the complex coupling of qualifiers associated with existence 
and uniqueness of solutions and with the identification of the “required solution” (defined by the 
physical problem that the equation describes) when there are multiple solutions. In the language 
of a programmer, “qualifiers” means if-then statements and “complex coupling” means that these 
if-then statements produce a complicated logic flow. The second difficulty is that exact solutions 
to the differential equation are expressed as solutions to transcendental algebraic equations that 
require numerical root-finding algorithms. This paper simplifies the qualifiers and reduces the 
number of qualifiers that are encountered by confining attention to “uniform solutions,” defined 
as solutions that do not change sign. The second problem is avoided by finding accurate, yet 
simple, approximations for the exact solutions. These approximations are derived for the 
physical application of charge-carrier drift-diffusion in a quasi-neutral semiconductor material. 
Exact results are also given for the problem of charge collection, showing that a sufficiently large 
carrier generation rate creates a sensitive volume in the quasi-neutral region. However, the 
sensitive volume is a symbolic model and has limited applicability. An alternate model that is a 
more literal description of charge-collection physics is ambipolar diffusion with a cutoff. 

Key words: Ambipolar diffusion, charge collection, charge-collection efficiency, drift-
diffusion, funnel, sensitive volume. 
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1. Introduction 

An earlier paper [1] used an analytical (as opposed to numerical) method to calculate the I-V 
curve of a semiconductor diode under conditions general enough to range from low-injection to 
high-injection. Although the analysis was successful in the sense of producing correct 
predictions, the complexity obscured physical insight, making the solution nothing more than a 
number crunching routine that has no obvious advantage over a more traditional numerical 
method of solution. “Insight” is the ability to predict some qualitative properties from an 
inspection of the equations without having to actually calculate numbers. An analytical method 
that is too complicated to deliver insight does not meet expectations. The complexity of the diode 
analysis can be traced to a particular mathematical equation that is the first subject of this paper 
(the second subject, in Section 6, revisits the semiconductor problem). A better understanding of 
this mathematical problem will add insight into the physical problem of a diode, as well as other 
problems in science and engineering that encounter the same equation. It therefore seems 
appropriate to dedicate an in-depth study to this mathematical problem. 

The mathematical problem is as follows: the user selects an open interval on the real axis (x1, 
x2) (with x2 > x1), two real constants a and b, and a real-valued function of a real variable h(x). 
The objective is to solve for y(x) (a real-valued function of a real variable) satisfying 

 ],[ interval closed  theon continuous and defined is  21 xxy  (1a) 

 ),( allfor  defined is  
)(

21 xxx
dx

xdy
  (1b) 

   ),()()(
)(

)( 21 xxxforxhbxya
dx

xdy
xy   (1c) 

subject to a point-value condition of the type 

 CC yxy )(  (1d) 

where xC is a user-specified point in the closed interval [x1, x2] and yC is a user-specified real 
number. To keep the analysis simple, but still general enough for practical applications, we will 
assume that h(x) is defined and continuous at each point in the closed interval [x1, x2]. 

Because of the deceptively simple appearance of (1), it might not be obvious that an analysis 
of (1) is actually quite complex. In particular, (1c) is separable in the sense that dividing both 
sides by ay(x)+b makes each side an integrable combination — a seemingly simple procedure. 
One complication is that the solution obtained this way involves transcendental algebraic 
equations that require numerical root-finding algorithms. Another complication is associated 
with existence and uniqueness of solutions. Those of us that are not mathematicians rarely pay 
enough attention to existence or uniqueness theorems and often take it for granted (a seemingly 
small leap of faith) that we have found the most general solution to (1c) if we found a solution 
containing an arbitrary integration constant. All that remains to satisfy all equations in (1) is to 
select the integration constant to satisfy (1d). In reality, there can be very different functions of x, 
with each containing an integration constant and satisfying (1c). Furthermore, it might be 
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possible to select integration constants so that each of these very different solutions to (1c) also 
satisfy (1d); i.e., solutions to the set of equations in (1) are not unique. 

An illustration of multiple solutions is provided by an example that was constructed for this 
purpose. This example is defined by 

 ).example(2)(,0,1,1,1,1,1 21 xxhbayxxx CC   (2) 

Two solutions for this example are 

 example) for the solution (one]1,1[)( 2  xallforxxy  (3a) 

 example). for the solution(another 
100

01
)(

2









xif

xifx
xy  (3b) 

The two branches on the right side of (3b) join smoothly enough so that the derivative of y is 
defined and satisfies (1c) for all x, including the point x = 0; (3b) is, therefore, a valid solution, 
but is not the same as the solution (3a). 

The fact that different solutions can sometimes be constructed by joining different branches, 
as in (3b), can lead to an assortment of solutions. The assortment becomes very complex for the 
general case in which a, b, and h are arbitrary, producing a tangled weave of if-then statements 
that we must sort through in order to ensure that all solutions have been found. Fortunately, 
science or engineering problems for which (1) must be solved often dictate that the physically 
meaningful solution has a particular sign. For example, the physical problem in Section 6 
requires that carrier density be positive, while y is related to the carrier density in such a way so 
that a positive carrier density implies that y does not change sign. The required sign of y can be 
different for different examples, but in all cases the required sign of y is the same as the sign of 
the given point-value yC. In other words, the required solution is a “uniform solution,” defined 
here to be a solution that does not change sign and, therefore, has the same sign as yC (a more 
precise definition is given below). Confining our attention to uniform solutions maintains enough 
generality to have applications in science and engineering, but greatly simplifies the 
bookkeeping because the next section will show that uniform solutions are unique when they 
exist. 

In order for the definition of a uniform solution to make sense, we confine our attention to 
those cases in which yC is not zero. The precise definition can then be stated as follows: 

 
].x,[ allfor  0)( satisfiesit  if uniform

called be  will(1)  to)( solutiona   then0, If

21xxxy

xyyC




 (4a) 

 
].x,[ allfor  0)( satisfiesit  if uniform

called be  will(1)  to)( solutiona   then0, If

21xxxy

xyyC




 (4b) 
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The next section demonstrates that uniform solutions are unique when they exist. However, strict 
inequalities in (4) are intentional. The motive for them is not merely to make the uniqueness 
proof in the next section easier; they are essential for uniformity to imply uniqueness. For 
example, if the strict inequality in (4a) were replaced by y(x)  0 for all x, then both solutions in 
(3) would be classified as uniform; hence, uniformity would not imply uniqueness (even when yC 
 0) if the definition of uniformity were altered in this way. Using the definition as given by (4), 
neither solution in (3) is uniform. This leads to the question of whether a uniform solution exists. 
Sufficient conditions for existence are proven by constructing solutions in Section 3 (for one set 
of conditions) and in Section 4 (for another set of conditions). 

This paper considers only uniform solutions; therefore, throughout this paper we take it as 
given that 

 .0Cy  (5) 

Also, the function H is defined here for later use throughout this paper by 

 .],[)()( 21 xxxfordhxH
x

xC
    (6) 
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2. Uniqueness of Uniform Solutions 

This section shows that uniform solutions are unique when they exist. The question of 
existence is discussed in the next two sections. For the analysis in this section, existence is 
regarded as given. 

Let y(x) and z(x) be two uniform solutions to (1). Neither function is zero anywhere in the 
interval considered, so their differential equations can be written as 

),()(
)(

)(
21 xxxforxh

xy

b
a

dx

xdy









  

),()(
)(

)(
21 xxxforxh

xz

b
a

dx

xdz









 . 

Subtracting equations gives 

     ).,(0
)()(

)(
)()()()( 21 xxxfor

xzxy

xhb
xzxyxzxy

dx

d
  (7) 

Note that for any x[x1, x2], y(x) and z(x) differ from zero and have the same sign as yC and, 
therefore, have the same sign as each other. This gives y(x)z(x) > 0 for each x[x1, x2]. The 
product function is continuous, and the interval is a closed interval. The inequality, together with 
these two facts, implies that the product is bounded above zero; i.e., there is an  > 0 such that 
y(x)z(x)   > 0 for each x[x1, x2].

 1 The implication is that the quantity 1/y(x)z(x) is integrable 
on any subinterval of [x1, x2]. Also, h is continuous on the closed interval (hence bounded), so 
the quantity h(x)/y(x)z(x) is integrable on any subinterval of [x1, x2]. We can, therefore, define W 
by 

 ].,[
)()(

)(
)( 21 xxxford

zy

hb
xW

x

xC
  




 (8) 

The chain rule, together with (8), gives 

       )()(

)()(

)(
)()()()()()( xWxW e

xzxy

xhb
xzxyxzxy

dx

d
exzxy

dx

d









 . 

Combining this with (7) gives 

   ),(0)()( 21
)( xxxforexzxy

dx

d xW  . 

                                                           
1 A simple proof notes that a continuous function maps a closed interval onto a closed interval, so the range of 
y(x)z(x), regarded as a function of x with x[x1, x2], is some closed interval [a1, a2]. All points in this closed interval 
are positive. This includes the lower endpoint, which serves as the  used here. 
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That is, the curly bracket on the left is constant in x. However, the curly bracket is zero at xC 
because y(xC) = yC = z(xC), so the curly bracket is zero at each point in the open interval. The 
curly bracket is also continuous on [x1, x2], so it is zero at each point in the closed interval [x1, 
x2]. The exponential function is not zero, so y(x)-z(x) = 0 at each point in the closed interval [x1, 
x2], which proves uniqueness. 
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3. Explicit Solutions When a = 0 or b = 0 

The more general treatment (given later) that allows a and b to both differ from zero will also 
insist that they must differ from zero (to avoid undefined terms); therefore, the cases that will be 
excluded there are treated separately here for completeness, even though these cases are trivial. 
Recall that uniform solutions are unique when they exist. If we construct “a” uniform solution, 
then we have found “the” uniform solution. By constructing a uniform solution, we also have 
verified the existence of a uniform solution. The conclusions below are obvious enough to be 
stated without proof. 

Case 1: a = 0 

If a = 0, then a uniform solution to (1) exists if 

 .],[0)(2 21
2 xxxallforyxHb C   (9) 

If this condition is satisfied, the uniform solution is 

 











.0)(2

0)(2)(2
1)(

2

2

2
CC

CC

C
C

yifyxHb

yifyxHb

y

xHb
yxy  (10) 

Case 2: b = 0 

If b = 0, then a uniform solution to (1) exists if 

 .],[0)( 21
2 xxxallforyxHya CC   (11) 

If this condition is satisfied, the uniform solution is 

 .)()( CyxHaxy   (12) 
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4. Explicit Solutions When a  0 and b  0 

Throughout this section we assume that 

 .00  banda  (13) 

It is convenient to change variables in (1) by defining 

 byaAbxhaxgbxyaxv C /,/)()(,/)()( 2  . (14) 

For later use, we also define 

 ./)()()( 2 bxHadgxG
x

xC
    (15) 

Using (14), we can write (1) as 

   ),()(1)(
)(

)( 21 xxxforxgxv
dx

xdv
xv   (16a) 

 .)( Axv C   (16b) 

Solutions to (16) will be expressed in terms of three special functions, so we digress long 
enough to briefly review these functions, denoted E1, E2, and E3. In-depth discussions of these 
functions, including limits and asymptotic behaviors, are given in Appendix A. Plots of these 
functions are shown in Figures A2, A3, and A4 in Appendix A. Several properties of these 
functions that are derived in Appendix A are repeated below: 

 0  whendefined is 
)(

,0  whendefined is )( 1
1  x

dx

xdE
xxE  (17a) 

 0  whendefined is 
)(

,0  whendefined is )( 2
2  x

dx

xdE
xxE  (17b) 

 x
dx

xdE
xxE  allfor  defined is 

)(
, allfor  defined is )( 3

3  (17c) 

 0for    0)( and  0)0( 11  xxEE  (18a) 

 0for    0)(1  and  0)0( 22  xxEE  (18b) 

 xxE  allfor   1)(3   (18c) 

    01ln1   forE  (19a) 
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    011ln2   forE  (19b) 

    11ln3   forE  (19c) 

 01)(
)(

)( 1
1

1  xforxE
dx

xdE
xE  (20a) 

 01)(
)(

)( 2
2

2  xforxE
dx

xdE
xE  (20b) 

 .1)(
)(

)( 3
3

3  xforxE
dx

xdE
xE  (20c) 

Note that although these three functions are solutions to a common differential equation (20), 
they have very different behaviors, as indicated by the plots in Figures A2, A3, and A4. 
Horizontal translations of these functions are also solutions to the differential equation. For 
example, if c is any constant, then E1(x+c) is a solution to (20) at any x satisfying x+c > 0. 
Analogous considerations apply to E2 and E3; consequently we have found three families of 
solutions to the differential equation, with each containing an arbitrary integration constant to be 
selected to satisfy a given point-value condition. The choice depends on the given point value. If 
the given point value is positive, the family E1(x+c) is the only candidate. If the given point value 
is between -1 and 0, the family E2(x+c) is the only candidate. If the given point value is less than 
-1, the family E3(x+c) is the only candidate. 

We now return to (16). Uniqueness of uniform solutions was already established; therefore, if 
we can find “a” uniform solution by constructing it, then we have found “the” uniform solution. 
Furthermore, by constructing a solution, we have also answered the question of existence. The 
approach used here is to first propose the solution to (16) and then verify that the proposed 
solution really is a solution. The proposed solution will make sense if 

   ],[1)(exp)1(0 21 xxxallforxGAAandA  . (21) 

Therefore, we assume that this condition is satisfied. It will be seen below that this is a sufficient 
condition for the existence of a uniform solution. The proposed solution to (16) is 

 

 
 

 

















.1)()1ln(

11

01)()1ln(

0)()1ln(

)(

3

2

1

AifxGAAE

Aif

AifxGAAE

AifxGAAE

xv  (22) 

To verify that the proposed solution (22) really is a uniform solution to (16), first consider the 
case where A > 0. The assertion to be proven is that the upper expression on the right side of (22) 
is a uniform solution to (16). Note that the condition A > 0 together with (21) implies that the 
argument to E1 is defined and positive for all x[x1,x2]. One implication, from (18a), is that the 
upper expression is a uniform solution if it is a solution. Another implication, from (17a), is that 
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the derivative of the upper expression is defined for all x[x1,x2]. Using the chain rule together 
with (15) and (20a) shows that the upper expression is a solution to the differential equation 
(16a) for all x[x1,x2]. Finally, the fact that G(xC) = 0 (implied by (15)) together with A > 0 and 
(19a) implies that the upper expression in (22) satisfies the point-value condition (16b). This 
verifies that (22) correctly gives the uniform solution when A > 0. Similar arguments for the 
remaining nontrivial cases listed in (22) verify that (22) correctly gives the uniform solution for 
all cases, given that (21) is satisfied. Therefore, (21) is a sufficient condition for the existence of 
uniform solutions. Note that if A < -1, then (21) imposes no restrictions on x, but no restrictions 
are needed because E3 is defined at all arguments. A condition that is equivalent to (21) is 

 
].,[0)()1ln(0

1

21 xxxallforxGAAandA

orAEither




 (23) 

Finally, the results are written in the original notation appearing in (1). Using (14) to change 
notation, the sufficient condition (21) for the existence of a uniform solution is written as 

 .],[allfor 1)(exp1  and   0 21

2
xxxxH

b

a

b

ya

b

ya
y CC

C 
















   (24) 

The equivalent statement (23) of this same condition is written as 

 
].,[allfor 0)(1ln and 0

or1/Either

21

2
xxxxH

b

a

b

ya

b

ya
y

bya

CC
C

C







 



 (25) 

The uniform solution (22) is written as 

 


































 


















 
















 



.1)(1ln

1

01)(1ln

0)(1ln

)(

2

3

2

2

2

1

CCC

C

CCC

CCC

y
b

a
ifxH

b

a
y

b

a
y

b

a
E

a

b

y
b

a
if

a

b

y
b

a
ifxH

b

a
y

b

a
y

b

a
E

a

b

y
b

a
ifxH

b

a
y

b

a
y

b

a
E

a

b

xy  (26) 

