
Application of Lightweight Formal Methods to Software Security

David P. Gilliam and John D. Powell
Jet Propulsion Laboratory, California Institute of Technology

David.Gilliam@,jpl.nasa.nov, - John.Powell@ipl.nasa.gov

Matt Bishop
University of California at Davis

bishop(il),cs.ucdavis.edu

Abstract

Formal specification and verification of security has
proven a challenging task. There is no single method
that has proven feasible. Instead, an integrated
approach which combines several formal techniques
can increase the confidence in the verification of
sofmare security properties. Such an approach which
speci$es security properties in a library that can be re-
used by 2 instruments and their methodologies
developed for the National Aeronautics and Space
Administration (NASA) at the Jet Propulsion Laboratory
(JPL) are described herein The Flexible Modeling
Framework (FMF) is a model based verijkation
instrument that uses Promela and the SPIN model
checker. The Property Based Tester (PBT) uses
TASPEC and a Text Execution Monitor (TEM). They
are used to reduce vulnerabilities and unwanted
exposures in sofhvare during the development and
maintenance life cycles.

1. Introduction

Specifying software properties is a challenging task.
Even more challenging is specifying informal
specifications formally. [van Lamsweerde, 2000, p. 1481
This difficulty is due to the imprecision of natural
language and the difficulty in ensuring that the
specifications are correct. [Hussmann, 1977, p. 9;
Schach, 2005, p.1511 Applied to security, formal
specification is particularly complex as security
requirements mostly state what must not happen.
[Rushby, 2001, p. 31 The problem of trying to specify
security properties formally was made apparent during
the 1970’s when the United States government
commissioned development of a provably secure multics
system using mathematical modeling. [Bell-LaPadula,
19761 Their approach addressed only confidentiality,
and then only partially. The number of follow-on
discussions on security property specifications is witness

to this problem. [Biba, 1977; McLean, 1990; Payne,
1995; Rushby, 2001; Deng, 2003; Nicol, 20041 The
need to formally specify and verify security properties is
easily seen by the growing list of software
vulnerabilities. [Mitre, 20041 It is apparent that better
specification and verification of security properties will
lead to more secure software. Formal specifications and
methods can fi l l this role and improve the quality of
software making it more dependable. [Easterbrook,
1996, p. 3; Nicol, 2004, p. 491

The following discussion will make a case for the
use of integrated lightweight formal methods to verify
security properties in software. A definition of formal
specifications and methods for software verification will
be presented. Next, we will focus on the value of
lightweight formal methods that can be used more
readily for verification activities. Finally, the discussion
will focus on 2 formal, integrated techniques, model
checking and property-based testing, that are being used
at the Jet Propulsion Laboratory (JPL) for verification of
security properties. Applying these lightweight formal
techniques is “a cost-effective means for improving the
overall quality of the software.” [Easterbrook, 1996, p.
61

1.1 Formal Specifications

The term ‘formal specification’ is overloaded and
often used quite loosely. It is defined here as “the
expression in some formal language and at some level of
abstraction, of a collection of properties some system
should satisfy.” [van Lamsweerde, 2000, p.1471 Formal
specification applies formal, “precise rules of
interpretations that allow many of the problems with
natural language to be overcome.” [van Lamsweerde,
2000, p. 1471 Formal mathematical languages and
analysis are used in formal specification to obtain
precision in expressing specifications and to verify them.
The process of formal specification and analysis is often
termed ‘formal methods,’ defined by NASA as, “the use

of techniques from formal logic and discrete
mathematics in the specification, design, and
construction of computer systems and software.”
[NASA-GB-002-95, 1995, p.51 There are 3 parts in
formal specification: a) a set of notations, b) set of
techniques, and c) set of procedural guidelines.
[Hussmann, 1977, pp. 13-14]. Formal methods are
techniques using precise notations to specify artifacts in
syntactical form, while semi-formal or ‘‘lightweight’’
formal methods use both formal and informal
techniques. [Hussmann, 1977, p. 141

