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Abstract-We show how to solve two problems of optimal 
linear estimation from a finite set of phase data. Clock noise is 
modeled as a stochastic process with stationary dth increments. 
The covariance properties of such a process are contained in 
the generalized autocovariance function (GACV). We set up two 
principles for optimal estimation: with the help o f  the GACV, 
these principles lead to a set o f  linear equations for the regression 
coefficients and some auxiliary parameters. The mean square 
errors of the estimators are easily calculated. The method can 
be used to check the results of other methods and to find good 
suboptimal estimators based on a small subset of the available 
data. 

I. IN TRO D u CTI o N 

Suppose that the phase residual ~ ( t )  of a clock (or dif- 
ference of clocks) is given at a finite set of times, T = 
{ t l . ,  . . , t i L ) ,  which don’t have to be equally spaced. We 
consider two estimation targets: 1) the phase value IC ( t* )  
at some t, @ T; 2) the overall “trend” coefficient of z ( t ) .  
Depending on the model for E ( t )  and what else is known, this 
can mean the long-term average value of phase or of its dth 
time derivative: frequency, drift rate, or aging rate (d = 1 ,2 !  
or 3). For each target, we want to calculate the linear estimator 
Cy=, ui:c ( t t )  that is optimal in the mean-square sense while 
satisfying an invariance condition that will be explained below. 

To carry out this program, we need a stochastic model for 
z ( t ) .  The general model used here is the class of stochastic 
processes with stationary dth increments, the subject of a 
monograph of Yaglom [ 11. These include stationary processes, 
indefinite integrals of stationary processes, and all the power- 
law processes familiar to the time and frequency field: flicker 
PM, white FM, flicker FM, and so on. Yaglom showed how 
to solve problems of optimal prediction and filtering for these 
processes based on their values on unbounded or bounded time 
intervals. For pure power-Iaw processes, other authors have 
derived the mean square error (MSE) of the predictor that is 
based on the infinite past [2]-[4]. For finite-state clock models, 
a recursive predictor and its MSE, based on all discrete-time 
past measurements, can be calculated from a Kalman fiIter 
191. The MSE of various suboptimal drift-rate estimators has 
been calculated for power-law noises [5]-[XI. Here we show 
how to calculate the regression coefficients I Z ~  and the MSE 
of the optimal linear estimators of both targets, using systems 
of linear equations that generalize the equations of orthogonal 
projection for stationary II: ( t ) .  

rI .  CLOCK N O I S E  MODELS 

A real-valued, mean-square continuous’ stochastic process 
x ( t )  is said to have stationary dth increments (d 2 I) if for 
each T the process 

is stationary. It is convenient to let SI (d) denote the class 
of all such processes, and to let SI (0) denote the stationary 
processes. Evidently, SI (d )  C SI ( d  + 11, and it is convenient 
to define the degree of z (t) as the least d such that x E SI (d) .  

Everything we know about a process x E SI ( d )  is wrapped 
up in the dth increments ( I ) ,  which do not change if we add a 
polynomial of degree 5 d - 1 to z ( t ) .  In this sense, a process 
in SI (d )  is ambiguous. Any use of these processes must take 
account of this ambiguity. 

For any x E SI (d ) ,  Yaglom established a two-sided spectral 
density function’ S, ( f )  2 0. Here, we are using the two- 
sided, even version: S, (-f) = S, ( f ) .  For d > 1, S, (f) can 
diverge as f 4 0 but obeys the restrictions 

The process also has an average trend coefficient, denoted 
by cd,  that can be defined as the infinite-time average of the 
stationary process AYz (t): 

the limit being taken in the mean-square sense. In this treat- 
ment, cd can be a random variable. We often want to get rid of 
cd ,  and there are two ways to do it. First, if we know cd,  then 
we can consider the process 50 ( t )  = 3: ( t )  ~ c d t d / d ! ,  which is 
also in SI ( d )  but has trend coefficient zero. Second, if we don’t 
know c d ,  then we may treat z (t) as a member of SI ( d  + 2 ) ;  
as such, its trend coefficient cd+l is always zero. For example, 
a stationary process with an unknown mean can be treated as 
a member of SI (I). If a random walk of phase (white FM), 
which is in SI (l), has an unknown slope (frequency) added 
to it, we can treat it as a member of SI(2). In this way we 
can get results that are invariant to the unknown trend. 