A simple inspection of the differential equation in (1) suggests that the solution for the a = 0 
case (Case 1 in the previous section) can be obtained by taking a suitable limit of the case 
considered here. This assertion is correct, but might not be obvious from a casual inspection of 
the explicit solutions given by (10) for one case and by (26) for the other. A formal proof derived 
from the explicit solutions can be given, but only an outline of the proof is given here because 
the details are cumbersome and the proof merely confirms the obvious conclusion that the a = 0 
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case is a limiting case of (26). The basic idea starts with the qualifier (9) for the a = 0 case and 
uses this, together with some elementary inequalities, to show that there is a sufficiently small 
but nonzero |a| for which the qualifier (25) is satisfied for any smaller |a|; hence, (26) applies for 
sufficiently small |a|. Furthermore, one of the two upper expressions on the right side of (26) 
applies for sufficiently small |a|. Therefore, when taking the limit as a0, we can use (26) and 
confine our attention to the upper two expressions. Then, two limits (A14) and (A15) derived in 
Appendix A, together with some elementary limits involving the logarithm function, can be used 
to show that the limit of the solution (26) is (10). Similarly, given the qualifier (11), the solution 
for the b = 0 case (Case 2 in the previous section) can also be obtained by taking a suitable limit 
of (26). However, there is an interesting point to be made for this case. If the qualifier (11) is not 
satisfied, it is still possible to take a one-sided limit of (26) in which b0 in such a way so that 
ayC/b-. If we take this limit when (11) is violated, the limit of the solution will be y(x) = 0, 
which is not a uniform solution. Therefore, the qualifier (11) is essential, even when taking this 
one-sided limit. Finally, it is easy to show that the third solution in (26) can be obtained either by 
taking the limit of the second solution as ayC/b-1 from above, or by taking the limit of the 
fourth solution as ayC/b -1 from below. 
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5. Visual Aids 

Previous sections have simplified and organized the qualifiers so that the appropriate solution 
can be immediately selected from the available choices. The available choices consist of (10), 
(12), and the four choices contained within (26). For those cases in which an E-function must be 
evaluated, a numerical evaluation can be done by using a root-finding algorithm with either (19) 
in the main text or with (A4) in Appendix A. What is still missing is intuitive insight. What does 
the solution look like? Under what conditions are various approximations useful? The first 
question is answered in this section. The next section investigates approximations useful for 
selected applications. 

As pointed out at the end of Section 4, the solutions given by (10), (12), or the third 
expression in (26) are limits of the more generic cases consisting of the first, second, and fourth 
solutions in (26), so the analysis is sufficiently general if we confine our attention to the latter 
three cases. Also note that if the h(x) appearing in (1) is not a constant, we can construct a new 
independent variable, a generalized coordinate, in such a way so that h is replaced by a constant 
when (1) is expressed in terms of the new independent variable. The question of how the solution 
depends on the new independent variable can be answered by considering the dependence on x 
when h is a constant. Therefore, we confine our attention to the case in which h is a constant, so 
H(x) is proportional to x-xC. However, it is evident from (1) that proportionality constants can be 
absorbed in the a and b parameters, so the case considered is equivalent to the case in which h(x) 
= 1 and 

 ).considered case the()( CxxxH   (27) 

We now answer the question of what the solution looks like. First, consider the case in which 
ayC/b > 0. In this case the first solution in (26) applies for suitably restricted x. Using (27), this 
becomes 

 .)0/ when()(1ln)(
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Note that a plot of y(x) versus x-xC is a re-scaled and translated plot of the E1 function. The 
coefficient b/a outside the function is a scale factor for the vertical coordinate, the coefficient 
a2/b multiplying x is a scale factor for the horizontal coordinate, and the sum of the two terms 
containing yC controls the horizontal translation of the plot. In fact, any solution of the type in 
which ayC/b > 0 can be represented by one universal curve by simply changing the axis labels in 
a plot of E1 (see Figure A2 in Appendix A) to obtain the plot shown in Figure 1. Similarly, any 
solution of the type in which -1 < ayC/b < 0 is represented by Figure 2, while any solution of the 
type in which ayC/b < -1 is represented by Figure 3. 
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ayC/b > 0 Solution

[ayC/b - ln(1+ayC/b)]+(a2/b) (x-xC)

0 1 2 3 4 5 6 7

a 
y(

x)
/b

0

1

2

3

4

5

6

7

8

9

10

 
Figure 1. The ay/b > 0 Solution. This applies when ayC/b > 0, in which case the square bracket in the 
horizontal axis label is positive. The y(x) implied by the vertical coordinate is a uniform solution on any x-
interval such that the horizontal coordinate is positive at each x within that interval. Only a finite region of 
the plot is shown but the solution domain includes all positive values of the horizontal coordinate. 

-1 < ayC/b < 0 Solution

[ayC/b - ln(1+ayC/b)] + (a2/b) (x-xC)

0 1 2 3 4 5

a 
y(

x)
/b

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

 
Figure 2. The -1 < ay/b < 0 Solution. This applies when -1 < ayC/b < 0, in which case the square bracket 
in the horizontal axis label is positive. The y(x) implied by the vertical coordinate is a uniform solution on 
any x-interval such that the horizontal coordinate is positive at each x within that interval. Only a finite 
region of the plot is shown but the solution domain includes all positive values of the horizontal coordinate. 
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ayC/b < -1 Solution

[ayC/b - ln(-1-ayC/b)] + (a2/b) (x-xC)

-4 -3 -2 -1 0 1 2 3 4 5

a 
y(

x)
/b

-3

-2

-1

 
Figure 3. The ay/b < -1 Solution. This applies when ayC/b < -1, in which case the y(x) implied by the 
vertical coordinate is a uniform solution on any x-interval. Only a finite region of the plot is shown but the 
solution domain includes all values of the horizontal coordinate. 
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6. Application to a Semiconductor Problem 

We consider the physical problem that motivated this work, which is the transport of charge 
carriers in a semiconductor material for a range of conditions broad enough (from low-injection 
to high-injection) so that simple textbook solutions do not apply. Although the governing 
equations that define the selected applications considered here are simplified using various 
physical approximations (drift-diffusion with constant mobilities and constant diffusion 
coefficients), even with these simplifications, the exact mathematical solutions are difficult. 
Other papers (e.g., [1]) have already “solved” such problems, if a number-crunching routine can 
be called a “solution;” however, this kind of a “solution” provides very little wisdom. The 
emphasis in this section is not on number crunching. Instead, the objective here is to investigate 
simple analytical approximations, together with their limitations, that are useful for intuitive 
insight. 

Charge-carrier transport in a semiconductor device (e.g., a diode or a transistor) results in 
charge carriers being distributed a way that produces different types of regions within the device 
interior. One type is a space-charge region, often called a depletion region (DR) in textbooks. 
Another type is a quasi-neutral region (QNR). Numerical methods (computer simulations) solve 
equations that are sufficiently general (and complicated) so that the same set of equations applies 
throughout the entire device interior. This allows a complete device to be treated as a single unit, 
requiring boundary conditions only at the device contacts. In contrast, analytical methods replace 
exact charge transport equations with simpler approximations. However, the approximations that 
apply to a DR are different from the approximations that apply to a QNR. Because different 
equations are used in different device regions, the analysis partitions the device into discrete 
regions, solves the equations in each region, and joins the solutions together by matching 
boundary conditions at the interfaces between the regions. In this context, “solves the equations 
in each region” means that equations are derived for each region that contain enough information 
to solve for the electron and hole currents as functions of the carrier-density and potential 
boundary values at the region boundaries. When this approach is used, each region can be 
analyzed independently of the other regions. In particular, a selected QNR can initially be treated 
as an isolated unit because a later step in the analysis of a complete device assembles solutions 
for different device regions into a set of simultaneous equations describing the complete device. 
Because the QNR was the source of difficulty in an earlier analysis [1], here we focus on a QNR 
with the objective of obtaining analytical approximations. It should be noted that “quasi-neutral” 
means neutral enough so that the charge imbalance (when measured as a density of elementary 
charges) is much smaller than the majority-carrier density, but not necessarily neutral enough for 
the charge imbalance to be too small to significantly affect the electric field in the QNR. 
Therefore, while quasi-neutrality leads to some simplifying approximations, it is still necessary 
to treat carrier density and electrostatic potential as simultaneous unknowns in the transport 
equations; consequently, the analysis of a QNR is far from trivial. 

6.1 Governing Equations for the QNR 

Here we consider the simplest version of the problem, which is one-dimensional (note that a 
one-dimensional analysis can be extended to three dimensions using the method in Appendix B), 
steady-state, uniform doping, negligible carrier recombination in the interior, no photo-
generation of charge carriers (until later in Section 6.5), and having constant electron and hole 
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mobilities. The quasi-neutral region is contained between two points x1 and x2 on the x-axis. In 
this simplest version of the problem, the continuity equations reduce to the statements that the 
electron current density Je and the hole current density Jh are each constant in x. Furthermore, the 
currents are related to carrier density and potential via the drift-diffusion equations. These 
equations can be found in any textbook on semiconductors and are 

dx

dU
pq

dx

dp
DqJ

dx

dU
nq

dx

dn
DqJ hhheee   , , 

where q is the elementary charge, De and Dh are the electron and hole diffusion coefficients, e 
and h are the electron and hole mobilities, U is the electrostatic potential, and n and p are the 
electron and hole densities. The sign convention for the currents is such that Jh is positive when 
holes move in the direction of increasing x, and Je is positive when electrons move in the 
direction of decreasing x. An additional equation is Poisson’s equation relating the second 
derivative of U to the carrier densities. A region is quasi-neutral when the solution to the 
complete set of equations can be approximated by the solution to the set of equations obtained by 
replacing Poisson’s equation with 

00 , nPnpPp  , 

where P is the excess carrier density (taken to be the same for electrons and holes), p0 is the 
equilibrium hole density, and n0 is the equilibrium electron density. For an n-type material, we 
can neglect p0 and set n0 equal to the doping density. For a p-type material, we can neglect n0 and 
set p0 equal to the doping density. Although one of the equilibrium densities can be neglected in 
either application, both will be retained in the equations so that the same equations can be used 
for either doping type. One more equation is the Einstein relation D = VT, where VT is the 
thermal voltage (sometimes written as KT/q and is about 0.026 volts at room temperature) and is 
the same for electrons as for holes. Combining the above equations gives 
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which is a pair of simultaneous equations used to solve for both P and U. 

It was pointed out earlier that a quasi-neutral region can be treated as an isolated structure for 
the purpose of solving the equations, when “solving the equations” means solving for the 
currents in terms of carrier-density and potential boundary values. Therefore, the goal is to use 
(29) to solve for the two currents in terms of P boundary values and the potential difference U 
across the quasi-neutral region. However, the same information is obtained if we solve for U 
and one P boundary value in terms of the currents and the remaining P boundary value. When 
using this approach, we can imagine (for conceptual clarity) that the two currents are given, one 
P boundary value is given, and the objective is to solve for U and the remaining P boundary 
value. In this approach, the equations in (29) are first-order equations subject to a given point-
value condition. The method of solution has two steps. The first step solves for U in terms of 
the two P boundary values, so all unknowns have been solved once the unknown P boundary 
value has been solved. The second step solves for the unknown P boundary value. To carry out 
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the first step, we add the two equations in (29) to get 
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Both sides are integrable combinations and integrating between x1 and x2 gives 
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where 

 ).(),( 2211 xPPxPP   (31) 

We treat the case in which the doping density is not zero, so p0  n0 and (30) solves for U in 
terms of the other quantities. To carry out the second step mentioned above, we multiply the first 
equation in (29) by P+n0, multiply the second equation by P+p0, and then add the resulting 
equations. This gives 
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the above equation becomes 
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The boundary at which P is regarded as given can be either x1 or x2 and is denoted xC, and the 
given boundary value is denoted PC, so the given point-value condition for y is 

 .
2

)( 00 pn
Pyxy CCC


  (33b) 

As pointed out in Section 5, it is sufficiently general to consider the case in which a  0 and b  
0; i.e., 
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because other cases can be derived from this case by taking suitable limits. 
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To shorten the notation, let N be the doping density so 
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We also define 
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Note that the subscript m to the K denotes minority-carrier current, while the subscript M denotes 
majority-carrier current. Also note that the sign of K is either the same or opposite to the sign of 
the corresponding current density, depending on whether the material is p-type or n-type. This 
sign convention was selected so that both doping types will be described by the same equations. 
Substituting (35) into (32), (33b), and (34) gives 
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Several combinations of the terms in (36) that will be useful later are given by 
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Finally, we can express (30) in terms of the Ks as 
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6.2 A Forward-Biased p-n Junction Diode 

The example considered here is a forward-biased p-n junction diode, as shown in Figure 4. It 
is convenient for notation to express the equations in terms of a modification (discussed later) of 
an “emitter efficiency” , which is defined in textbooks (e.g., in [2]) by 

 
Mm
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
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where Jm is the minority-carrier current density and JM is the majority-carrier current density. An 
emitter efficiency not only helps with notation that will come later, it also has some properties 
that are useful in this analysis. A derivation of these properties requires an analysis of the QNR’s 
on both sides of the p-n junction, together with equations describing the DR (see, for example, 
[2]); for this discussion, however, it is enough to know what the properties are. One conclusion is 
that the emitter efficiency is positive and less than 1 for the forward-biased problem with no 
photo-generation of carriers: i.e., the electron and hole currents have the same sign. Another 
property, which applies to the textbook problem of low-injection conditions (the excess carrier 
density is much smaller than the doping density), is that the emitter efficiency is a constant. It is 
unique to the device construction but independent of operating conditions (to the extent that we 
can ignore geometry changes produced by a change in DR width with changing operating 
conditions) as long as operating conditions remain at low injection. Also, devices used in 
practical applications are constructed so that the emitter efficiency is usually very close to 1. This 
is accomplished by making the p-n junction “one-sided,” meaning that the doping on the left side 
of the junction in Figure 4 is much greater than in the region that is labeled the QNR in the 
figure. When operating conditions change from low-injection to high-injection (the excess carrier 
density is much greater than the doping density), nonlinear effects result in a change in the 
emitter efficiency, but the emitter efficiency is still positive and less than 1 and is often (not 
always) close to 1 for practical devices. The emitter efficiency is a characteristic of device 
construction and will be regarded as a known input in this analysis. If nonlinear effects result in 
the emitter efficiency being a function of the current, the functional dependence is regarded as a 
given. 

To help with the notation, we define a modified emitter efficiency  in terms of the Ks 
instead of the Js and with a difference appearing in the numerator. The emitter efficiency  is 
defined by 
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It was previously noted that Jm and JM have the same sign. Hence, for either doping type, Km and 
KM have the same sign, implying that   1. Also, we confine our attention to those cases in 
which textbook is large enough to make |Jm|/|JM| large enough so that 
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This gives 
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 .10    (43) 

As with textbook,  is a characteristic of device construction, usually close to 1 in practical 
applications, and will be regarded as a known input in this analysis. 
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Figure 4. A Simple Diode. The diode has ideal ohmic contacts (shaded regions). The device interior on 
the left side of x1 contains a p-n junction together with its space-charge region (DR). The uniformly-doped 
QNR is between the DRB at x1 and the ohmic contact at x2. The applied voltage V has a forward-biasing 
polarity. 

