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Abstract 

Formal specification and verification of security has 
proven a challenging task. There is no single method 
that has proven feasible. Instead, an integrated 
approach which combines several formal techniques 
can increase the confidence in the verification of 
sofmare security properties. Such an approach which 
speci$es security properties in a library that can be re- 
used by 2 instruments and their methodologies 
developed for the National Aeronautics and Space 
Administration (NASA) at the Jet Propulsion Laboratory 
(JPL) are described herein The Flexible Modeling 
Framework (FMF) is a model based verijkation 
instrument that uses Promela and the SPIN model 
checker. The Property Based Tester (PBT) uses 
TASPEC and a Text Execution Monitor (TEM). They 
are used to reduce vulnerabilities and unwanted 
exposures in sofhvare during the development and 
maintenance life cycles. 

1. Introduction 

Specifying software properties is a challenging task. 
Even more challenging is specifying informal 
specifications formally. [van Lamsweerde, 2000, p. 1481 
This difficulty is due to the imprecision of natural 
language and the difficulty in ensuring that the 
specifications are correct. [Hussmann, 1977, p. 9; 
Schach, 2005, p.1511 Applied to security, formal 
specification is particularly complex as security 
requirements mostly state what must not happen. 
[Rushby, 2001, p. 31 The problem of trying to specify 
security properties formally was made apparent during 
the 1970’s when the United States government 
commissioned development of a provably secure multics 
system using mathematical modeling. [Bell-LaPadula, 
19761 Their approach addressed only confidentiality, 
and then only partially. The number of follow-on 
discussions on security property specifications is witness 

to this problem. [Biba, 1977; McLean, 1990; Payne, 
1995; Rushby, 2001; Deng, 2003; Nicol, 20041 The 
need to formally specify and verify security properties is 
easily seen by the growing list of software 
vulnerabilities. [Mitre, 20041 It is apparent that better 
specification and verification of security properties will 
lead to more secure software. Formal specifications and 
methods can fi l l  this role and improve the quality of 
software making it more dependable. [Easterbrook, 
1996, p. 3; Nicol, 2004, p. 491 

The following discussion will make a case for the 
use of integrated lightweight formal methods to verify 
security properties in software. A definition of formal 
specifications and methods for software verification will 
be presented. Next, we will focus on the value of 
lightweight formal methods that can be used more 
readily for verification activities. Finally, the discussion 
will focus on 2 formal, integrated techniques, model 
checking and property-based testing, that are being used 
at the Jet Propulsion Laboratory (JPL) for verification of 
security properties. Applying these lightweight formal 
techniques is “a cost-effective means for improving the 
overall quality of the software.” [Easterbrook, 1996, p. 
61 

1.1 Formal Specifications 

The term ‘formal specification’ is overloaded and 
often used quite loosely. It is defined here as “the 
expression in some formal language and at some level of 
abstraction, of a collection of properties some system 
should satisfy.” [van Lamsweerde, 2000, p.1471 Formal 
specification applies formal, “precise rules of 
interpretations that allow many of the problems with 
natural language to be overcome.” [van Lamsweerde, 
2000, p. 1471 Formal mathematical languages and 
analysis are used in formal specification to obtain 
precision in expressing specifications and to verify them. 
The process of formal specification and analysis is often 
termed ‘formal methods,’ defined by NASA as, “the use 



of techniques from formal logic and discrete 
mathematics in the specification, design, and 
construction of computer systems and software.” 
[NASA-GB-002-95, 1995, p.51 There are 3 parts in 
formal specification: a) a set of notations, b) set of 
techniques, and c) set of procedural guidelines. 
[Hussmann, 1977, pp. 13-14]. Formal methods are 
techniques using precise notations to specify artifacts in 
syntactical form, while semi-formal or ‘‘lightweight’’ 
formal methods use both formal and informal 
techniques. [Hussmann, 1977, p. 141 

1.2 Why Use Formal Specifications 

Formal specifications define precisely what 
“security” means in the context of the system being 
analyzed. Applying formal methods enables the analyst 
to see precisely how the system satisfies the 
specifications. For example, formally specifying 
dependability properties can help assure that these 
properties are not violated as well as aid in assuring that 
they do not conflict. [Rushby, 2002, p. 101 The 
application of formal methods to security was, in fact, a 
driving force to the development of formal methods, 
largely funded by government. The “results included the 
development of formal security models; tools for 
reasoning about security, and applications of these tools 
to proving a system secure. Security provided a 
challenging research application for the formal methods 
community.” [Wing, 1998, p. 261 Proving a system 
secure, though, is very challenging. 