‘This mcans that E [T ( 7 ~ )  ~ 1: (t)]’ + 0 as u + t .  
2Actually, a nieasure on the piinciurcd frequency axis # 0. 



Yaglom's treatment of SI(d)  was based on the spectral 
dcnsity. For stationary processes, we have the autocovariance 
(ACV) funclion 

1' 

Scr ( t )  = cz2?rf 's, ( . f )  df, (3) 

s ~ : ( L - I I , )  = E : c ( ~ ) x ( u ) .  (4) 

1% 
which satisfies 

The estimation methods given here are based on a gcncralized 
ACV (GACV) function [lO][ll] ,  also called s, ( t ) ,  that can be 
obtained from S, ( f )  and c d  by a generalized Fourier integral 
as follows: 

One may add a polynoniial of degree 5 2d-1 to sT i t )  without 
changing the value o f  any formula in which s, ( t )  is properly 
used. With this ambiguity understood, Table I gives the GACV 
for power-law components of clock noise, specified by the one- 
sided spectral density of frequency, S,' ( f )  = 2 (2r.f) '  s,. ( f ) .  
For any stationary phase component, the GACV is the ACV. 
The flicker PM entry is obtained by passing pure l/f noise 
through a moving-average filter of width T to satisfy the 
second condition in (2). The trend coefficients are zero. The 
degree of a sum of noises is the maximum degree of the 
summands, and the GACV of the sum of orthogonal noises is 
the sum of the GhCVs.  By ( 5 )  we may and will assume that 
the CACV is an even function: .sl. ( - t )  = .sL, ( t ) .  

TABLI: 1 

( j  I : N i.R 4 L IZ ELI AC: 1 0 ('OVA RI Ah' Cli 0 F POW t I<- I ,\I+' N 0 I SLS 

Flickcr FM 2 

Flicker n-alk FM 3 I 1  .. 3 .f -" 

Now we have to say how the GACV is used. In the following 
discussion, ( I  ( t )  and b ( t )  denote functions that are zcro except 
on some unspecified finite set of times; by using this notation 
we can rreely perform and combine sums over t without 
worrying about the range of the summations. Such a function 
(1, (1 )  is said to satisfy the moment condition for o! [ 121 if 

( 6 )  n ( t )  l j  2- 0. , j  : 0, . . . ~ t l  - 1.  
1 

I n  other words, if I ( t )  in E, t i  i t )  R: (t) is replaced by a 
polynomial p ( t )  of degree 5 d - 1, the result is zero. The 
coefficients of the tlth increment (1) satisfy this condition. All 
the covariances nceded for the estimation problems can be 
calculated by the following theorem. 

7 % c ~ ~ e ~ i  I :  Let ,sx (t) be the GACV of :I: (t), a process 
with stationary dth increments, where d > 1 .  If ( I  ( t )  and I )  ( I . )  
satisfy the moment condition f i x  d ,  then 

1 . 1 L  

For stationary processes, (7) follows from (4) and no 
moment conditions are needed. Fo rd  2 1, we are only allowed 
to take the covariance of linear combinations of x (t) whose 
coefficients satisfy the moment condition. According to thc 
theorem, we may do so us (f (4) were true. In reality, s, ( t )  
is not an ACV, and (4) does not hold. Nevertheless, the entire 
formula (7) is correct, even though the corresponding terms 
of the expansions of its left and right sides are not equal. 

It is convenient to define L V d  (:c) as the set of random 
variables C ,  (1 ( 1 )  : I '  ( t )  whose coefficients ci (t) satisfy the 
moment condition for d. Then Jf,! ( x )  is a linear subspace, 
and Theorem 1 tells us how to calculate the covariance of 
two members of iWd ( 2 ; ) .  I t  can be shown that any member of 
iUd (a : )  is a mean-square limit of linear combinations of dtli 
increments of 2 (t): for this reason, ifcd = 0 then the members 
of M d  ( x )  have zero expectation. We also define ;\/Id (2:: T) as 
those members of ;\Id ( : E )  whose coefficients are supported on 
the finite set T .  