To keep track of the signs of the K’s, note that if the QNR is p-type, then the left side of the 
junction is injecting electrons to the right, so the currents are negative. The K’s have the same 
signs as the currents for the p-type case, so they are negative. Similarly, if the QNR is n-type 
then the currents are positive, but the K’s have the opposite signs and are negative. For both 
cases, 

 .0,0  Mm KK  (44) 

The point xC is taken to be at x2 in Figure 4, where the excess carrier density has the known 
value PC = 0 due to the ideal ohmic contact. The boundary value P1 becomes the unknown to be 
solved. With these substitutions together with (41), we can write (38), when evaluated at x = x1, 
as 
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It is evident from (45a) together with the fact that  is positive that the solution for y is 
obtained from Figure 1 because ayC/b > 0. The equation for the curve in this figure is 
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Evaluating (46) at x = x1 and xC = x2, and then using (45) to change notation gives 
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This expresses P1 as a function of  and Km, which is equivalent to expressing P1 as a function of 
the two currents. An alternate format, which expresses Km as a function of P1 and , contains the 
same information but avoids the need for evaluating E-functions. To obtain this alternate format, 
note that the function T1 defined by 
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is the inverse of E1. Therefore, operating on both sides of (47) with T1 gives 
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Rearranging terms gives 
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We now look for approximations. First consider approximations applicable to low-injection 
level conditions (LILC), meaning that P1 << N. Inequalities that will derive the suitable 
approximation together with a conservative error estimate are obtained by starting with an 
elementary inequality for the logarithm function, which is 
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Using this with (49) and rearranging terms gives 
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Under LILC, the two bounds in (51) come together, and we obtain the low-injection level 
approximation (LILA) given by 
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This approximation is not new, but the derivation found in elementary semiconductor textbooks 
is less rigorous. This derivation takes for granted that the drift term can be omitted from the 
minority carrier equation in (29). The textbook approximation is 
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When expressed in terms of the Ks, the approximation is written as (52) for both doping types. A 
result obtained from the more rigorous analysis given here that is new is an estimate of the error 
in the LILA. This is obtained from the inequality (51). A conservative estimate of the relative (or 
fractional) error in the LILA, when used to estimate Km, is the term that is added to the 1 in the 
parenthesis on the left side of (51). That is, 
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If   1, then P1 can be as large as the doping density N and the relative error is still less than 1/3. 
The relative error is larger for smaller values of , but is always less than P1/N. 

Now consider the more general case that includes high-injection level conditions (HILC), 
defined by P1 >> N. The bounds in (51) apply in general, but the bounds are far apart from each 
other under HILC and it hasn’t yet been shown which of the two bounds is the more accurate 
estimate. We will now show that the left bound is a fairly (at worst) accurate estimate for the 
general case. To do this, we add and subtract a term from the right side of (49) to obtain 
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A numerical evaluation of the accuracy of the approximation 

 )0any for error  12%  than(less
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finds that the worst relative (or fractional) error is less than (but close to) 12%. The error is close 
to the worst relative error: i.e., close to 12%, when  is between 3 and 4. The relative accuracy 
improves as  decreases below 3 or increases above 4. In fact, the relative error goes to zero in 
either of the two limits: as 0+ or as +. Note that the square bracket in (54) is a sum of 
two positive terms; hence, when the T1 term is replaced by an approximation, the relative error in 
the square bracket is less than the relative error in the approximation for the T1 term. Therefore, 
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substituting (55) into (54) produces an estimate of Km that has less than 12% error2, and is given 
by 
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The relative error in (56) goes to zero as the argument to T1 in (54) either decreases towards zero 
or increases without bound. An approximation useful under HILC is the high-injection level 
approximation (HILA), which is defined to be the large-P1 limit of (56) and is given by 
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If   1, the HILA becomes the same as the LILA except for a factor of 2. 

The HILA (57) is not new, and there is a less rigorous derivation, as follows. Adding the two 
equations in (29) gives 
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Unlike the individual currents in (29), this combination of currents does not have a large 
coefficient P (which is large under HILC) multiplying the dU/dx term, suggesting the 
approximation of omitting this term to get 
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Integrating and then dividing by x2-x1 gives 
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Using (35b) to express this in terms of the Ks, and then using (41) to express the result in terms 
of  and Km produces the HILA (57) for either doping type. 

A new result obtained from the more rigorous analysis given here is the simple analytical 
expression in (56) that not only becomes exact in either the LILC limit or HILC limit, but also 
provides an interpolation between the two extremes having a relative error that is guaranteed to 
be less than 12% for the case considered. Recall that the case considered includes not only 
physically-imposed conditions (that Km and KM have the same signs and Km is negative) 
reflecting the physical problem of a forward-biased diode, but also includes another condition 
(that |Km| > |KM|) that was imposed to make the mathematical analysis valid. Although the 
                                                           
2 Errors refer to mathematical errors. The governing equations in Section 6.1 are themselves only approximations for 
real devices. Accuracy claims refer to a hypothetical device that is defined by these governing equations. 
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derivation of (56) excluded the case in which Km = KM, the conclusion (56) is still defined and 
correct, and the approximation becomes exact for this case. This can be seen by noting that when 
Km = KM we also have a = 0 and  = 0. Comparing (56), when evaluated at  = 0, to the a = 0 
result (10), and using (27) and (36) to change notation in the latter result, shows that (56) is exact 
for this case. 

Note that (56) is useful if  can be estimated. In practice, however, this usually means that the 
emitter is known to have a high efficiency, so that  1. More generally, an estimate of  requires 
an analysis of another QNR on the left side of the junction in Figure 4 (the other QNR is not 
shown in the figure). When performing such an analysis, it is actually easier to solve for KM than 
to solve for  because the majority-carrier current in the QNR shown in the figure is a minority-
carrier current in the left QNR not shown and LILC can often be assumed for calculating the 
minority-carrier current in the left QNR (which is typically heavily doped). For those cases in 
which KM is easier to estimate than , (56) will be more useful if expressed in terms of KM 
instead of  . This can be done by substituting (41) into (56) and rearranging terms without 
changing the relative error to get 

error). 12%  than(less)()2( 1
12

1
11 NP

xx

P
KPKNP Mm 


  

Note that, because the right side is negative, adding the negative quantity P1KM to both sides can 
only decrease the relative error; i.e., the error will still be less than 12%. Doing so and then 
dividing by P1+2N gives 
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where W  x2-x1 is the width of the QNR. 

Finally, an estimate of the voltage across the QNR might be of some interest. An estimate 
can be obtained by substituting (41) and (56) into (39) to get 
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The voltage applied to the device terminals is divided between an applied voltage3 across the 
DR, plus the voltage U across the QNR. The latter voltage can be a large multiple of VT (note 
that VT is about 0.026 volts at room temperature) under HILC if  defined by (41) is close to 
zero. For any other conditions (LILC and/or  1), this voltage will be only about 2VT or less. 
Large or small, the voltage U has an important effect on majority-carrier transport, which can 
be seen as follows. By relating the directions of carrier flows to the signs of the Js and then 
relating the signs of the Ks to the signs of the Js, and noting that Km and KM are both negative, 
                                                           
3 “Applied voltage” is distinguished from “total voltage” across the DR because the latter includes the built-in 
(a.k.a., equilibrium) potentials while the former does not. There is no distinction between applied and total for the 
QNR because the QNR has no built-in voltage. 



JPL PUBLICATION 09-13 

25 

we conclude that minority carriers move away from the DR while majority carriers move 
towards it. The direction of minority-carrier flow is the direction expected from diffusion that is 
driven by an excess-carrier boundary value P1 at the DR boundary (DRB). However, this 
boundary value also drives majority-carrier diffusion, yet majority carriers move towards the 
DR, which is the direction opposite to the direction expected from diffusion. Note that the sign 
convention in (39b), together with the fact, from (59), that U is positive, can be used to show 
that majority-carrier drift is towards the DR. The fact that the net majority-carrier flow is toward 
the DR implies that the voltage U is enough to make majority-carrier drift stronger than 
majority-carrier diffusion as needed to produce this flow direction. Also, minority carriers drift 
in the opposite direction as majority carriers, so minority carriers drift away from the DR. This is 
the same direction as produced by diffusion, so drift and diffusion of minority carriers 
complement each other, while drift and diffusion of majority carriers oppose each other (with 
drift winning). 

6.3 A Reverse-Biased p-n Junction Diode with a Carrier Source 

The example considered here is a reverse-biased p-n junction diode containing a source of 
carriers as shown in Figure 5. One example of this kind of arrangement is produced when the 
source is a forward-biased junction (with another terminal connection to the source, not shown in 
Figure 5, to maintain the forward biasing of the source): i.e., a transistor. Another example of 
this kind of physical arrangement is the photodiode discussed later in Section 6.5. The present 
discussion considers a more generic case in which the physical nature of the source is 
unspecified because the only information that is needed is the boundary conditions it imposes. 
The source is assumed to be consistent with quasi-neutrality being maintained between the DRB 
(at x1 in Figure 5) and the source boundary (at x2 in Figure 5). The source is also assumed to 
conduct enough of the applied terminal voltage as needed to maintain a reverse-biasing condition 
across the DR. A supply of carriers produced by a source will modulate the excess carrier density 
P at the source boundary, and the boundary value, denoted PS, is used to characterize the source. 
This analysis regards the boundary value PS as a given input. It will be seen that, given the above 
assumptions, all relevant information regarding the source has now been specified for the 
purpose of calculating the current through the device. 
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Figure 5. Reverse-Biased Diode with Carrier Source. The device interior on the left side of x1 contains a 
p-n junction together with its space-charge region (DR). The uniformly-doped QNR is between the DRB at 
x1 and a carrier source at x2. The source is characterized by a boundary value PS. The applied voltage V 
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has a reverse-biasing polarity. 

A property of a reverse-biased DR is that it will prevent majority carriers in the QNR from 
entering it. Similarly, the reverse-biased DR will not supply minority carriers to the QNR. Also, 
the case considered has no carrier generation anywhere on the left side of the point x2 in Figure 5 
(thermal generation is also excluded: i.e., there is no dark current), so the DR does not supply 
majority carriers to the QNR. The only current is the result of minority carriers emitted by the 
source and traveling through the QNR to enter the DR. To avoid the need for taking 
mathematical limits, we assume that this current is not zero: i.e., the source is “turned on.” If the 
QNR is p-type, minority carriers are electrons moving to the left, so Je is positive. The Ks have 
the same signs as the Js for the p-type case, so Km is positive. If the QNR is n-type, minority 
carriers are holes moving to the left, so Jh is negative. The Ks have the opposite signs as the Js 
for the n-type case, so Km is positive. For both doping types we have 

 .0,0  mM KK  (60) 

We will select xC to be x1, where P = P1 (an unknown, but approximations will follow); 
therefore evaluating (38) at x = x2, while using KM = 0, gives 
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where W  x2-x1 is the width of the QNR. It is evident from (61a) that this problem is 
characterized by ayC/b > 0, so the solution for y is again obtained from Figure 1. Again, the 
equation for the curve in this figure is (46). Evaluating (46) at x = x2 and xC = x1, and then using 
(61) to change notation gives 
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This expresses PS as a function of P1 and Km. An alternate format, which expresses Km as a 
function of PS and P1, contains the same information but avoids the need for evaluating E-
functions. To obtain this alternate format, operate on both sides with the inverse function T1 and 
rearrange terms to get 
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Note that (63) is an exact result (for a hypothetical device defined by the governing equations in 
Section 6.1) that expresses Km in terms of P1 and PS via elementary functions and is simple 
enough that an approximation might seem unnecessary. However, a particular approximation has 
the advantage of more clearly showing how sensitive Km is to errors produced by replacing P1 
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with zero. This approximation is obtained using steps similar to those used in Section 6.2. 
Adding and subtracting a term on the right side of (63) gives 
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A result that can be taken for granted for now, because we will come back to this later, is that PS 
> P1. Therefore, the quantity (PS-P1)/(P1+N) is in the domain of T1; hence, (64) can be written as 
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The right side of (65) is the sum of two positive terms. Also, the first term is larger than the T1 
term, which can be seen by comparing terms in (64). Therefore, if the T1 term is replaced by an 
approximation, the relative error in the approximation for the right side of (65) will be less than 
half of the relative error in the approximation for the T1 term. Therefore, substituting (55) into 
(65) produces an estimate of Km that has less than 6% error (again, error refers to a hypothetical 
device that is defined by the governing equations in Section 6.1), and is given by 
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To finish the analysis, it is necessary to include some information that is not derivable from a 
QNR analysis because it requires an analysis of the DR. The conclusions are stated without 
proof. Under LILC, a reverse-biased DR resembles a sink for minority carriers in the sense that 
P1 << N, and it is customary to use P10 for such conditions. However, under HILC (where 
HILC can be defined in terms of currents but can also be recognized by PS >> N) the DR can be 
populated by a high density of carriers4. For this case, it can happen that P1 > N. However, 
regardless of the injection level, it is still true that P1 << PS. Therefore, (66) can be reduced to 
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without significantly compromising the accuracy, whether conditions be low injection, high 
injection, or in-between. The conclusion is that a real reverse-biased DR can be approximated by 
the ideal (and hypothetical) case in which P1 = 0. 

Elementary textbooks treat the case in which PS << N; for this case, (67) further reduces to 
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4 The name “depletion region” is used for historical reasons even though the region is not always depleted of charge 
carriers. It is still a space-charge region that is distinguishable from a QNR. 
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Note that (68) is the LILA discussed in Section 6.2 except that the driving boundary value P1 in 
(52) is replaced by the source boundary value PS here, and there is a sign change because the 
driving boundary value is now on the right side of the QNR (Figure 5) instead of the left side. 

Finally, an estimate of the voltage across the QNR might be of some interest. Using (39) with 
x2-x1 = W, P2 = PS, KM = 0, and treating the ideal case in which P1 = 0, gives 
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Substituting (63) into (69), again treating the ideal case in which P1 = 0, gives 
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Note that even if PS is two orders of magnitude larger than N (an extreme case of high-injection-
level conditions), the absolute value of this voltage is still only a few VT. Although small, it is 
still important to majority-carrier flow. The majority-carrier current is zero because drift and 
diffusion of majority-carriers oppose each other with perfect cancellation. Note that majority-
carrier drift and majority-carrier diffusion opposing each other implies that drift and diffusion of 
minority carriers complement each other. Another way to see that drift enhances (instead of 
opposing) minority-carrier flow is by noting that the LILA (68) is what the minority-carrier 
current would be if the flow were purely by diffusion, while the more general approximation (67) 
includes both drift and diffusion. The more general approximation (67) has the same sign but a 
larger absolute value than the pure diffusion current, indicating that drift and diffusion are in the 
same direction for minority carriers. 

6.4 Carrier Source Producing Majority- and Minority-Carrier Flow to Contact 

The example considered here is a variant of the forward-biased diode in Section 6.2. Recall 
that majority carriers flow towards the DR in the diode in Figure 4. The variant problem 
considered here replaces the forward biased DR with a different carrier source that, under the 
biasing conditions considered, results in both minority carriers and majority carriers moving 
from the source towards the contact at the other end of the device. The device is shown in Figure 
6. An example of this kind of physical arrangement is the photodiode discussed later in Section 
6.5. The present discussion considers a more generic case in which the physical construction of 
the source is unspecified. One parameter used to characterize the source is the boundary value of 
P, denoted PS, at the source boundary. This analysis regards PS as a given input. Like the 
forward-biased diode, but unlike the reverse-biased diode with a source, specifying the carrier-
density boundary value is not enough information for calculating the currents. For the forward-
biased diode, an estimate of either  or KM was also needed. For the problem considered here, the 
majority-carrier current is the second piece of information that will be regarded as given. 
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Figure 6. Carrier Source Producing Majority- and Minority-Carrier Flow to Contact. The case 
considered is such that the carrier source together with the biasing voltage have the property that minority 
carriers and majority carriers both flow towards the contact on the right. 

We consider a source and biasing condition having the property that minority and majority 
carriers both flow to the right in Figure 6. To avoid the need for taking mathematical limits, we 
assume that the currents are not zero: i.e., the source is “turned on.” By relating the directions of 
carrier flows to the signs of the Js, and then relating the signs of the Ks to the signs of the Js, the 
stated property can be written as 
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where the last condition was imposed to avoid mathematical difficulties. 