1.3 When and How to Use Formal Specifications 

When and how to use formal methods depends on 
the artifacts and the type of verification required as well 
as the expertise that is available. The approach must 
provide an easily understandable and verifiable 
framework, and fit within cost and schedule constraints. 
It should be a “precise yet understandable way of 
specifying correct behavior, and an exhaustive method 
of determining that the system model satisfies this 
specification for all input patterns.” [McMillan, 1992, p. 
111 The framework has 3 key elements “1) a 
mathematical model of the system to be verified, 2) a 
formal language for framing the correctness problem, 
and 3) a methodology for proving the statement of 
correctness.” [McMillan, 1992, p. 121 Formal 
mathematical languages such as Z, Computational Tree 
Logic (CTL), and Linear Temporal Logic (LTL), which 
are based on a typed set theory and the concept of a 
schema, [Spivey, 1988; Gerth, 19951 provide a 
framework and the capability to formally verify security 

specifications through formal, provable logic. Appendix 
A provides an example. 

1.4 The Case for Lightweight Formal Methods 
Techniques 

Formal specification is a complex task. For time and 
resource constrained projects, use of formal approaches 
can delay the task. Further, formal approaches can be 
problematic when used with large and complex systems. 
[George, 2003, p. 31 They require both experts and 
time. However this task is made easier by mechanizing 
formal methods techniques. [Rushby, 19991 

1.5 Formal Methods 

Formal specification languges for model checkers 
support specification of systems through development of 
models. Several model checkers have been developed to 
mechanize the application of finite state verification, 
such as the SPIN model checker which uses the 
language Promela [Holzmann, 19971, SAL (Symbolic 
Analysis Laboratory), a model checker from SRI 
[Rushby, 20021, Murphi [Winters, 20001, and SMV 
(Symbolic Model Verifier), a model checker that uses 
CTL. [McMillan, 19931 Both Murphi and SMV were 
developed for hardware validation, while SPIN was 
developed for communication protocols and software 
structures. [Schneider, 1998, p.31 

1.6 Lightweight Formal Methods 

These mechanized tools have been termed by some 
as “lightweight techniques”, such as state and transition 
based models, Petri nets, and property-based testing. 
[George, 2003, p. 41 “‘Lightweight’ methods may 
involve both greater automation of formal analysis, and 
more focused application of formal techniques. As a 
result they can be more cost effective for a broad range 
of problems” then more formal techniques. [Kuhn, 2003, 
p. 13 Lightweight techniques can provide a high degree 
of assurance while maintaining some fidelity to the 
actual artifact. [van Lamsweerde, 2000, p. 1551 
Additionally, the potential for re-use of these 
instruments when there are late design changes, and 
during the maintenance phase, have the potential to 
reduce overall costs for software projects. [Gilliam, 
2002, p. 1581 The techniques to be applied need to fit 
within resource constraints and the types of artifacts that 
require verification. [Easterbrook, 1988, p. 101 A 
framework that applies integrated lightweight methods 
provides even higher confidence in the verification of 
the artifacts. Such an integrated approach has been the 



focus of a software security research effort at JPL. 
[Gilliam & Powell, 2002, Gilliam, Powell, Haugh, and 
Bishop, 2003, Powell, 20021 