1.2 Why Use Formal Specifications

Formal specifications define precisely what
“security” means in the context of the system being
analyzed. Applying formal methods enables the analyst
to see precisely how the system satisfies the
specifications. For example, formally specifying
dependability properties can help assure that these
properties are not violated as well as aid in assuring that
they do not conflict. [Rushby, 2002, p. 101 The
application of formal methods to security was, in fact, a
driving force to the development of formal methods,
largely funded by government. The “results included the
development of formal security models; tools for
reasoning about security, and applications of these tools
to proving a system secure. Security provided a
challenging research application for the formal methods
community.” [Wing, 1998, p. 261 Proving a system
secure, though, is very challenging.

1.3 When and How to Use Formal Specifications

When and how to use formal methods depends on
the artifacts and the type of verification required as well
as the expertise that is available. The approach must
provide an easily understandable and verifiable
framework, and fit within cost and schedule constraints.
It should be a “precise yet understandable way of
specifying correct behavior, and an exhaustive method
of determining that the system model satisfies this
specification for all input patterns.” [McMillan, 1992, p.
111 The framework has 3 key elements “1) a
mathematical model of the system to be verified, 2) a
formal language for framing the correctness problem,
and 3) a methodology for proving the statement of
correctness.” [McMillan, 1992, p. 121 Formal
mathematical languages such as Z, Computational Tree
Logic (CTL), and Linear Temporal Logic (LTL), which
are based on a typed set theory and the concept of a
schema, [Spivey, 1988; Gerth, 19951 provide a
framework and the capability to formally verify security

specifications through formal, provable logic. Appendix
A provides an example.

1.4 The Case for Lightweight Formal Methods
Techniques

Formal specification is a complex task. For time and
resource constrained projects, use of formal approaches
can delay the task. Further, formal approaches can be
problematic when used with large and complex systems.
[George, 2003, p. 31 They require both experts and
time. However this task is made easier by mechanizing
formal methods techniques. [Rushby, 19991

1.5 Formal Methods

Formal specification languges for model checkers
support specification of systems through development of
models. Several model checkers have been developed to
mechanize the application of finite state verification,
such as the SPIN model checker which uses the
language Promela [Holzmann, 19971, SAL (Symbolic
Analysis Laboratory), a model checker from SRI
[Rushby, 20021, Murphi [Winters, 20001, and SMV
(Symbolic Model Verifier), a model checker that uses
CTL. [McMillan, 19931 Both Murphi and SMV were
developed for hardware validation, while SPIN was
developed for communication protocols and software
structures. [Schneider, 1998, p.31

1.6 Lightweight Formal Methods

These mechanized tools have been termed by some
as “lightweight techniques”, such as state and transition
based models, Petri nets, and property-based testing.
[George, 2003, p. 41 “‘Lightweight’ methods may
involve both greater automation of formal analysis, and
more focused application of formal techniques. As a
result they can be more cost effective for a broad range
of problems” then more formal techniques. [Kuhn, 2003,
p. 13 Lightweight techniques can provide a high degree
of assurance while maintaining some fidelity to the
actual artifact. [van Lamsweerde, 2000, p. 1551
Additionally, the potential for re-use of these
instruments when there are late design changes, and
during the maintenance phase, have the potential to
reduce overall costs for software projects. [Gilliam,
2002, p. 1581 The techniques to be applied need to fit
within resource constraints and the types of artifacts that
require verification. [Easterbrook, 1988, p. 101 A
framework that applies integrated lightweight methods
provides even higher confidence in the verification of
the artifacts. Such an integrated approach has been the

focus of a software security research effort at JPL.
[Gilliam & Powell, 2002, Gilliam, Powell, Haugh, and
Bishop, 2003, Powell, 20021