We will select xC to be x2, where P = 0 due to the ideal ohmic contact. Hence, evaluating (38) 
at x = x1 gives 
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where W  x2-x1 is the width of the QNR. Note that the inequalities in (71) allow two 
possibilities. The first possibility is KM + Km < 0, in which case (71) and (72) imply ayC/b > 0. 
The second possibility is KM + Km > 0, in which case (71) and (72) imply ayC/b < -1. The two 
cases are considered separately. 

6.4.1 Case 1: KM + Km < 0 

For the first case, ayC/b > 0 (in fact, we have the stronger condition ayC/b > 1), so the 
solution for y is again obtained from Figure 1. Again, the equation for the curve in this figure is 
(46). Note that the analysis of the forward-biased diode that started with (46) and ended up with 
the approximation (58) also applies here, except that the error estimate that accompanies (58) 
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was derived by noting that KM < 0, which is not the case considered here. To obtain an error 
estimate derived from alternate considerations, it is necessary to start over. Evaluating (46) at x = 
x1 and xC = x2, and then using (72) to change notation gives 
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This expresses PS as a function of KM and Km. An alternate format, which expresses Km as a 
function of PS and KM, might be more useful for some practical applications, but approximations 
will be needed to express this alternate format in terms of elementary functions. To obtain this 
alternate format, operate on both sides of the above equation with the inverse function T1 defined 
by (48) and rearrange terms to get 
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Adding and subtracting a term on the right gives 
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where the argument to T1 is positive and, therefore, in the domain of T1. Now multiply both sides 
of (75) by the expression 
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and subtract 2KMW from both sides of the resulting equation to get 
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The approximation (55) will be used for the curly bracket in (76); however, to obtain bounds for 
the relative error that this will produce on the right side of (76), it is necessary to determine 
whether the two expressions on the right have the same sign or opposite signs. The curly bracket 
is positive, and the coefficient on its right is also positive because Km is negative and (for Case 1) 
the sum Km+KM is negative. The sign of the square bracket on the right is less obvious (it 
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contains both positive and negative terms because Km < 0 and KM > 0) but can be determined by 
noting that the error in (55) is one-sided in the sense that T1 satisfies the inequality 
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which can be verified by combining (48) with (50). Writing (77) as 
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and using this with (76) and rearranging terms produces the left bound in 
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The bound on the right is immediately implied by the definition of Case 1 conditions. 

Case 1 is a sub-case in which KM > 0. Using this with (78) gives 
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Rearranging terms gives 

 ).conditions 1 Casefor  (necessary
2

0 S
M

P
WK   (79) 

We have derived the inequalities that will be needed to quantify the accuracy of an 
approximation that will be derived later for (76). However, another inequality will be useful for 
other applications later, so we temporarily interrupt the logic flow to derive this other inequality. 
Combining the right inequality in (50) with (74) gives 
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Therefore, 
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Note that Km is negative. For Case 1 conditions, the quantity Km+KM is also negative, so 
Km(Km+KM) is positive. Multiplying the above inequality by this positive quantity preserves the 
direction of the inequality, and the result is 
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Returning to (76), we now quantify the accuracy of an approximation for (76). In view of 
(79), the square bracket in (76) is now seen to be positive. Therefore, the right side of (76) is a 
sum of two positive terms; hence, if the curly bracket is replaced by an approximation, the 
relative error in the right side is less than the relative error in the approximation for the curly 
bracket. Therefore, substituting (55) into (76) (i.e., replacing the curly bracket with 1) produces 
an estimate of Km that has less than 12% error (again, error refers to a hypothetical device 
defined by the governing equations in Section 6.1) and is given by 
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Elementary textbooks treat the case in which PS << N. Note that the relative error in (81) 
goes to zero in the limit as PS0; therefore, an exact limit can be obtained by taking the limit of 
this approximation. To take this limit, we utilize the inequality (79) to conclude that the KM term 
in (81) can be omitted along with the PS when they are added to N. The result is 
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with the relative error becoming zero in the small-PS limit. Note that (82) is the LILA discussed 
in Section 6.2, and was derived from the assumption that minority-carrier flow is purely 
diffusion, except that the driving boundary value P1 in (52) is replaced by the source boundary 
value PS here. The condition PS << N is one sufficient condition, but not the only sufficient 
condition for the LILA to be an accurate approximation. A second sufficient condition can be 
obtained by recognizing that the definition of the case considered restricts the allowed values of 
KM according to (79), but it can come arbitrarily close to either bound. In particular, we can take 
the limit as KM approaches PS/2W from below while holding PS at a fixed positive value. In this 
limit, we see that the two bracketing bounds for Km in (78) come together. The conclusion is 
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In other words, regardless of whether PS is large or small compared to N, the LILA (i.e., the 
approximation Km-PS/2W) is accurate if KM is sufficiently close to PS/2W. This assertion could 
have been anticipated from physical arguments. The condition that KM is nearly equal to PS/2W is 
a statement that the majority-carrier current is nearly a pure diffusion current, implying a weak 
electric field, which implies that the minority-carrier current is also nearly a pure diffusion 
current, which is the LILA. 

Finally, an estimate of the voltage across the QNR might be of some interest. An estimate 
can be obtained by substituting (81) into (39) to get 
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In view of (79), we estimate U to be less than 2VT. Although small, it still has an important 
influence on minority-carrier flow when PS is large enough that the right side of (82) is 
significantly different than the right side of (81). This can be seen by noting that the LILA (82) is 
what the minority-carrier current would be if the flow were purely by diffusion, while the more 
general approximation (81) includes both drift and diffusion. When different, drift is important. 
Also note that (80) implies that the drift-diffusion current has the same sign but a larger absolute 
value as the pure diffusion approximation (82). This is another case in which drift and diffusion 
of minority carriers are in the same direction. 

6.4.2 Case 2: KM + Km > 0 

The forward-biased diode with a high emitter efficiency, the reverse-biased diode with a 
source, and a carrier source that emits majority carriers under Case 1 conditions all have five 
characteristics in common. The first is |KM| < |Km|. The second characteristic is that the solution 
is represented by Figure 1: i.e., the solution is an E1 function. The third characteristic is that the 
voltage across the QNR is only a few VT or less. The fourth characteristic is that the equation for 
the minority-carrier current reduces to the LILA when the driving boundary value for the excess 
carrier density is much less than N. The fifth characteristic is that minority-carrier drift and 
minority-carrier diffusion are in the same direction. All of these characteristics change for the 
carrier source under Case 2 conditions, defined by KM + Km > 0. The present problem is more 
difficult than those previously considered, but it is important because it will be encountered in 
the analysis of a photo-diode in Section 6.5. As previously stated, this is a case in which ayC/b < 
-1, so the solution for y is obtained from Figure 3. The equation for the curve in this figure is 
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Evaluating (85) at x = x1 and xC = x2, and then using (72) to change notation, gives 
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A useful inequality is obtained by operating on both sides with the inverse function T3 defined by 
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and then rearranging terms to get 
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The inequality is obtained by combining (50) with (87) while recognizing that Km+KM > 0 (for 
Case 2) when rearranging terms. The result is 
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Combining this with the inequality Km+KM > 0 gives a second inequality 
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Note that (89) ensures that the upper bound in (88) is greater than the lower bound. 

Note that (86) expresses PS as a function of KM and Km. An alternate format, which expresses 
Km as a function of PS and KM, might be more convenient for some practical applications. As an 
attempt to invert (86) to solve for Km as a function of PS and KM, we could start with (86) and use 
the same rearrangement of terms that was used to obtain (76). This produces (76) again, which is 
repeated below for easy reference: 
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Unlike Case 1, the curly bracket multiplied by its (negative) coefficient in (90) is negative for 
Case 2. The square bracket on the right is seen to be positive because the left side is positive. 
Because the two terms have opposite signs, the relative error in the right side, produced by 
replacing the curly bracket with an approximation, might not be less than the relative error in the 
approximation for the curly bracket. In fact, it is easy to show that if we substitute the usual 
approximation (55) into (90), we will obtain a very poor approximation for Km. This can be seen 
by noting that these steps will produce the same approximation for Km that was obtained for Case 
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1 and is given by (81). However, for Case 2 it is possible for KM to be large enough to make this 
approximation for Km positive, which is a very poor approximation for a negative quantity. 

This author was not able to find an approximation for Km, as a function of PS and KM, that 
was judged (by this author) to be an acceptable compromise between accuracy and simplicity 
under Case 2 conditions. However, Case 2 was considered here because of a practical application 
in Section 6.5 (a photodiode), and for this application it is not necessary to invert (86) to solve 
for Km. Additionally, physical insight (and verification of the statements made in the introduction 
to Case 2) can be obtained from asymptotic forms together with an illustrative plot, which are 
discussed below. 

Regarding Km as a function of PS and KM, we can investigate limiting values (when they 
exist) of Km as the point (PS, KM) approaches a selected point while moving along a selected path 
in a plane. However, limit points and paths followed must be consistent with Case 2 conditions 
in order to obtain results valid for these conditions. In particular, the path followed must be 
consistent with (89), although we can take the limit as the left side of (89) approaches the right 
side from above. Also, Case 2 is a special case in which (71) applies. Whether a limiting value of 
Km is approached from above or from below can be recognized (for the limits derived here) by 
combining the left inequality in (71) with the left inequality in (88) to get 
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One simple limit is easily obtained from (88). If we hold PS fixed at an arbitrary positive value 
and take the limit as KM approaches PS/2W, the two bracketing bounds for Km in (88) come 
together. The conclusion is 
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Another simple limit is evident from (91). If PS approaches zero from above with the point (PS, 
KM) moving along any path consistent with (89), we see from (91) that Km0. A special case of 
such a path is with a fixed KM > 0 with PS small enough to satisfy (89) at all points on the path. 
The conclusion is 
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A third limit is less obvious and the derivation is deferred to Appendix C. The result is 
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The simple limits in (92) are used in Appendix C to derive more refined results that are 
asymptotic limits.5 The results derived in Appendix C are 
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Asymptotic limits provide information about local behaviors of Km as a function of PS and 
KM. A visual perception of the global behavior can be obtained by looking at some plots. One 
way to construct a plot of Km as a function of KM for any given fixed value of PS is to use 
parametric equations. For this purpose, we define a parameter  by 
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Note that the inequalities Km < 0 and KM+Km > 0 imply that  > 1. It is not difficult to show that 
the pair of equations consisting of (87) and (94) is equivalent to the pair of equations 
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By selecting a PS > 0 and then assigning a value (exceeding 1) to , the two currents can be 
calculated from (95) to produce one point in a plot of Km versus KM corresponding to the selected 
PS. Repeating this for different values of  produces a set of points used to construct a curve 
corresponding to the selected PS. The bounds (89) and (91), and the limit (92a), suggest that it 
might be convenient to express the K’s in units of PS/2W when plotting Km as a function of KM. 

                                                           
5 An asymptotic limit, denoted A

, refers to relative (or fractional) differences between two functions. The 

statement f(x) A
 g(x) as x  a means that the relative difference between f(x) and g(x) goes to zero as x  a. A 

more formal definition is (A11) in Appendix A. 
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A plot constructed from (95) and using these units is shown in Figure 7 for each of two example 
values of PS/N (10 and 0.1). The solid curves are the exact results produced by (95). The dashed 
curves are the asymptotic forms given by (93). 

E3 Solution Inverted to Solve for Km

KM

1 Ps /2W 10 Ps /2W 100 Ps /2

-K
m

0.01 Ps /2W

0.1 Ps /2W

1 Ps /2W

PS/N=10
PS/N=0.1

 
Figure 7. Km versus KM when Km < 0, KM > 0, and KM+Km > 0. The physical arrangement in Figure 6 has 
an E3 solution when KM+Km > 0. Inverting this solution to solve for Km produces the plots (solid curves) 
shown for each of two example values of PS/N. The dashed curves that join the solid curves on the left side 
are plots of the right side of (93a) minus PS/2W. The dashed curves that join the solid curves on the right 
side are plots of the right side of (93b). 

The vertical coordinate in Figure 7 is -Km (a positive quantity) in units of PS/2W. Another 
motivation for using these units is that the approximation -Km  PS/2W is the LILA first 
discussed in Section 6.2 and more recently discussed in Section 6.4 under Case 1 conditions. 
This approximation is found in elementary textbooks and is derived from a pure diffusion 
analysis of minority carriers. One observation from Figure 7 is that the condition PS << N is 
neither necessary nor sufficient for the LILA to be an accurate approximation under Case 2 
conditions. Regardless of whether PS is small or large compared to N, the approximation is 
accurate if KM is sufficiently close to PS/2W, and inaccurate otherwise. (How close is 
“sufficiently close;” e.g., how close is close enough for the LILA to have less than 20% error 
depends on PS/N.) This could have been anticipated from the same physical arguments that were 
used for Case 1 conditions. If KM is nearly equal to PS/2W, then the majority-carrier current is 
nearly a pure diffusion current, implying a weak electric field, which implies that the minority-
carrier current is also nearly a pure diffusion current, which is the LILA. Like Case 1, Case 2 
also has the property that the approximation Km-PS/2W is accurate if KM is sufficiently close to 
PS/2W (this assertion is also implied by the limit (92a)). Unlike Case 1, the condition PS << N is 
not an alternate sufficient condition for the LILA to be accurate under Case 2 conditions. Even 
when PS << N, the LILA will still be a poor approximation if KM is sufficiently large. Another 
difference between Case 1 and Case 2 can be seen by noting that the actual minority-carrier 
current (which includes both drift and diffusion) satisfies (91) under Case 2 conditions, which 
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has the same sign but a smaller absolute value compared to what the minority-carrier current 
would be if the flow were purely by diffusion (in which case we would have -Km = PS/2W). The 
conclusion is that minority-carrier drift opposes minority-carrier diffusion, but diffusion 
produces the larger current. Case 2 is the first example in this paper in which minority-carrier 
drift opposes minority-carrier diffusion. However, the cancellation can be nearly perfect in the 
sense that the absolute value of the drift-diffusion current (-Km) can be a very small multiple of 
PS/2W. This occurs at the larger values of KM , as seen in Figure 7. 

Finally, an estimate of the voltage across the QNR might be of some interest. An estimate 
can be obtained by writing (39a) as 
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An inequality derived in Appendix C is 
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Using this with (96), we conclude that U is negative. Using (39b), while paying attention to the 
direction of drift for each type of carrier, we conclude that this polarity is consistent with an 
earlier conclusion that minority-carrier drift opposes minority-carrier diffusion (hence, drift and 
diffusion are in the same direction for majority carriers). Unlike cases previously considered, U 
under Case 2 conditions can have an arbitrarily large absolute value if KM is sufficiently large. 
This can be seen by using the simple limit (92c) with (96) to obtain 
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6.4.3 Combining Case 1 with Case 2 

The two cases are each sub-cases of 

 0,0,0,0  SMmMm PKKKK , (98) 

with Case 1 defined by Km+KM < 0, and the solution utilizes the E1 function via (73). Case 2 is 
defined by Km+KM > 0, and the solution utilizes the E3 function via (86). A number of properties 
have already been derived; however, with all of the mathematical detail, it might be difficult to 
“see the forest for the trees.” It is, therefore, instructive to construct some plots that give a visual 
illustration of properties that have already been derived. Plots are constructed by selecting a 
positive KM (it is convenient to express KM in the units of N/2W), which will be held fixed for 
each plotted curve. We then select a set of negative values for Km (again, the units N/2W are 
convenient). For each selected value (excluding Km = -KM), calculate PS/N from (73) if Km < -KM, 
or from (86) if Km > -KM. Plotting PS/N on the horizontal and Km on the vertical axis, we obtain a 
plot of Km versus PS/N for fixed KM. Example plots are shown in Figure 8. The curve labels are 
the selected values of KM in units of N/2W. The dashed line is given by the equation Km = -
PS/2W. 
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Km versus PS when Km < 0, KM > 0

PS/N
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Figure 8. Km versus PS for a Carrier Source Producing Majority- and Minority-Carrier Flow to 
Contact. Km in units of N/2W is plotted against PS/N for each of several values of KM. Curve labels are KM 
in units of N/2W. Case 1 (with solution given by the E1-function) and Case 2 (with solution given by the E3-
function) are both represented in the same plot. Any point on a solid curve that is to the left of the 
intersection between that curve and the dashed line is a Case 2 point (minority-carrier drift opposes 
minority-carrier diffusion and a large QNR voltage is possible). Points on the right are Case 1 points 
(minority-carrier drift compliments minority-carrier diffusion and the QNR voltage is only a few VT or less). 