Previous WETICE papers have discussed the 
development of a software security assessment 
instrument (SSAI) at JPL and the various components 
and usage. These components include a Vulnerability 
Matrix comprised of vulnerabilities and their properties, 
a collection of security assessment tools that are 
available in the public domain and the pros and cons of 
each of the identified tools, a Flexible Modeling 
Framework (FMF) which uses model checking 
techniques, a Property-Based Testing (PBT) instrument, 
and a s o b a r e  security property checklist for use in the 
development and maintenance life cycles. [Gilliam, 
Wolfe, and Sherif, 2003; Gilliam & Powell, 2002; 
Gilliam, Kelly, Powell, and Bishop, 2001; Gilliam, 
Kelly, and Bishop, 20001 The research identified in this 
paper presents the need for the application of lightweight 
formal techniques to software security, and the 
prototyping process for the SSAI previously reported to 
the WETICE Enterprise Security (ES) Workshop. 

2. Model Checking and Property-Based 
Testing 

The purpose and use of tools like model checkers 
and testers is to allow for mechanization of formal 
specifications to reduce cost and schedule while 
increasing efficiency for formal verification activities 
and to assure that the software artifacts are free from 
potential conflicts and violations in the specifications. 
[Holzmann, 2002, p. 369; Hamon, 2004, p. 51 Model 
checking involves: 

Building a state-based model of the system 
Identifying properties to be verified 
Checking the model for violations of the specified 
properties. 

Model checkers such as SPIN [Holzmann, 20041 
automate the process of verifLing a property over its 
corresponding model. 

Model checkers perform an exhaustive search of a 
state space generated by a model. State space is the set 
of total reachable system states represented in the model. 
A given state consists of all variables in the model and 
their associated values at a given point in time. Software 
model checkers automatically explore all paths from a 
start state by examining transitions in the state space to 
determine the reachability of a state that violates the 
property. [Nicol, 2004, p. 521 When properties are 
violated, the checker gives the counterexample and 
stops. The properties are verified as holding or not 
holding for each transition. This automation provides 

high value for large-scale, complex systems where 
specifications become more complex. [Rushby, 2002, 
p.1751 However it does not obviate the need for experts 
since the development of the verification model is non- 
trivial, even for experts. [Holzmann, 2001, p. 31 

2.1. State Space Problem 

The modeling objective is to verify properties with 
respect to the model over as many scenarios as feasible. 
However, as the size and complexity of the model 
increases, the state space to be checked grows at an 
exponential rate. “This exponential growth in the state 
space known as the state explosion problem is the 
limiting factor in applying automatic verification 
methodologies to large systems.” [McMillan, 1992, p. 
141 Modeling of concurrent software systems quickly 
becomes impracticable when: “a) the possible number of 
concurrent processes increases, b) the functionality in 1 
or more processes grows, and c) the interactivity 
between or complexity of 1 or more processes 
increases.” [Gilliam, 2003, p. 2021 Security properties 
exacerbate the problem due to their nature. They 
express what must not happen, [Rushby, 2001, p. 11 i.e., 
‘no access shall be granted until authentication is 
verified’. 

2.2. Flexible Modeling Framework 

To address the state explosion problem, JPL has 
developed a Flexible Modeling Framework (FMF) that 
uses a “divide and conquer approach” while seeking to 
maintain fidelity to the software artifact. [Powell, 2002, 
p. 31 The FMF uses compositional verification to 
analyze models and verify the results for models that 
represent the system (S). The basis of the compositional 
approach is the verification of a system (S) with regard 
to a subset of its environment (e) in a manner that allows 
those results to be extrapolated to the environment at 
large (E). The FMF approach narrows the focus to those 
components for which security properties have been 
identified and which can be modeled. 

Use of this combinatorial approach allows 
interactions between components to be examined 
bringing to light potential questions about their 
relationships. These questions enable decisions to be 
made early in the life cycle. Further, efficient, localized 
updates of the system model can more easily be 
generated. Issues affected by subsequent changes can 
then be revisited though required re-verification of 
affected combinations. This last feature is a failsafe and 
not a substitute for good practices such as 



documentation of decisions and emergent requirements. 
[Gilliam & Powell, 2003, p. 2031 