Previous WETICE papers have discussed the
development of a software security assessment
instrument (SSAI) at JPL and the various components
and usage. These components include a Vulnerability
Matrix comprised of vulnerabilities and their properties,
a collection of security assessment tools that are
available in the public domain and the pros and cons of
each of the identified tools, a Flexible Modeling
Framework (FMF) which uses model checking
techniques, a Property-Based Testing (PBT) instrument,
and a s o b a r e security property checklist for use in the
development and maintenance life cycles. [Gilliam,
Wolfe, and Sherif, 2003; Gilliam & Powell, 2002;
Gilliam, Kelly, Powell, and Bishop, 2001; Gilliam,
Kelly, and Bishop, 20001 The research identified in this
paper presents the need for the application of lightweight
formal techniques to software security, and the
prototyping process for the SSAI previously reported to
the WETICE Enterprise Security (ES) Workshop.

2. Model Checking and Property-Based
Testing

The purpose and use of tools like model checkers
and testers is to allow for mechanization of formal
specifications to reduce cost and schedule while
increasing efficiency for formal verification activities
and to assure that the software artifacts are free from
potential conflicts and violations in the specifications.
[Holzmann, 2002, p. 369; Hamon, 2004, p. 51 Model
checking involves:

Building a state-based model of the system
Identifying properties to be verified
Checking the model for violations of the specified
properties.

Model checkers such as SPIN [Holzmann, 20041
automate the process of verifLing a property over its
corresponding model.

Model checkers perform an exhaustive search of a
state space generated by a model. State space is the set
of total reachable system states represented in the model.
A given state consists of all variables in the model and
their associated values at a given point in time. Software
model checkers automatically explore all paths from a
start state by examining transitions in the state space to
determine the reachability of a state that violates the
property. [Nicol, 2004, p. 521 When properties are
violated, the checker gives the counterexample and
stops. The properties are verified as holding or not
holding for each transition. This automation provides

high value for large-scale, complex systems where
specifications become more complex. [Rushby, 2002,
p.1751 However it does not obviate the need for experts
since the development of the verification model is non-
trivial, even for experts. [Holzmann, 2001, p. 31

2.1. State Space Problem

The modeling objective is to verify properties with
respect to the model over as many scenarios as feasible.
However, as the size and complexity of the model
increases, the state space to be checked grows at an
exponential rate. “This exponential growth in the state
space known as the state explosion problem is the
limiting factor in applying automatic verification
methodologies to large systems.” [McMillan, 1992, p.
141 Modeling of concurrent software systems quickly
becomes impracticable when: “a) the possible number of
concurrent processes increases, b) the functionality in 1
or more processes grows, and c) the interactivity
between or complexity of 1 or more processes
increases.” [Gilliam, 2003, p. 2021 Security properties
exacerbate the problem due to their nature. They
express what must not happen, [Rushby, 2001, p. 11 i.e.,
‘no access shall be granted until authentication is
verified’.

2.2. Flexible Modeling Framework

To address the state explosion problem, JPL has
developed a Flexible Modeling Framework (FMF) that
uses a “divide and conquer approach” while seeking to
maintain fidelity to the software artifact. [Powell, 2002,
p. 31 The FMF uses compositional verification to
analyze models and verify the results for models that
represent the system (S). The basis of the compositional
approach is the verification of a system (S) with regard
to a subset of its environment (e) in a manner that allows
those results to be extrapolated to the environment at
large (E). The FMF approach narrows the focus to those
components for which security properties have been
identified and which can be modeled.

Use of this combinatorial approach allows
interactions between components to be examined
bringing to light potential questions about their
relationships. These questions enable decisions to be
made early in the life cycle. Further, efficient, localized
updates of the system model can more easily be
generated. Issues affected by subsequent changes can
then be revisited though required re-verification of
affected combinations. This last feature is a failsafe and
not a substitute for good practices such as

documentation of decisions and emergent requirements.
[Gilliam & Powell, 2003, p. 2031