The first observation from Figure 8 is that each solid curve crosses the dash line at the point 
where PS/N = 2WKM/N. The point where the curves cross satisfies Km = -PS/2W; however, 
because this point also satisfies PS/N = 2WKM/N, we have the simultaneous conditions Km = -
PS/2W = -KM, implying Km+KM = 0 at this point.6 Another observation from Figure 8 is that each 
solid curve is below the dashed line at points on the left side of the intersection. A (Km, PS/N) 
point that is below the dashed line is a point that is below the point (-PS/2W, PS/N). Noting that 
there is a negative sign in the vertical axis in Figure 8, the implication is Km > -PS/2W at points 
on the left side of the intersection. Also, a point on the left side of the intersection is a point 
where PS/N < 2WKM/N. We, therefore, have the simultaneous conditions 
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Similarly, 
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6 The condition Km+KM = 0 could have been allowed in the theory by using limits to define functions. It was 
excluded for analytical convenience (so we won’t have to do that), and also to avoid numerical errors when 
constructing the plots in Figure 8 and in other numerical work to follow (excluding problem points is an alternative 
to redefining functions to expand their domains). The exclusion is for convenience, not out of necessity, and we 
imagine that the condition is allowed when discussing implications from Figure 8. 
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It is seen from (99) that any point (Km,PS/N) on a solid curve that is on the left side of the 
intersection with the dashed line is a Case 2 point. Recall that Case 2 is a condition in which it is 
possible to obtain a large voltage (many VT) across the QNR. In contrast, any point on the right 
side is a Case 1 point, and the voltage across the QNR cannot be more than a few VT. Therefore, 
by comparing any point on any solid curve to the dashed line, we can see at a glance whether a 
large QNR voltage is or is not possible. Recall, however, that all of these conclusions are based 
on the background hypotheses that all cases considered satisfy (98). 

Note that (99) has only two possibilities when equalities are excluded, or three possibilities if 
equalities are included. The three possibilities are 
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 (100) 

Again, this is subject to the background hypotheses that Km < 0 and KM > 0. This result was 
already proven more formally,7 but the plots in Figure 8 provide a more visual illustration. Note 
that (100) could have been anticipated from physical arguments. For example, suppose Km < -
PS/2W. Then the minority-carrier current has a larger absolute value than it would have in a pure 
diffusion flow driven by a boundary value PS, which implies that drift compliments diffusion for 
minority carriers, which implies that drift opposes diffusion for majority carriers, which implies 
that the majority-carrier current is less than it would be in a pure diffusion process driven by a 
boundary value PS: i.e., KM < PS/2W. Therefore, the condition Km < -PS/2W is accompanied by 
the condition KM < PS/2W. Similarly, the condition Km > -PS/2W is accompanied by the condition 
KM > PS/2W. 

6.5 Photo-Diode with Localized Source 

6.5.1 Overview 

We consider a reverse-biased p-n junction diode that is exposed to photons (or any other 
ionizing radiation, but photons are the most common application) that are able to ionize resident 
atoms to produce electron-hole pairs. The purpose of the device is to detect photon irradiation 
and measure its intensity. Photon irradiation intensity is inferred by measuring the photo-
generation rate (the rate of production of electron-hole pairs), and the photo-generation rate is 
measured as follows. The photo-generation liberates mobile electrons and holes in equal 
numbers. Some of the electrons liberated on the p-side of the metallurgical junction between the 
                                                           
7 Excluding the equalities and given the background hypotheses, Cases 1 and 2 are mutually exclusive and all 
inclusive. It was already shown that Case 1 implies the second line in (100) and Case 2 implies the third. Equalities 
(the first line in (100)) can be included by taking limits. 
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n-material and p-material move (via drift-diffusion) across the junction to the n-side. Similarly, 
some of the holes liberated on the n-side move across the junction to the p-side. This produces a 
current through the device, with the current being an indirect measure of the photo-generation 
rate. If the photo-generation is confined to only one side of the junction (because the irradiation 
does not penetrate to both sides), the current consists of minority carriers in the irradiated side 
crossing the junction to the other side (where the same carriers are now called majority carriers). 
An illustration is shown in Figure 9. In this example, carrier generation is not only confined to 
one side of the junction, it is confined to within a narrow region on one side of the junction (a 
hypothetical case) for reasons that will be explained later. The reverse-biased DR blocks the 
majority-carrier current, as seen in the QNR that is on the right side of the junction, but on the 
left side of the generation site, so the total current is the minority-carrier current moving through 
this QNR towards the junction. Not all liberated minority carriers participate in this motion. 
Some move (via diffusion) from the generation site to the contact on the right. This is not 
desirable if the goal is to have a sensitive detector of photon irradiation, because these carriers 
are not contributing to the current at the junction.8 Ideally, the current would be equal to the rate 
of electron-hole pair generation (times the elementary charge), but in reality the current is less 
than that for the reasons just given. 
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Figure 9. Photo-Diode with a Localized Carrier Generation Site. The case considered is that in which 
the applied voltage reverse biases the DR and there is a localized generation site. The QNR(a) is the portion 
of the QNR on the DR side of the generation site and is the same as the QNR in Figure 5 where it was 
found that the voltage across this region (a few VT or less) produces a drift that compliments diffusion for 
minority carriers, and enhances minority-carrier flow towards the DRB on the left. The QNR(b) is the portion 
of the QNR on the contact side of the generation site and is the same as the QNR in Figure 6 where it was 
found that either of two possibilities can be encountered. One possibility is that the voltage across this 
region has a polarity such that drift opposes diffusion of minority carriers and impedes minority-carrier flow 
towards the contact on the right. In the extreme case, a large voltage (many VT) stops virtually all minority 
carriers from moving to the right, implying that virtually all generated minority carriers move towards the 
DRB. 

                                                           
8 A different point of view looks at the contact on the right instead of the junction on the left of Figure 9. The current 
at this location is seen as a flow of carriers moving to the right. This includes all majority carriers, but also some 
minority carriers. This minority-carrier flow cancels a portion of the majority carrier flow and reduces the current. 
From either point of view, we see that it is undesirable to have minority carriers moving to the right if the goal is to 
obtain the largest possible current. 
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One measure of how close the current is to the ideal limit is a “charge-collection efficiency,” 
defined here to be the current divided by the rate of electron-hole pair generation (times the 
elementary charge). The charge-collection efficiency is 1 for the ideal case and less than 1 for a 
real case. Note that the charge-collection efficiency will depend on the spatial distribution of 
photo-generation. The simplest case to analyze is that in which the region of carrier generation 
(the source region in Figure 9) is very narrow;  the charge-collection efficiency, therefore, is a 
function of the source location, instead of a functional of the spatial distribution of carrier 
generation. Such a localized source region is a hypothetical case (but not entirely hypothetical 
because it actually is possible to control the location of carrier generation: e.g., with a two-
photon absorption method as in [4]), but still provides insight in some theoretical investigations. 
In particular, the charge-collection efficiency associated with a point source, expressed as a 
function of the spatial coordinates (three coordinates in a three-dimensional device) of the source 
was a topic of interest in some previous charge-collection investigations (e.g., in [5] and [6]). 
However, previous investigations did not attempt to calculate the charge-collection efficiency 
from an exact mathematical analysis of drift-diffusion equations. This will be done here for the 
simple arrangement in Figure 9, which is a one-dimensional version of the point-source problem. 
The QNR has a width L, and the source location is at a distance XS from the DRB. The portion of 
the QNR that is on the left of the source in Figure 9, denoted QNR(a), has width XS, and the 
portion of the QNR that is on the right, denoted QNR(b), has width L-XS. The width of the source 
region is small enough (effectively zero) for the excess carrier density to be essentially constant 
within the source region; therefore, a common boundary value PS applies to each boundary of the 
source region. 

The analysis given here assumes that the applied voltage V in Figure 9 is able to maintain a 
reverse biasing condition across the DR. However, only a portion of the applied voltage appears 
across the DR, with another portion across the left QNR and the remainder across the right QNR 
(as will be seen later, the latter voltage can be many VT under certain conditions). Therefore, in 
order to obtain a reverse biasing condition across the DR, as needed for the analysis given here to 
be valid, it is not enough that the applied voltage have a reverse-biasing polarity. It must also 
have enough strength to supply the QNR voltages and still have enough left over to reverse bias 
the DR. As long as it is given that this condition is satisfied, we are given all of the information 
that is needed regarding the applied voltage.9 

Before starting a quantitative analysis, we can use results derived for previous examples to 
reach some qualitative conclusions about the photo-diode in Figure 9. Note that the QNR(a) in 
Figure 9 is the same as the QNR in Figure 5, where it was already found in Section 6.3 that the 
voltage across this region produces a drift that compliments diffusion for minority carriers and 
enhances minority-carrier flow towards the DRB on the left. This voltage is only a few VT or less 
(recall that VT is about 0.026 volts at room temperature), but can still have an important effect on 
the current. Also note that the QNR(b) in Figure 9 is the same as the QNR in Figure 6 because 
minority and majority carriers both flow to the right in either case. The analysis, in Section 6.4, 
of the QNR in Figure 6 applies to the QNR(b) in Figure 9 and was divided into two sub-cases. A 
quantitative analysis given later will show that either sub-case can apply to the photo-diode in 
Figure 9, depending on doping type and on the numerical values of various parameters, so each 

                                                           
9 One complication is being ignored. The voltage across the DR affects its width which in turn affects the width of 
the left QNR in Figure 9. Analysis of this effect is avoided here by taking the QNR width as given. 
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sub-case is a possibility when doping type and numerical values are unspecified. One possibility 
(Case 1 in Section 6.4.1) is that the voltage across the QNR(b) (a few VT or less) produces a drift 
that compliments diffusion for minority carriers and enhances minority-carrier flow towards the 
contact on the right. The other possibility (Case 2 in Section 6.4.2) is that the voltage across this 
region (which might be a few VT or less, but could be much larger) has a polarity such that drift 
opposes diffusion of minority carriers and impedes minority-carrier flow towards the contact on 
the right. In the extreme case, a large voltage (many VT) — i.e., a strong electric field — stops 
virtually all minority carriers from moving to the right, implying that virtually all generated 
minority carriers move towards the DRB. Therefore, we can anticipate that there might be 
situations in which virtually all minority carriers are collected at the DRB (the charge-collection 
efficiency is unity) even when geometrical considerations are such that this would not be the 
case if minority-carrier flow were purely by diffusion. However, a quantitative analysis is needed 
to identify these situations. 

6.5.2 Governing Equations 

To start a quantitative analysis, we first list the relevant equations. Recall that the QNR(a) in 
Figure 9 is the same as the QNR in Figure 5, which was analyzed in Section 6.3. The result (63) 
applies to the photo-diode in Figure 9 by merely replacing W with XS and applying a superscript 
“(a)” to Km. However, one approximation will be used. It was argued in Section 6.3 that as long 
as P1 << PS (which we know to be true from experience with numerical solutions of diodes) then 
P1 is a small perturbation, even when it is larger than the doping density. A real reverse-biased 
DR can then be approximated by an ideal (and hypothetical) case in which P1 = 0. In this 
analysis we will consider such an ideal DR, but the remainder of the mathematical analysis will 
be exact. For the ideal reverse-biased DR, (63) written in the notation appropriate for Figure 9 
becomes 
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Similarly, the QNR(b) in Figure 9 is the same as the QNR in Figure 6, which was analyzed in 
Section 6.4. There are two cases exhibiting different properties, but both types of properties are 
implicitly implied by one common equation. This was listed as (74) under Case 1 conditions and 
as (87) under Case 2 conditions. This equation applies to the QNR(b) in Figure 9 by merely 
replacing W with L-XS and applying a superscript “(b)” each K, which gives 
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Some properties of (102) are not obvious from a casual inspection, but were derived in Section 
6.4. These are (100) except for a change in notation by inserting “b” superscripts and replacing 
W with L-XS. However, in order for these properties to be valid, it is essential that Km

(b) < 0 and 
KM

(b) > 0. 

To complete the set of equations, we need to relate the currents on the two sides of the 
source. Carrier generation within a QNR was not previously considered; however, to relate these 
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currents, we need the more general continuity equations that include carrier generation and result 
in the currents being functions of x. These equations are 

 )(
)(

),(
)(

xgq
dx

xJd
xgq

dx

xJd he  , (103) 

where g(x) is the carrier-generation rate density (not to be confused with the g in Section 4). In 
our application, g(x) is positive within the source region and is zero within the QNRs on either 
side of the source. Integrating gives 
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where G (not to be confused with the G in Section 4) is the integral of g over the source region 
and is the total (i.e., over the entire source region) rate of electron-hole pair generation per unit 
area. The quantity qG has the same units as a current density (charge per area per time). Using 
(35b) to convert to the K notation, and using the fact that majority-carrier flow is blocked by the 
DR (i.e., KM

(a) = 0), we can write (104) as 
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where DM is the diffusion coefficient for majority carriers and Dm is the diffusion coefficient for 
minority carriers. 

Finally, the charge-collection efficiency, denoted , is defined to be the absolute value of the 
total current density divided by qG. The majority-carrier flow is zero in QNR(a), so the total 
current is the minority-carrier current in this region. This gives 
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Other quantities that might be of interest are PS and the voltage across QNR(b) (because the 
voltage across QNR(a) is only a few VT or less, this voltage is less interesting). Note that when 
solving the simultaneous equations (101) through (106) to calculate , the solution to the system 
of equations already includes a solution for PS. However, if the solution to the system of 
equations is presented in graphical format (e.g., a plot of  versus XS and/or a plot of PS versus 
XS), there will be less clutter if  is the only quantity plotted. If we want to know what PS is 
when  is the only quantity plotted, we can calculate it by first estimating  from a plot (a set of 
plots will be given later) and then calculating PS from . This is done by noting that that the 
QNR(a) in Figure 9 is the same as the QNR in Figure 5, which was analyzed in Section 6.3. The 
result (62) applies to the photo-diode in Figure 9 by merely replacing W with XS and applying a 
superscript “(a)” to Km. For the ideal reverse-biased DR (P1 = 0), (62) written in the notation 
appropriate for Figure 9 becomes 
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Using (106) to eliminate Km
(a) gives 
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Similarly, the voltage across QNR(b), denoted U(b), can be calculated from  and PS. This is 
done by writing (39a) in the notation appropriate for QNR(b) to get 
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Using (105) and (106) to eliminate the Ks gives 

 .1
2

1
2

)(

N

P

L

X

ND

LG

D

D

V

U SS

mM

m

T

b







 











 (109a) 

Any situation in which there is a large (many VT) voltage across the QNR is a situation in 
which there is a large voltage across QNR(b) (there is only a few VT across QNR(a)), in which case 
U(b) is approximately the same as the voltage across the entire QNR. However, the latter 
voltage has the desirable property of satisfying a simpler equation (as seen below); this 
simplicity will add clarity to some future discussions. To derive this total voltage, first write (69) 
in the notation appropriate for QNR(a) to get 
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and add this to (108) to get 
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Now use (105) to substitute for the (b) currents to get 
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Finally, use (106) to substitute for Km
(a) to get 
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All of the equations needed to calculate  have been listed in (101) through (106). After  
has been calculated, the auxiliary equations (107) and (109) can be used to calculate other 
quantities that might be of interest. 