2.3. Property-Based Testing (PBT) 

Property-based testing (PBT) is a technique that 
verifies that specified security properties are not violated 
in the coding phase of the life cycle. Properties are 
invariants that are to hold during program execution. 
Implementation difficulties and environmental 
considerations may affect conformance to properties 
(and hence the security of execution) and thus the 
properties may not always hold. PBT provides 
additional assurance that the software is correct and 
satisfies the specified properties when execution follows 
the tested control and data flow paths. [Gilliam, 2003, p. 
2031 

A PBT instrument developed by UC Davis in 
cooperation with JPL, mechanizes verification of 
security properties in code. The PBT expresses 
properties in a low-level test language called TASPEC. 
Like the FMF, the PBT focuses the testing on the 
security properties of interest. Intuitively, the PBT 
instrument looks at the execution of the program 
sequences as a series of state transitions. If any state 
transition causes a violation of a property, an error 
message is generated. The PBT examines data from 
program executions to determine this. 

The goal of the PBT is to test as many paths of 
control as possible. First, a program called the 
instrumenter analyzes the security properties and the 
program, and inserts code to emit messages indicating 
changes of state relevant to the security properties. The 
program is then ‘sliced’, creating a second program that 
satisfies the properties if, and only if, the original 
program satisfies those properties. The second program 
contains only those paths of control and data flow that 
affect the properties. This focuses the testing on paths of 
execution relevant to the security properties rather than 
on all possible paths of execution. The instrumented, 
sliced program is then compiled and executed. During 
execution, the messages indicating changes of state are 
saved to a file. 

Second, a test execution monitor (TEM) program is 
given the properties in TASPEC and the messages 
indicating changes of state from the instrumented 
program’s run. The TEM checks each state transition 
and verifies that the properties held during execution. If 
the properties did hold, then they held throughout the 
execution. If not, the TEM can determine where in the 
program the failure occurred (see Figure 5). [Gilliam, 
2003, p. 2041 The testing either validates the properties 
or shows they do not hold. 

3. Prototyping the FMF and PBT 

While we believe that these semi-formal verification 
techniques aid in ensuring that specified security 
properties in software are not violated, the instruments 
themselves must be prototyped to show that they do 
perform as intended and do so in a cost-effective way. 
Both their value and their relative cost-effectiveness 
must be verified for these instruments to useful and of 
benefit in the development and maintenance life cycles. 

Currently, these tools are being piloted with a 
COTS JAVA-based application. As the application was 
already developed and available, it provided an avenue 
to verify whether or not the instruments would provide 
value for verification of the security of the application 
being evaluated. By extension, it is hoped that the value 
and cost-effectiveness of the current activity can be 
determined. 

The verification process required working with the 
developers of the application to obtain from them their 
software and architecture artifacts to extrapolate 
properties for the FMF and PBT. Additional 
information and explanation of some of the properties in 
the architectural artifacts was obtained from the 
developers. From these artifacts and in working with the 
developers, a model of the software was developed. 
Further, in view of the purpose of the application, 
security properties were specified independently. 

The current model is still being completed. To 
expedite the process and to verify that the specified 
properties are not violated in the software code itself, the 
specified properties of the software, the model, and the 
identified security properties are being provided for use 
with the FMF and PBT instruments. 

The goal is to combine the use of the two 
instruments to complement the verification efforts in 
order to provide a higher level of assurance of the 
security of the software. We expect this approach will 
improve the overall security of software. The results of 
the current investigation will be provided to the National 
Aeronautics and Space Administration’s (NASA) 
Independent Verification and Validation (IV&V) Center 
through whom this research has been funded. 

5. Conclusion 

Through use of formal techniques in application to 
security, security assessment instruments and tools in the 
software development and maintenance life cycles can 
improve the security of software if used correctly. The 
SSAI being developed at JPL and UC Davis is hoped to 
be a step forward in this direction. Through the 



application of these instruments in a coordinated effort, 
a higher level of assurance for security can be achieved, 
which is the ultimate goal of this research effort. 

Tools and instruments that can be used during both 
the development and maintenance life cycle beginning 
with a security checklist in the inception and 
requirements phases through retirement will create an 
environment of stronger security. 
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