2.3. Property-Based Testing (PBT)

Property-based testing (PBT) is a technique that
verifies that specified security properties are not violated
in the coding phase of the life cycle. Properties are
invariants that are to hold during program execution.
Implementation difficulties and environmental
considerations may affect conformance to properties
(and hence the security of execution) and thus the
properties may not always hold. PBT provides
additional assurance that the software is correct and
satisfies the specified properties when execution follows
the tested control and data flow paths. [Gilliam, 2003, p.
2031

A PBT instrument developed by UC Davis in
cooperation with JPL, mechanizes verification of
security properties in code. The PBT expresses
properties in a low-level test language called TASPEC.
Like the FMF, the PBT focuses the testing on the
security properties of interest. Intuitively, the PBT
instrument looks at the execution of the program
sequences as a series of state transitions. If any state
transition causes a violation of a property, an error
message is generated. The PBT examines data from
program executions to determine this.

The goal of the PBT is to test as many paths of
control as possible. First, a program called the
instrumenter analyzes the security properties and the
program, and inserts code to emit messages indicating
changes of state relevant to the security properties. The
program is then ‘sliced’, creating a second program that
satisfies the properties if, and only if, the original
program satisfies those properties. The second program
contains only those paths of control and data flow that
affect the properties. This focuses the testing on paths of
execution relevant to the security properties rather than
on all possible paths of execution. The instrumented,
sliced program is then compiled and executed. During
execution, the messages indicating changes of state are
saved to a file.

Second, a test execution monitor (TEM) program is
given the properties in TASPEC and the messages
indicating changes of state from the instrumented
program’s run. The TEM checks each state transition
and verifies that the properties held during execution. If
the properties did hold, then they held throughout the
execution. If not, the TEM can determine where in the
program the failure occurred (see Figure 5). [Gilliam,
2003, p. 2041 The testing either validates the properties
or shows they do not hold.

3. Prototyping the FMF and PBT

While we believe that these semi-formal verification
techniques aid in ensuring that specified security
properties in software are not violated, the instruments
themselves must be prototyped to show that they do
perform as intended and do so in a cost-effective way.
Both their value and their relative cost-effectiveness
must be verified for these instruments to useful and of
benefit in the development and maintenance life cycles.

Currently, these tools are being piloted with a
COTS JAVA-based application. As the application was
already developed and available, it provided an avenue
to verify whether or not the instruments would provide
value for verification of the security of the application
being evaluated. By extension, it is hoped that the value
and cost-effectiveness of the current activity can be
determined.

The verification process required working with the
developers of the application to obtain from them their
software and architecture artifacts to extrapolate
properties for the FMF and PBT. Additional
information and explanation of some of the properties in
the architectural artifacts was obtained from the
developers. From these artifacts and in working with the
developers, a model of the software was developed.
Further, in view of the purpose of the application,
security properties were specified independently.

The current model is still being completed. To
expedite the process and to verify that the specified
properties are not violated in the software code itself, the
specified properties of the software, the model, and the
identified security properties are being provided for use
with the FMF and PBT instruments.

The goal is to combine the use of the two
instruments to complement the verification efforts in
order to provide a higher level of assurance of the
security of the software. We expect this approach will
improve the overall security of software. The results of
the current investigation will be provided to the National
Aeronautics and Space Administration’s (NASA)
Independent Verification and Validation (IV&V) Center
through whom this research has been funded.

5. Conclusion

Through use of formal techniques in application to
security, security assessment instruments and tools in the
software development and maintenance life cycles can
improve the security of software if used correctly. The
SSAI being developed at JPL and UC Davis is hoped to
be a step forward in this direction. Through the

application of these instruments in a coordinated effort,
a higher level of assurance for security can be achieved,
which is the ultimate goal of this research effort.

Tools and instruments that can be used during both
the development and maintenance life cycle beginning
with a security checklist in the inception and
requirements phases through retirement will create an
environment of stronger security.

7. Acknowledgements

The research described in this paper is being carried out
at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration.

7. References

Bell, D. E. and LaPadula, L. J. (March, 1976).
Secure computer systems: Unified exposition and
multics interpretation. Technical Report Mitre TR-2997,
Mitre Corporation, Bedford, MA.