6.5.3 Small-G Limit and Large-G Limit 

A limiting case that deserves some attention is the small-G limit. This is the case treated in 
elementary textbooks, which solve for the current by assuming that minority-carrier flow is a 
pure diffusion process; i.e., the current is calculated by assuming that the carrier density satisfies 
a linear diffusion equation. However, this calculated current requires some clarification. The 
relationship between PS and G given by (107) is derived from drift-diffusion, not pure diffusion, 
so the relationship between PS and G is not consistent with a linear diffusion equation. Therefore, 
the current calculated from the linear diffusion equation that is driven by the boundary value PS 
(the case considered in all earlier discussions of the LILA) is not the same as the current 
calculated from a linear diffusion equation that is driven by a carrier generation rate G.10 In 
particular, the conclusion under Case 2 in Section 6.4.2, that a small PS is not a sufficient 
condition for the calculated diffusion current to be an accurate approximation for the actual 
current, was referring to a calculated current that is driven by the boundary value PS. It might 
still be true (in fact it is true, as seen later) that a sufficiently small G results in the calculated 
diffusion current being an accurate approximation for the actual current when the calculated 
current is driven by the carrier generation rate G. It is not difficult to show that the linear 
diffusion equation driven by the carrier generation rate predicts the charge-collection efficiency 
to be given by 

 .diffusion) pure(1
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The charge-collection efficiency will converge to the right side of (110) in the small-G limit, 
which agrees with elementary textbooks. It is not necessary to give a formal proof of this 
assertion because graphical solutions presented later will show that  converges to the right side 
of (110) in the small-G limit. 

Another limit of interest is the large-G limit. Taking it for granted that PS increases without 
bound when G increases without bound with all other parameters fixed, the large-G limit is also 
a large-PS limit. In this limit, the linear term in (101) dominates the logarithmic term; hence, the 
logarithmic term can be omitted. Now consider the logarithmic term in (102). Recognizing that 
Km

(b) is negative and KM
(b) is positive, the coefficient to the logarithmic term has an absolute 

value that is less than 1. Therefore, in the large-PS limit, the logarithmic singularity in (102) is 
dominated by linear singularities (e.g., in the 2PS/N term), subject to a qualification. This 
qualification is that the limiting case is not one in which the Km

(b), appearing in the denominator 
inside the logarithm, goes to zero. We, therefore, confine our attention to those values of XS such 
that  is bounded below 1 (i.e., there is an  > 0 such that   1-) as PS/N (the existence of 

                                                           
10 In addition to these two “calculated” diffusion currents, there is a third “true” diffusion current, but it is associated 
with a point in the device instead of being a terminal quantity. In the un-normalized notation (J-current notation) this 
current at a point x is qDdP(x)/dx where P is the actual excess carrier density, i.e., calculated from the nonlinear 
drift-diffusion equation. This current is the same whether driven by PS or by G because the two driving terms are 
consistent from the point of view of the nonlinear drift-diffusion equation. 
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such an XS can be taken for granted without proof because conclusions will be verified by plots 
presented later). With such an XS selected, the limiting case allows us to neglect the logarithmic 
term in (102). Combining (101), without the logarithmic term, and (102), also without the 
logarithmic term, with (105) and (106) gives 
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Recall that there is a qualification. The limit applies only to those values of XS large enough for 
 to be bounded below 1 in the limit as PS. The equation above is erroneous at any XS at 
which the right side exceeds 1; i.e., at any XS < XS where XS is given by 
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For XS < XS, we set  equal to 1. Therefore, the final result for this limiting case is 
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6.5.4 Numerical Algorithm 

Limiting cases were considered above. We now consider the more general case. As 
previously stated, all of the equations needed to calculate  have been listed in (101) through 
(106). After  has been calculated, the auxiliary equations (107) and (109) can be used to 
calculate other quantities that might be of interest. Due to the complexity of (102), it will be 
necessary to resort to a numerical solution for . In view of this fact, it is reasonable to ask 
whether the analysis given here has any advantage over the more traditional practice of using a 
computer simulation (performed by a computer code that numerically solves boundary value 
problems) to investigate the device in Figure 9. The advantage of the analysis here is explained 
as follows. A simulation does not treat the generic case. Each numerical example is a special 
case. Therefore, when using simulations to construct a plot of  versus XS, the simulator must be 
given a set of six input parameters, consisting of doping type (n-type or p-type), N, L, De, Dh, and 
G. A plot of  versus XS produced by one set of input parameters tells us nothing (without an 
analysis such as given here) about how this plot compares to a plot produced by a different set of 
input parameters. To make comparisons, it is necessary to perform repeat simulations for 
different choices of these six input parameters. Similarities between different plots are 
discovered (if the investigator is lucky enough to notice them) instead of derived, so conclusions 
are reliable only for the specific numerical examples that were simulated, and the examples will 
never be an exhaustive set when there are six input parameters. In contrast, the analysis given 
here will show that the original six input parameters can be grouped into a reduced set of two 
input parameters (but the independent variable XS will be replaced by XS/L). Different choices of 
the original six parameters that produce the same reduced set of two parameters are described by 
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the same plot of  versus XS/L, so similarities between plots are derived rather than discovered. 
Also, with only two parameters in the reduced set, it is not difficult to construct a family of plots 
that can be used (via interpolations) to represent all possible numerical examples of practical 
interest. 

A reduced set of parameters is easy to recognize if we first define normalized (and 
dimensionless) measures of the currents (each denoted with an I) and a normalized (and 
dimensionless) measure of the carrier generation rate (denoted H, but not to be confused with the 
H in Sections 1 through 5) by 
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Using (112), we can write (101), (102), (105), and (106) as 
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Now suppose two dimensionless input parameters H and Dm/DM are given, and the dimensionless 
independent variable XS/L is given. The system of equations (113) through (116) then contains 
five dimensionless unknowns to be solved, consisting of PS/N, Im

(a), Im
(b), IM

(b), and . The five 
equations can solve for all of these, so only the two previously mentioned input parameters need 
be given, if suitable constraints are imposed, as discussed below. 

To avoid mathematical difficulties, constraints that must be observed by the user when 
entering inputs are 

 .10,0,0 
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It is necessary for H to be strictly positive because a charge-collection efficiency can’t be defined 
when H is zero except by taking a limit. Note that either doping type is represented, so minority 
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carriers can be either electrons or holes; therefore, Dm/DM can be less than 1 or greater than 1. 
Other constraints are encountered within the algorithm that numerically solves the system of 
equations. These are PS > 0, Im

(a) > 0, Im
(b) < 0, and IM

(b) > 0. The second constraint in this list is 
implied by the first together with (113) (using an inequality for logarithms). The fourth 
constraint is implied by (115). Therefore, the only constraints that have to be forced are 

 0SP  (118) 

 .0)( b
mI  (119) 

Because of (115), we conclude that (119) is equivalent to Im
(a) < HXS/L (i.e.,  < 1). Also, (119) 

is essential for eliminating extraneous solutions. Without this constraint, there will be a solution 
to (113) through (115) that is extraneous because it violates (119) even though it satisfies (118). 
This solution consists of IM

(b) = Im
(b), which satisfies (114),11 with IM

(b) and Im
(a) selected to satisfy 

(115), and then PS selected to satisfy (113) (such a positive PS exists). The possibility of an 
algorithm finding an extraneous solution can be eliminated by imposing a suitable upper bound 
on PS that forces the condition (119). To find this bound, note that (119) is equivalent to Im

(a) < 
HXS/L. Using this with (113) gives 
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Subtracting some terms from both sides and using the definition (48) of the T1 function, we can 
write this as 
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Operating on both sides with the inverse function E1 preserves the direction of the inequality, 
because E1 is strictly increasing; the result is 
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The strict inequality in (120) must be observed when selecting a trial PS in order to avoid a 
mathematical error. Reversing the steps used to derive (120) we find that if PS/N is set equal to 
the right side of (120) we will obtain Im

(a) = HXS/L, leading to  = 1 and Im
(b) = 0. The latter 

condition produces an undefined logarithm in (114). Root-finding algorithms using the bisection 
                                                           
11 The right side of (113) can be evaluated at IM

(b)-Im
(b) = 0 by defining it by its limit to obtain a continuous function. 

Doing so will show that (113) is satisfied when IM
(b) = Im

(b) regardless of the value of PS. 
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method often ask the user for a closed interval to select trial values of a variable from (i.e., 
endpoint values for the interval should be selected to avoid mathematical errors), as opposed to 
strict inequalities. The lower bound zero for PS/N is okay in the sense of avoiding math errors, 
but the upper bound given by the right side of (120) is not. To remedy this, suppose (for 
example) that (120) is replaced with 
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Reversing the steps used to derive (120) we find that if PS/N satisfies the above inequality we 
will obtain   0.9999. Conversely, for any user-defined H, Dm/DM, and XS/L for which the 
correct  is less than 0.9999, this correct  can be found by using the above inequality to 
constrain the trial values of PS/N. If this constraint causes a bisection method to “crash,” because 
the correct solution PS violates this inequality, the crash is interpreted to mean that 0.9999 <   
1; i.e.,  is virtually indistinguishable from 1. With this interpretation, the trial values of PS/N 
can be selected from the closed interval given by 
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The numerical algorithm used here is as follows. Assign values consistent with (117) to the 
parameters and independent variable shown in (117). Select a trial value for PS/N consistent with 
(121). Then calculate Im

(a) from (113) and calculate Im
(b) and IM

(b) from (115). Finally, the trial 
value for PS/N is tested by determining if (114) is satisfied. If not, select another trial value for 
PS/N and test again. This can be done by commercial software using a bisection method for 
updating trial values. If the algorithm crashes because the left side of (114) does not change sign 
when PS/N is in the interval given by (121), set  equal to 1. Otherwise, calculate  from (116). 

6.5.5 Discussion of the Results 

The results of the above calculations are shown in Figures 10 through 16, which show plots 
of  versus XS/L. Different figures refer to different Dm/DM ratios. Different curves within a 
figure refer to different values of G. In each figure, the smallest selected G is small enough for 
the small-G limit (110) to be an accurate approximation; hence, it is also an accurate 
approximation for all smaller G. Similarly, the largest selected G is large enough for the large-G 
limit (111) to be an accurate approximation; hence, it is also an accurate approximation for all 
larger G. In general, the curves are bracketed between the small-G and large-G limits. 

The values of qG shown in Figures 10 through 16 are in the units of qDmN/L. To get an 
order-of-magnitude estimate of this unit, let us consider a specific example. Suppose the QNR 
width L is 10 m (an arbitrary choice, but numbers are easily scaled for other values of L), and 
suppose the material is p-type (so Dm is the electron diffusion coefficient) with a doping density 
N equal to 1016/cm3. The electron mobility in silicon with this doping density is about 1100 
cm2/V-s, which gives Dm = VTe = 28.6 cm2/s. Using these numbers gives qDmN/L  0.5 micro-
amps/m2. For this example, the curve labeled qG = 100 qDmN/L refers to a generation rate of 50 
micro-amps/m2, or 5,000 amps/cm2. Note that Figures 10 through 16 show that, in all cases, the 
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small-G limit (110) is an excellent approximation when qG = 0.1 qDmN/L and a fairly good 
approximation when qG = 1 qDmN/L. Also, in all cases, the large-G limit (111) is an excellent 
approximation when qG = 1000 qDmN/L and a fairly good approximation when qG = 100 
qDmN/L. 
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Figure 10. Charge-Collection Efficiency versus XS/L when Dm/DM = 3. The curve labels are the values 
of qG in units of qDmN/L. The smallest-G curve is accurately approximated by (110), which can be used for 
all smaller G. The largest-G curve is accurately approximated by (111), which can be used for all larger G. 
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Figure 11. Charge-Collection Efficiency versus XS/L when Dm/DM = 2. The curve labels are the values 
of qG in units of qDmN/L. The smallest-G curve is accurately approximated by (110), which can be used for 
all smaller G. The largest-G curve is accurately approximated by (111), which can be used for all larger G. 
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Dm / DM = 3/2
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Figure 12. Charge-Collection Efficiency versus XS/L when Dm/DM = 3/2. The curve labels are the values 
of qG in units of qDmN/L. The smallest-G curve is accurately approximated by (110), which can be used for 
all smaller G. The largest-G curve is accurately approximated by (111), which can be used for all larger G. 
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Figure 13. Charge-Collection Efficiency versus XS/L when Dm/DM = 1. The curve labels are the values 
of qG in units of qDmN/L. The smallest-G curve is accurately approximated by (110), which can be used for 
all smaller G. The largest-G curve is accurately approximated by (111), which can be used for all larger G. 
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Dm / DM = 2/3
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Figure 14. Charge-Collection Efficiency versus XS/L when Dm/DM = 2/3. The curve labels are the values 
of qG in units of qDmN/L. The smallest-G curve is accurately approximated by (110), which can be used for 
all smaller G. The largest-G curve is accurately approximated by (111), which can be used for all larger G. 

Dm / DM = 1/2
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Figure 15. Charge-Collection Efficiency versus XS/L when Dm/DM = ½. The curve labels are the values 
of qG in units of qDmN/L. The smallest-G curve is accurately approximated by (110), which can be used for 
all smaller G. The largest-G curve is accurately approximated by (111), which can be used for all larger G. 
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Dm / DM = 1/3
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Figure 16. Charge-Collection Efficiency versus XS/L when Dm/DM = 1/3. The curve labels are the values 
of qG in units of qDmN/L. The smallest-G curve is accurately approximated by (110), which can be used for 
all smaller G. The largest-G curve is accurately approximated by (111), which can be used for all larger G. 

One observation from Figures 10 through 16 is that  increases when G is increased with a 
fixed Dm/DM and a fixed XS/L. This is seen by comparing different curves within the same figure. 
By comparing curves having the same label (and at the same XS/L) but in different figures, we 
conclude that  increases when Dm/DM increases with a fixed GL/DmN and a fixed XS/L. Note 
that G is not held fixed in this comparison. Although not obvious from a casual inspection of the 
plots, numerical evaluations will show that  increases when Dm/DM increases with a fixed G 
and a fixed XS/L. Because a p-type material has a larger Dm/DM than an n-type material with the 
same doping,  is larger for the p-type than the n-type. 

The large-G limit is particularly interesting. To discuss this in more detail, define * to be 
this limiting case. That is, 
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In general, we have (XS) < *(XS); however at a sufficiently large G, we have (XS)  *(XS). 
It is interesting to consider the voltage across the QNR when this approximation applies. Note 
that if we replace  with * in (109b), the square bracket will become zero when XS > XS. The 
actual  is slightly less than *, so the actual value for the square bracket is not exactly zero, 
and even a small deviation from zero can be significant when multiplied by a large coefficient 
GL/DmN, but the voltage given by (109b) is much closer to zero than it would be if it were 
evaluated at some XS that is less than XS. For example, if we take the limit as XS0 while using 
1 we obtain 
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If qG = 100 qDmN/L (for example) and Dm/DM = 2 (for example), the voltage across the QNR is 
200 VT, or 5.2 volts.12 As previously pointed out, nearly all of this voltage is across QNR(b). Note 
that if G is the same for both cases being compared, the p-type QNR will have a larger voltage 
than the n-type because DM is smaller for the p-type. Also, the critical depth XS (the depth at 
which 1 when G is large) given by (122b) is larger for the p-type because of the larger Dm/DM 
ratio. 