Biba, K. J. (April, 1977). Integrity considerations
for secure computer systems. ESD-TR-76-372,
ESD/AFSC. Hanscom AFB, Bedford, MA (available as

Botting, J. R. (2004). Modal logic. Retrieved
November 22, 2004, from
http://www.csci.csusb .edu/dicWmaths/logic-9-Modalitie
s. htm I.

Deng, Y., Wang, J., Tsai, J. P., Beznosov,
K.(2003). An approach for modeling and analysis of
security system architectures. IEEE Transactions on
Knowledge and Data Engineering. Vol. 15, No. 5, 1099

Easterbrook S. M., and Callahan, J. R. (1996).
Formal methods for verification and validation of partial
specifications: A case study. Report to NASA
Independent Verification and Validation Facility,
Fairmont, WV. Retrieved November 14, 2004, from
www.cs.toronto.edu/-sme/papers/l998/NASA-IVV-97-
0 1O.pdf.

George, V., and Vaughn, R. (2003). Application of
lightweight formal methods in retuirement engineering.
Crosstalk: The journal of defense software engineering,
January 2003. Retrieved November 23, 2004 from
http://www.stsc.hill.af.mil/crosstalM2003/0 1 /George.htm
I.

Gerth, R., Peled, D., Vardi, M.Y., and Wolper, P.
(1995). Simple on-the-fly automatic verification of
linear temporal logic. Proceedings of the 15th IFIP
WG6.1 International Symposium on Protocol

MITRE MTR-3153, NTIS AD A039324).

- 1119.

Specification, Testing and Verification 15 (pp. 3-1 8).
London: Chapman and Hall, Ltd.

Gilliam, D. P., and Powell, J. D. (2002). Integrating
a flexible modeling framework (FMF) with the network
security assessment instrument to reduce software
security risk. Proceedings of the 1 1 th IEEE International
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises. WETICE 2002, 153 - 158.

Gilliam, D. P., Powell, J. D., Haugh, E., and Bishop
M. (2003). Addressing software security and mitigations
in the life cycle. Proceedings of the 28th Annual NASA
Goddard IEEE Software Engineering Workshop (SEW),

Hamon, G., de Moura, L., and Rushby, J. (May,
2004). Generating Efficient Test Sets with a model
checker. Computer Science laboratory (CSL) Technical
Note. SRI International. Retrieved November 14, 2004,
from http://www.csl.sri.com/users/rushby/biblio.html.

Holzmann, G. J. (1997). The model checker spin.
IEEE Transactions on Software Engineering, Volume:
23, Issue: 5, 279 - 295.

Holzmann, G. J. (2001). From code to models.
IEEE Proceedings of the Second International
Conference on Application of Concurrency to System
Design, 3 - 10.

Holzmann, G. J. (2004). The SPIN model checker:
Primer and reference manual. Boston, MA: Addison-
Wesley.

Holzmann, G. J., & Smith, M. H. (2002). An
automated verification method for distributed systems
software based on model extraction. IEEE Transactions
on Software Engineering, Volume: 28, No. 4, April

Hussmann, H. (1997). Formal foundations for
software engineering methods. Goos, G., Hartmanis, J.,
and van Leeuwen, J. (eds.), Lecture Notes in Computer
Science, 1322. Berlin: Springer.

Kuhn, D. R., Craigen, D., & Saaltink, M. (2003).
Practical application of formal methods in modeling and
simulation. National Institute of Standards and
Technology Paper. Retrieved November 23, 2004, from
http://csrc.nist.gov/staff/kuhn/kuhn-craigen-saaltink-
03 .pdf

McLean, J. (January, 1990). The specification and
modeling of computer security. IEEE Computer, Vol.
23, Issue 1, 9-16.

McLean, J. (1990). Security models and information
flow. Research in Security and Privacy. Proceedings of
the IEEE Computer Society Symposium, 180-1 87.

McLean, J. (January, 1999). Twenty years of formal
methods. Proceedings of the IEEE Symposium on
Security and Privacy, 1 15 - 1 16.

201 -206.

2002,279 - 295.

McMillan, K. L. (1992). Symbolic model checking:
An approach to the state explosion problem. CMU-CS-
92-1 3 I , Submitted to Carnegie Mellon University in
partial fulfillment of the degree of the requirements for
the degree of Doctor of Philosophy in Computer
Science. Carnegie Mellon University. Later published
(1 992) as Sympolic model checking. Kluwer Academic
Publishers: Norwell, Mass. Retrieved Nov. 22, 2004,
from www-cad.eecs.berkeley.edu/-kenmcmil/thesis.ps.

Mitre Corporation (2004). Common Vulnerabilities
and Exposures (CVE) List. Retrieved November 22,
2004, from http://w.cve.mitre.org/cve/downloads/.

NASA-GB-002-95 (1 995). Formal methods
specification and verification guidebook for software
and computer systems. Volume 1: Planning and
technology insertion. Release 1 .O. Washington, D.C.:
National Aeronautics and Space Administration.

Nicol, D. M., Sandera, W. H., and Kishor, S.T.
(2004). Model-Based evaluation: From dependability to
security. IEEE Transactions on Dependable and Secure
Computing. Vol. 1, No. 1 ,48 - 65.

Payne, C. N., Jr., Moore, A. P., and Mihelcic, D. M.
(1995). An experience modeling critical requirements.
Proceedings of the Ninth Annual Conference on
Computer Assurance, 1994. COMPASS ’94 ‘Safety,
Reliability, Fault Tolerance, Concurrency and Real
Time, Security’, 245-255.

Powell, J. D. (2003). Reducing software security
risk through an integrated approach research initiative:
Model based verification of the secure socket layer
(SSL) protocol. Research deliverable to the NASA
IV&V Facility. Fairmont,WVA.

Powell, J. D. (2004). Integrated approach to
reducing software security risk. Research presentation
at the Jet Propulsion Laboratory (JPL). February, 2004.

Powell, J. D., and Gilliam, D. P., (2002)
Component based approach to modeling for model
checking. The Sixth Biennial World Conference on
Integrated Design & Process Technology. Pasadena,
California, 2002.

Rushby, J. (September, 1999). Mechanized formal
methods: Where next?. The World Congress on Formal
Methods. Toulousse, France. Retrieved November 14,
2004, http://www.csl.sri.com/users/rushby/biblio.html.

Rushby, J. (March, 200 I). Security requirements
specifications: How and what? Invited Paper from
Symposium on Requirements Engineering for
Information Security (SREIS), Indianapolis, IN.

Rushby, J. (February, 2002). Using model checking
to help discover mode confusions and other automation
surprises. Reliability and System Safety. Vol. 75, No. 2,
167-1 77.

Schach, S.J. (2005). Object-oriented and classical
software engineering. 6th ed. New York: McGraw-Hill.

Schneider, F., Easterbrook S. M., Callahan, J. R.,
and Holzmann, G. J . (1998). Validating requirements for
fault tolerant systems using model checking. IEEE
Third International Conference on Requirements
Engineering, 4 - 13.

Spivey, J. M. (1988) Understanding Z: A
specification language and its formal semantics.
Cambridge Tracts in Theoretical Computer Science 3.
Cambridge: Cambridge University Press

Van Lamsweerde, A., (2000). Formal Specification:
A roadmap. In Finkelstein, A. (ed.) Proceedings of the
Conference on the Future of Software Engineering (pp.
147 - 159). ACM Press.

Wing, J. M. (1998). A symbiotic relationship
between formal methods and security. Proceedings on
Computer Security, Dependability and Assurance: From
Needs to Solutions, 7-9 July 1998, 11-13 Nov. 1998, 26

Winters, D. D., and Hu, A. J., (2000). Source-Level
Transformations for Improved Formal Verification.
IEEE International Conference on Computer Design,
September 2000.

- 38.