Let us now vary XS while still considering the case in which G is sufficiently large so that 
(XS)  *(XS). If we vary XS within an interval in which XS > XS, we find that  increases 
linearly with decreasing XS (the sloped portion of the upper-most curve in any of the Figures 10 
through 16), while the QNR voltage remains so small that it is calculated to be zero when 
replacing  with * in (109b). If we further decrease XS so we are now in the interval in which 
XS < XS,  is virtually constant and virtually equal to 1 for all such XS, while the absolute value 
of the QNR voltage, calculated from (109b), increases with decreasing XS. A physical 
explanation was already given in an earlier investigation [3] and is as follows. In the large-G 
limit, the carrier density between the source and the DRB will always be large enough to make 
this region highly conductive and the electric field will be weak in this highly conductive region. 
Different cases differ in the region between the source and contact. If the source is sufficiently 
close to the contact, the carrier density between the source and contact is large enough to make 
this region highly conductive so the electric field will be weak throughout the QNR. Note that 
even a weak electric field can produce a large enough minority-carrier drift current, in a highly 
conductive region, to nearly compensate for minority-carrier diffusion and drive most minority 
carriers towards the DR. This occurs when XS is close to XS and  is nearly equal to 1. 
Therefore, any XS greater than XS is characterized by a weak electric field (due to a large 
conductivity) throughout the QNR, but  can be anything between 0 or 1 depending on whether 

                                                           
12 Recall that the analysis assumes that the power supply voltage is sufficient to reverse bias the DR. In this example 
the power supply voltage must exceed 5.2 volts in order to provide the QNR voltage and still have enough left over 
to reverse bias the DR. Otherwise the DR will become forward biased and produce a forward current that competes 
with the reverse current associated with the carrier generation source. This is the physical explanation of a 
competing current. A mathematical explanation refers to boundary conditions. When forward biased, the DRB is no 
longer sink-like for excess carriers. Instead, the boundary value of P at the DRB can become large enough to 
influence the current. An extreme case is an open circuit condition in which there is always a forward current that 
exactly compensates for the reverse current. The text assumes that the power supply is maintaining a reverse-biasing 
condition. 
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XS is closer to L or closer to XS. However, if the source is moved further from the contact, so it is 
now within a distance XS from the DRB, a different situation occurs. The carrier density between 
source and contact is no longer large throughout this region. Instead, this region divides into two 
sub-regions. The sub-region adjacent to the contact is characterized by the excess carrier density 
being nearly zero, so the conductivity is now controlled by the doping density. This sub-region 
was called the high-resistance region (HRR) in [3] because the conductivity is much less than in 
the adjacent sub-region where the carrier density is large. This adjacent sub-region was called the 
ambipolar region (AR) in [3]. Nearly all of the QNR voltage is across the HRR, so another 
characteristic of the HRR is a strong electric field. The intense electric field in the HRR adjacent 
to the contact prevents minority carriers from reaching the contact, so they are all driven to the 
DRB. This explains why  remains at a constant value of 1 when XS is varied between 0 and XS. 
Also, moving the source further from the contact (closer to the DRB) causes the HRR to become 
wider. This increases the voltage across the QNR, so the absolute value of the QNR voltage 
increases with decreasing XS when XS is less than XS.  

The previous paragraph gives a literal description of the relevant physics in the large-G limit, 
but a much simpler (and hypothetical) device mimics the actual case in the sense of producing 
the same end result (122). The single-event-effects community uses the term “sensitive volume” 
(SV) to describe a device region having the property that all charge liberated within is collection 
(i.e., the charge-collection efficiency is 1 within such a region). The same charge collection-
efficiency function given by (122) would also be produced by a hypothetical device containing a 
SV adjacent to the DRB and having a width XS.13 The linear behavior of  versus source 
location XS, when XS is outside the SV, is the same behavior that would be produced if charge 
collection from a source outside the SV was from pure diffusion from the source to the SV 
boundary. Therefore, the simpler physical picture that mimics the actual case in the large-G limit 
is one in which the device contains a SV that collects charge liberated within with a 100% 
efficiency, while charge liberated outside the SV is collected with an efficiency that is consistent 
with pure diffusion from the source to the SV boundary. 

An unfortunate characteristic of such visualization models is the risk of interpreting them too 
literally and reaching erroneous conclusions. That charge collection can be described (in the 
large-G limit) in terms of a SV was derived for the case in which the carrier generation is from a 
localized source. If the SV model is interpreted literally, we might expect it to apply to an 
arbitrary spatial distribution of carrier generation. For a more specific example, consider two 
localized sources, one within the SV and one outside. If the SV model is interpreted as a literal 
description of charge-collection physics, charge liberated by the source within the volume might 
be expected to be collected with a 100% efficiency, while charge liberated outside might be 
expected to be collected with an efficiency that is consistent with diffusion. A physically correct 
interpretation is needed to predict what will really happen. In this more correct interpretation, we 
will not interpret the SV model literally, but the statement “a point is within the SV” can still be 
given a meaning by defining it to mean that the point is closer to the DRB than the point XS 

                                                           
13 The SV width should not be confused with the width of the AR discussed earlier. The former depends only on 
device construction while the latter depends also on the location and strength of the source. If the source is outside 
the SV, there is no HRR so all of the QNR(b) is the AR. If the source is inside the SV, the QNR(b) divides into an 
HRR and AR but the widths of these regions vary continuously as the source location is varied. The depth of the 
source relative to the DRB, the SV width, and the AR width are three distinct quantities. 
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given by (122b). First consider the case in which only the generation site within the SV is 
present. The physically correct interpretation notes that carrier generation from this site leads to a 
strong electric field near the contact (i.e., the formation of an HRR). This prevents the liberated 
minority carriers from reaching the contact; hence, they all move to the DRB, producing a 100% 
collection efficiency. Let us now add the other point source, which is outside the SV. To avoid 
the necessity of analyzing synergetic effects, assume that the other source is much weaker so that 
it has only a small affect on the electric field, so the electric field with both sources present is 
essentially the same as the field just described. This prevents minority carriers liberated by either 
source from reaching the contact; hence, they all move to the DRB, producing a 100% collection 
efficiency. In other words, the presence of the generation site within the SV results in a 100% 
collection efficiency for the other generation site, even though this other site is outside the SV. 
This is contrary to what might be expected from a literal interpretation of the SV model. 

An alternate model also predicts the upper curves in any of the Figures 10 through 16, but is 
a more literal description of charge-collection physics than the SV model. This is ambipolar 
diffusion with a cutoff. The derivation of this model can be shown to be mathematically 
equivalent to the derivation already used to obtain (111) (e.g., neglecting logarithmic terms in the 
former derivation is equivalent to an ambipolar approximation); however, here we use different 
terminology, so that physical interpretations become more obvious. The intention here is not to 
be mathematically rigorous by quantifying the accuracy of various approximations. This is not 
necessary because the conclusion — that * in the large-G limit — has already been 
established when constructing the plots in Figures 10 through 16. The intention is to merely 
identify what the physical approximations are that will produce this conclusion. We start here 
with an arbitrary generation function g and later specialize to a localized source. The drift-
diffusion equations (29) still apply, except that the currents are now functions of x. Adding 
equations and using (35b) to express the result in the K notation gives 
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where the QNR is taken to be between x = 0 and x = L. Also, a linear combination of the 
equations in (103), when expressed in the K notation is 
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where the ambipolar diffusion coefficient D* is defined by 
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The majority-carrier current is blocked at the DRB, so the total current, denoted JT, is equal to 
Jm(0). In the K notation, the absolute value of the total current is given by |JT| = 2qDmKm(0), so 
(123) gives 
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Unlike the individual currents in (29), the combination of currents given by (123) does not have 
a large coefficient P (which is large under HILC) multiplying the dU/dx term on the right, 
suggesting the approximation of omitting this term. Omitting this term in (123) while using (124) 
gives 
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Also, (126) reduces to 
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We will call (127) the “ambipolar diffusion approximation.” An equivalent statement of this 
approximation is P  P* and |JT|  JT*, where P* is defined by the ambipolar diffusion equation 
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and JT* is defined by 
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We now specialize to the case of a localized generation site at a location XS and strength G. 
Solving (128) for this case gives 
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and (129) becomes 
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This is the ambipolar approximation for the current without a cutoff. However, depending on the 
source location XS and on the ratio Dm/DM, it is possible for this current to exceed qG. This 
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unphysical result implies that the omission of the electric field (the dU/dx term) from (123) is 
invalid under these conditions. This, in turn, is interpreted as an indication that an HRR has 
formed adjacent to the contact, with a strong electric field forcing all minority carriers to move to 
the DRB. In other words, if the ambipolar diffusion approximation for the current exceeds the 
carrier generation rate, the actual current is expected to be equal to the carrier generation rate. 
When using the ambipolar diffusion approximation to define a charge-collection efficiency 
function, denoted *, we include a cutoff (i.e., we prevent it from exceeding 1) by defining it by 
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Using (130), we find that the definition (131) is the same as (122), which was already shown to 
be the correct result in the large-G limit. 
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7.  Conclusions 

This paper treated two subjects. The first, treated in Sections 1 through 5, was a mathematical 
investigation of the boundary-value problem (1) for the purpose of obtaining some mathematical 
tools. These tools consist of the T-functions and E-functions defined in Appendix A. It was 
shown that the uniform solution (defined to be a solution that has no zeros or sign changes) to (1) 
is given by (10) if a = 0 and (9) is satisfied, or given by (12) if b = 0 and (11) is satisfied, or 
given by (26) if (25) is satisfied. These tools will be useful for any scientific or engineering 
application that encounters (1). 

The second main subject of this paper, treated in Section 6, used the above tools for a 
specific application. This is the physical problem of drift-diffusion of charge carriers in a quasi-
neutral portion (a QNR) of a semiconductor device. The assumed governing equations that 
define the physical problem were simplified by using a number of approximations (constant 
mobilities, constant diffusion coefficients related to mobilities by the Einstein relation, no carrier 
recombination in the interior of the QNR, and ideal boundary conditions); however, conclusions 
were rigorously derived for the hypothetical device that is defined by these simplified governing 
equations. Some of these conclusions are: 

a) Analytical Approximations: Analytical approximations for the minority-carrier current 
were given for each of several arrangements in which the driving term was a boundary 
value. One of these applies to the forward-biased diode when operating conditions are 
such that Km and KM are both negative and |Km|  |KM|. The result is (58). Another applies 
to a reverse-biased diode with a carrier source. The result is (66). A third applies to a 
carrier source producing majority- and minority-carrier flow to a contact under Case 1 
conditions (Km + KM < 0). The result is (81). Each approximation not only becomes exact 
in either of two limits (the low-injection level limit and the high-injection level limit), but 
also provides an interpolation between the two extremes having a relative error that is 
guaranteed to be less than 12% under the applicable conditions. 

b) Location of an Intense Electric Field: Consider charge collection in a device consisting 
of a reverse-biased depletion region (DR) having a boundary (DRB, which is a sink for 
excess carriers) above a contact (another sink). The QNR is between these boundaries. 
Carriers are liberated (e.g., by photo-generation) at a generation site within the QNR. 
Because the drift-diffusion equations are nonlinear, there is a synergism between drift 
and diffusion. The analysis has shown that this produces a week electric field (always) at 
locations above the generation site (source) and a strong electric field (sometimes, 
depending on doping type, source strength and source location) at locations below the 
source. This was also seen in a computer simulation by Hsieh et al. [7] of a transient 
problem in which carriers were liberated by an ion traveling part way through the device, 
entering at the top, and stopping in the interior (the column of liberated carriers is called 
an “ion track”). The simulation produced a plot of equipotential surfaces within the 
device interior. Paying attention to the spacing between equipotential surfaces in the 
figure in [7], it is seen that there is a weak electric field along the track and a strong 
electric field below the track, as predicted by the theory given here. This recognition is 
contrary to conclusions in the older literature. Some investigators failed to recognize that 
the electric field is weakest (not strongest) at locations where the equipotential surfaces 
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are furthest apart, so some of the older literature (e.g., [8]) misinterpreted the Hsieh plot 
and concluded that an upper part of the device contains an intense electric field, making 
it, in effect, an extension of the DR. Although a strong-field extension of the DR is 
fictional, it was perceived by some investigators and given the name “funnel.”14 The 
more rigorous analysis given here shows that a strong-field extension of the DR is 
fictional. 

c) P-Type Produces a Greater Charge-Collection Efficiency than N-Type: Consider the 
same arrangement as in Item (b). The theory shows that a p-type QNR produces a greater 
amount of collected charge compared to the n-type. A casual explanation — that minority 
carriers are more mobile in p-type compared to n-type — is naive because it fails to 
recognize that, in a pure diffusion process, charge collection is determined by the location 
of the source relative to the sink boundaries and is independent of the diffusion 
coefficient. Also, explanations in the older literature (e.g., in [8]) have no grasp of the 
relevant physics and were based on a misinterpretation of computer simulation results 
(see Item (b) above) in addition to other misconceptions (e.g., that an ion track is 
nonconductive and that an electric current requires a charge separation). In contrast, the 
prediction given here is rigorously derived from analysis of the nonlinear drift-diffusion 
equations. 

d) P-Type Exhibits a Stronger Electric Field than N-Type: Considering the same 
arrangement as in Items (b) and (c), the analysis has shown that the electric field at 
locations below the source tends to be stronger in the p-type QNR compared to the n-
type. This is consistent with Item (c) above. The stronger electric field in the p-type 
produces a stronger opposition to the downward flow of minority carriers and forces 
more of them to move to the DRB above. 

e) Plots of Charge-Collection Efficiency: A photodiode exposed to an ionizing environment, 
which creates a source of free electron-hole pairs within the QNR, was considered, and a 
charge-collection efficiency  was defined to be the collected charge (produced by a 
minority-carrier flow from the QNR into the DR) divided by the amount of charge 
liberated by the source. The analysis considered a localized source, which makes  
dependent on source location in addition to source strength and parameters describing 
device construction. The original governing equations contain seven parameters, 
consisting of doping type (n-type versus p-type), doping density N, source location XS 
(measured from the DRB), source strength G, length (or depth) L of the QNR, electron 
diffusion coefficient, and hole diffusion coefficient. The analysis has shown that these 
seven parameters can be lumped into just three parameters, consisting of XS/L, GL/DmN, 
and Dm/DM (where Dm is the minority carrier diffusion coefficient and DM is the majority-
carrier diffusion coefficient [note that the diffusion coefficient ratio is also a mobility 
ratio according to the Einstein relation]) that must be specified in order to uniquely 
determine . This means that all possible numerical examples of practical interest can be 

                                                           
14 Occasionally a paper in the literature will show an equipotential surface, plotted by a computer simulation, that 
the author has identified as a funnel because it appears to be isolated from other equipotential surfaces shown in the 
plot, without realizing that the choice is arbitrary because the set of plotted surfaces is an artifact of the contour 
values that were selected for plotting. Pictures of funnels that are most frequently seen in the literature are in 
cartoons and are an artist conception. 
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represented (via interpolations) by a finite number of plots of  as a function of XS/L. 
Such plots are included in this report (Figures 10 through 16).15 There is a caveat. The 
analysis requires the DR to be reverse-biased. There are situations in which there can be a 
large voltage (several volts) across the QNR. It is, therefore, not enough for the external 
power supply to have the correct polarity; it must also have enough strength to supply the 
QNR voltage, with this voltage calculated from (109b), and still have enough voltage left 
to reverse bias the DR. Otherwise the DR will become forward biased and produce a 
forward current that competes with the reverse current associated with the carrier 
generation source. An extreme case is an open circuit condition in which there is always a 
forward current that exactly compensates for the reverse current. As long as the power 
supply voltage maintains a reverse-biasing condition, the power supply voltage becomes 
irrelevant, except for its effect on DR width, which, in turn, affects the QNR length. This 
issue was avoided in the analysis by measuring depth from the DRB and taking the QNR 
length L as given. Note that the plots represent a one-dimensional device (1D), but a 3D 
problem can be converted into a 1D problem using concepts in Appendix B (details are in 
[3]). This allows 1D results to be applied to 3D problems. 

f) Sensitive Volumes: The single-event-effects community uses the term “sensitive volume” 
(SV) to describe a device region having the property that all charge liberated within is 
collection (i.e., the charge-collection efficiency is 1 within such a region). Funnels 
perceived in the literature have been interpreted not only as strong-field extensions of the 
DR, but also as SVs. While the former interpretation is fictional, the latter interpretation 
has a basis in reality in the sense that a SV is created within the QNR when the carrier 
generation rate G is sufficiently large. This is shown by the upper curves in any of the 
Figures 10 through 16. The charge-collection efficiency  is virtually 1 down to a critical 
depth XS given by (122b), with this depth defining the SV. Note that Dm/DM is greater 
than 1 for a p-type material and less than 1 for n-type; hence, (122b) shows that the p-
type material has the larger SV. The linear behavior of  versus source location XS, when 
XS is below this critical depth, is the same behavior that would be produced if charge 
collection from a source below this depth was from pure diffusion from the source to the 
lower SV boundary. In summary, charge liberated within the SV is collected with a 
virtually 100% efficiency, while charge liberated below the SV is collected with an 
efficiency that is consistent with pure diffusion from the source to the lower SV 
boundary. The same caveat pointed out in Item (e) regarding biasing conditions also 
applies to this discussion. Note that some earlier and less rigorous attempts to estimate a 
SV depth (e.g., in [9]) estimate the depth to be a multiple of the DR depth and 
independent of the QNR depth. In contrast, the more rigorous analysis given here finds 
that the SV depth is a fraction of the QNR depth16 and independent of the DR depth. 
However, it is important to be aware that the SV model is a symbolic model and is 

                                                           
15 The range of values 1/3  Dm/DM  3 is expected to include all cases of practical interest for silicon devices. If 
another material is considered, in which the diffusion-coefficient ratio goes outside this range, readers can use the 
same algorithms explained in detail in Section 6.5 to construct additional plots. 
16 Recall that the analysis given here is one-dimensional. A three-dimensional version would replace the normalized 
rectangular coordinate XS/L, which is normalized to make the QNR depth equal to 1, with a different (curvilinear) 
coordinate [3] that measures distance from the DRB and is normalized to make the QNR depth equal to 1. The 
statement that the sensitive volume depth is a definite fraction of the QNR depth would use this curvilinear 
coordinate to define the depths. 
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limited to generation from a localized source. This limitation is discussed in more detail 
in Section 6.5.5. 

g) Ambipolar Diffusion with a Cutoff: An alternate model also predicts the upper curves in 
any of the Figures 10 through 16, but is a more literal description of charge-collection 
physics than the SV model. This is ambipolar diffusion with a cutoff. It is derived by 
starting with the linear combination of the drift-diffusion equations that is least sensitive 
(in the large-G regime) to errors produced by neglecting the electric field in the QNR. 
Omitting the electric field in this equation produces the ambipolar diffusion 
approximation (127), which does not yet have a cutoff. There are conditions under which 
the ambipolar diffusion approximation for the current exceeds the carrier generation rate. 
This implies that the omission of the QNR electric field is invalid. This, in turn, is 
interpreted as an indication that an intense electric field has formed adjacent to the 
contact, forcing all minority carriers to move to the DRB. In other words, if the ambipolar 
diffusion approximation for the current exceeds the carrier generation rate, the actual 
current is expected to be equal to the carrier generation rate. The final approximation for 
the current, called “ambipolar diffusion with a cutoff,” is equal to the ambipolar diffusion 
approximation (without the cutoff) when this is less than the carrier generation rate and 
equal to the carrier generation rate when the ambipolar diffusion approximation (without 
the cutoff) exceeds the carrier generation rate. This model predicts the same charge-
collection efficiency function, given by (122), that was predicted by the SV model and 
shown as the upper curves in any of the Figures 10 through 16. The same caveat pointed 
out in Item (e) regarding biasing conditions also applies to this discussion. 
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Appendix A: Definitions and Properties of Three Special Functions 

Three functions defined below will be seen (later) to satisfy a differential equation relevant to 
this work. These functions are defined to be inverses of three other functions that are easier to 
define, so we start by defining these other functions. Starting with the function T defined by 

 1,1ln)(  T  (A1) 

and plotted in Figure A1, we partition the domain to obtain the three functions T1, T2, and T3 with 
domains and ranges given by 

 ),()1,(:),,0[]0,1(:),,0[),0[: 321  TTT  (A2) 

and with the mapping rules given by 

   0,0)(,1ln)( 11   TT  (A3a) 

   01,0)(,1ln)( 22   TT  (A3b) 

   .1,)(,1ln)( 33   TT  (A3c) 

Note that each function in (A3) is defined when  is in the indicated interval. Also, 
differentiating shows that T1 is strictly increasing, T2 is strictly decreasing, and T3 is strictly 
increasing on their respective domains. Therefore, each function has an inverse. The inverses are 
denoted E1, E2, and E3. They satisfy 

1
111 ),,0[),0[:  TEE  

1
222 ],0,1(),0[:  TEE  

1
333 ),1,(),(:  TEE  

with mapping rules given by 

   .0)(,0,1)(ln)( 111  xExxExEx  (A4a) 

   0)(1,0,1)(ln)( 222  xExxExEx  (A4b) 

   .1)(,,1)(ln)( 333  xExxExEx  (A4c) 
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Figure A1. The Function T. The function T()  -ln|+1| is defined for all   -1, but only a finite region of 
the plot is shown. Outside the plotted region; T()+ as   -1, T()+ as  +, and T()- 
as   -. By partitioning the domain as shown in the plot, we construct three invertible functions; T1 with 
domain [0, +), T2 with domain (-1, 0], and T3 with domain  
(-, -1). 

These mapping rules state that Ti is a left inverse of Ei (for i = 1, 2, 3). Other mapping rules, 
which state that Ti is a right inverse of Ei (for i = 1, 2, 3), are 

    01ln1   forE  (A4d) 

    011ln2   forE  (A4e) 

    .11ln3   forE  (A4f) 

Differential equations satisfied by these functions can be derived by implicitly differentiating 
the above equations to obtain 
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In other words, each E-function is a solution to a common differential equation. Note that 
translations of these functions are also solutions. For example, if c is an arbitrary constant then 
E1(x+c) is a solution for any x > -c. 

A plot of each E-function can be constructed by working backwards. For example, to 
construct a plot of E1(x) versus x, we select a non-negative value for E1(x) and then use (A4a) to 
solve for x. This procedure produces the plots shown in Figures A2, A3, and A4. The same 
procedure used to construct plots can also find special values or limiting values that are given by 

 0)0(1 E  (A6a) 

 bound without increases  as bound without increases  )(1 xxE  (A6b) 

 0)0(2 E  (A6c) 

 1)(lim 2 
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xE
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 (A6d) 

 bound without decreases  as bound without decreases  )(3 xxE  (A6e) 

 2)2(3 E  (A6f) 
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 (A6g) 

Substituting (A6f) into (A5c) gives 
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Figure A2. The Function E1. This is the inverse of T1 shown in Figure A1. 

X

0 1 2 3 4 5

E
2(

X
)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

 
Figure A3. The Function E2. This is the inverse of T2 shown in Figure A1. 
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Figure A4. The Function E3. This is the inverse of T3 shown in Figure A1. 

The simple limits in (A6) can be combined with (A4) to derive other limits that describe the 
E-functions with greater resolution. For example, consider the expression E1(x)-x-ln(1+x), 
which is defined for any x  0. Using (A4a) to substitute for x, we can write this expression as 
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The limit as x increases without bound (if the limit exists) is given by 

    .
)(1ln)(1

)(1
lnlim)1ln()(lim

11

1
1






















 xExE

xE
xxxE

xx
 

But (A6b) implies that the large-x limit on the right is also the large-E1 limit, so the equation can 
be written as 
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The logarithm function is continuous at any positive argument, so the limit of the logarithm is 
the logarithm evaluated at the limiting value of the argument (which is positive). This gives 

   .0)1ln()(lim 1 


xxxE
x

 (A7) 

The symbolism “” will be used to denote limits. The precise definition of the notation is 
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   .0)()(lim  ifonly  and ifas)()( 
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xgxfaxxgxf
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An analogous definition applies to the case where x approaches + or -. The right side is 
intentionally written as the limit of a difference instead of a difference between limits so that the 
notation will still make sense even if f and g do not have limits. The only requirement for the 
notation to make sense is that the difference f-g have a limit. In the notation of (A8), we can 
write (A7) as 

 .as)1ln()(1  xxxxE  (A9) 

Similar steps give 

 .as)1ln()(3  xxxxE  (A10) 

When considering limits in which an E-function approaches zero, the behavior is described 
with better resolution when described in terms of asymptotic behavior instead of the more 

conventional limit. The symbol “A ” will be used to denote asymptotic behavior, which refers 
to relative or fractional differences between two functions. The statement that some function f(x) 
asymptotically approaches some function g(x) as x approaches some value a is denoted f(x) 

A  g(x) as xa and defined by 
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An equivalent definition is 
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An analogous definition applies to the case where x approaches + or -. The asymptotic 
behavior of E1(x) as x0 can be deduced from (A4a) after some inequalities have been derived. 
By differentiating the expression ln(1+)-+ 2/2 with respect to , we find that the derivative is 
positive for  > -1, so the expression is increasing. Therefore, the expression is larger at  > 0 
then at  = 0, and it is smaller at  > 0 then at  = 0. That is, 
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Similar steps give 
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Using E1(x)  0, the applicable inequalities in (A12) are 
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Combining with (A4a) gives 
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As x0, so E1(x)0. The far right and far left sides of the above inequality come together and 
we conclude that 
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where the limit is a one-sided limit (x approaches zero from above) because E1 is not defined on 
negative arguments. Neither x nor E1(x) are negative, so the above limit can also be written as 

1
2

)(
lim 1

0






 x

xE
x

. 

That is, 

  .02)(1
xasxxE A  (A13) 

Similar steps give 

  .02)(2
 xasxxE A  (A14) 

When considering limits in which an E-function approaches -1, the behavior is described 
with the greatest resolution when described in terms of the asymptotic behavior of 1 plus the E-
function. The asymptotic behavior of 1+E2(x) as x+ can be deduced by considering the 
expression [1+E2(x)]/exp(-(1+x)), which is defined for any x  0. Note that (A4b) can be written 
as 
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 .)(1exp
))1(exp(

)(1
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As x increases without bound, E2(x) approaches -1 and the right side approaches 1. That is, 

1
))1(exp(

)(1
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
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

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, 

which can also be written as 

  .))1(exp()(1 2  xasxxE A  (A15) 

Similar steps give 

  .))1(exp()(1 3  xasxxE A  (A16) 
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Appendix B: Extending the QNR Analysis to Three Dimensions 

A three-dimensional version of the problem in Section 6 can be reduced to a one-dimensional 
problem by using the method in [3]. The trick is to define a generalized coordinate (x,y,z) to be 
a solution to Laplace’s equation with suitable boundary conditions. Laplace’s equation is easier 
to solve (at least approximately) than most other equations, so  is considered to be a known 
function of the spatial coordinates. The three-dimensional problem expresses potential and 
carrier density as functions of  in the same way that the one-dimensional problem expresses 
them in terms of x. In the three-dimensional problem, like the one-dimensional problem, carrier 
density and potential become functions of a single coordinate, but the coordinate is now  
instead of x. Solving for the carrier density and potential in terms of  leads to the same 
equations that must be solved in the one-dimensional problem. 
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Appendix C: Limits Applicable To Case 2 in Section 6.4.2 

The equation considered is (86) subject to the constraints 

 .0,0,0  SMmm PKKK  (C1a) 

Some implications from (C1a) together with (86) were already derived in the main text and are 

 
2
S

M
P

WK   (C1b) 

 .0
2

 m
S K

W

P
 (C1c) 

A positive W and a positive N are regarded as given, so (86) is regarded as an equation that 
relates three parameters: PS, Km, and KM. Of these three parameters, we can select any pair to be 
called the independent variables and regard (86) as an equation that implicitly solves for the third 
(dependent) variable. Various types of limits can be considered. For example, we can take the 
limit as the point (Km, KM) approaches a selected point by moving along a selected path in a 
plane and use (86) to define the limiting value (if it exists) of PS. Alternately, we can take the 
limit as KM approaches a selected value with PS fixed and use (86) to define the limiting value (if 
it exists) of Km. We will start with the first example. It is convenient to shorten the notation by 
defining  by 

 .
mM

mM

KK

KK




  (C2) 

Note that (C1) and (C2) imply that 

 .1  (C3) 

Using (C2), we can write (86) as 
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 (C4) 

First consider the limit as Km approaches zero from below with a fixed KM > 0. We see from 
(C2) that 1, so the only term in the argument of E3 in (C4) that becomes singular is the 
logarithmic term; the result is that the argument increases without bound, so E3 evaluated at this 
argument approaches -1. We conclude from (C4) that 

 .000  MmS KfixedwithbelowfromKasP  (C5) 

Note that the point (Km, KM) could also follow some other paths and still produce PS0. For 
example, we could consider a path in which Km and KM go to zero together. The limiting value of 
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 would be unique to the selected path (if the limit exists); therefore, the derivation given here 
would not apply, but the conclusion that PS0 is still correct because it is implied by (C1b). 

Now consider the limit as the point (Km, KM) moves along a path for which KM+ while 
Km is bounded below zero (i.e., there is an  > 0 such that Km  -). This is another case in which 
1. Also, the logarithmic term in the argument of E3 in (C4) has a singularity as it did in the 
previous limit considered. However, there is now a competing singularity, a first-order 
singularity, in the last term in the argument of E3 in (C4). As long as Km is bounded below zero, 
the logarithmic term is a logarithmic singularity. The first-order singularity wins, so the entire 
argument of E3 in (C4) goes to -. The E3 function evaluated at this argument also goes to -, 
and we conclude from (C4) that 

 .0belowboundedKwithKasP mMS   (C6) 

We can now use (C6) in a proof by contradiction to show that 

 .00  SMm PfixedwithKasK  (C7) 

To prove (C7), let KM+ with fixed PS > 0. Assume (for a contradiction) that Km is bounded 
below zero. According to (C6), PS increases without bound, contradicting the given condition 
that PS is fixed. Therefore, the assumption that Km is bounded below zero is false, which proves 
(C7). Other limits were already proven in the main text and are 

 000  MSm KfixedwithabovefromPasK  (C8) 
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Having derived some simple limits, we can use these to derive several asymptotic limits. The 
first result is obtained by noting that (86) is equivalent to (87). This can be written, using (C2), as 
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Taking the exponential function of both sides and rearranging terms gives 
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Now consider the limit as KM+ with fixed PS > 0. From (C7), we have Km0 and (C2) gives 
1. Using these facts with the definition (A11) (in Appendix A) of an asymptotic limit, it is 
easy to show that (C11) gives 
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The second result is obtained by performing another rearrangement of terms on (C11) to get 
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Now consider the limit as PS0 with fixed KM > 0. From (C8) we have Km0 and (C2) gives 
1. Using these facts with the definition (A11) (in Appendix A) of an asymptotic limit, it is 
easy to show that (C13) gives 
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 .00  MS KfixedwithabovefromPas  (C14) 

Note that the expression on the right side of (93b) in the main text asymptotically approaches the 
right side of (C12) in the limit indicated in (C12) and asymptotically approaches the right side of 
(C14) in the limit indicated in (C14). Therefore, the same expression in (93b) applies to both 
limits. Another inequality needed in the main text is obtained by combining (C1a) with (C13) to 
conclude that the exponential function in (C13) is less than 1, so the curly bracket in (C13) is 
negative. But  is positive, so the square bracket in (C13) is negative. This gives 
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The third asymptotic limit is obtained by going back to (C10) and using (C2) to eliminate  
and then rearranging terms to get 
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Now consider the limit as KMPS/2W from above with fixed PS > 0. From (C9), we have Km- 
PS/2W. Using this fact with the definition (A11) (in Appendix A) of an asymptotic limit, it is 
easy to show that (C16) gives 
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