111. CLOCK t'RED1C"fION 

Let IC ( i )  have stationary tlth increments. The cstimaiioii 
target is R' ( t*) .  and the estimators are of form 

(8) 
1 E T  

wlierc T = { t l  . . . . . iTL}  with 11 2 d. (Although this problem 
is called "prediction", there is no need to insist that t ,  > 
11Iiixt,.). We now have to make the problem invariant to 
the ambiguity o f  x ( t )  with respect to polynomials / I  ( t )  of 
degree 5 d -~ 1, Wc do so by insisting that the estimatioti 
error :I: ( t * )  ~~ .C i t * )  should riot change if- x ( t )  is replaced 
by :c ( t )  + 11 ( 1 ) .  Then the estimator, ir applied to p ( t )  itself, 
predicls p ( t - )  perfectly from the values p (t) . 1. c 2 ' .  Take 
ii = 2, for example: if we add a constant phase and frequency 
to TT ( t ) ,  the estimate 2 ( t*)  should automatically adjust itself 
so that the error does not change. An equivalent statement of 
this intwinncc condition is that 

: I ;  ( t * )  .i. ( t* )  € nr, (J) . (9) 

By (8). the moment condition for the left side of (9) says that 



In matrix form, Ga = y, where Then (1 5 )  can be rewritten as 

E [x ( t*)  - aTx ( T ) ]  [:, (T)'r h] = 0 whenever ZI'A = 0. 
(17) 

Both factors on the left side of (17) belong to Md (x); by 
Theorem 1, the expectation can be evaluated as if (4) were 
true. Doing so gives the condition 

CJ = [l t, t f-  I ]  'I' 

A random variable 2; ( t*)  that satisfies (9) is called a Iineur 
invrrriunt estimutor (LIE) of :c ( t , )  based on x ( t ) ,  t E T .  
Since n 2 d, a LIE exists, namely, the value at t ,  of the 
interpolating polynomial determined by x (tl ) ! . . . ,x ( t d ) .  For 
d = 2 ,  this LIE is the linear extrapolator of n: ( t l )  and x (12) 
to t,, formulas for whose MSE were given by Boulanger and 
Douglas [I31 for power-law phase noises. Supposing that t l  < 
t 2  < t,, one can often optimize t z  ~ t1 to give an MSE that is 
acceptably close to the minimum MSE that one can get from 
LIES using the infinite past t 5 t 2  [4]. 

Of all the LIEs of TC ( t* ) ,  we want the one with the smallest 
MSE, called the best LIE (BLIE). The set of LIEs, call it 
{LIE}, i s  determined by the inhomogeneous equations (IO) 
for 0. ( t ) .  The difference of any two LIEs is a random variablc 
CtfT b ( t )  x ( t )  whose coefficients satisfy the corresponding 
homogenous equations, that is, it belongs to the linear sub- 
space -!ld (5, T ) .  Thus, {LIE} is an affine set, a shifted version 
of M d  ( r ,  T )  that does not pass through the origin. To find the 
closest point of {LIE} to .2: ( t * )  in the mean-square sense, we 
drop a perpendicular from x (t,) to {LIE}. Thus, 2 (t,) has to 
be a member of {LIE 1 and also has to satisfy the orthogonality 
condition 

~ ( t * ) - ? ( t + )  l A . f d ( ~ , T ) ,  (14) 

which means that 

E [ x  ( t , )  ~ 3 (t.)] Y = 0 whenever 5' E .il..l, (s, T )  . (15) 
Figure 1 should make the geometry clear. It can be proved 
from basic facts about orthogonal projections that the BLlE 
:i: ( t ,  j exists and is unique. 

0 

Fig. I .  Gcomemc interpretation of the conditions for a RI  II-. 

( T ' ~  - aTR)  b = 0 whenever G6 = 0, 

where r' is a column vector and R a symmetric n x n matrix 
formed from the GACV of II: ( t ) :  

T 
T =  [ s , ( t ~  - t * )  ' . .  ~ , ( t ,  - t , ) ]  , (19) 
R =  [sr (t.c - t 3 )  : i , j  = 1,. . . ,121, (20) 

In turn, condition (1 8) says that the row vector yT ~ clTR is 
orthogonal to all vectors b that are orthogonal to the rows of 
G. Therefore, rT - a T R  belongs to the row space of G, that 
is, r ~ ~ . a  = GTB for some d-vector B = [e, ~ d - ~ ] ~ .  . . .  

We now have the system of equations 

which constitute n + d equations in the a + d unknowns a, 8. 
They generalize the Yule- Walker equations 

Ra = r 

for stationary z ( t ) ;  in that case, R is a genuine covariance 
matrix, and .-i: ( t , )  is the orthogonal projection of x (t*) on the 
unrestncted subspace generated by z ( t )  , t E T.  For d 2 1, 
V is symmetric if s, ( t )  is even, but usually has positive and 
negative eigenvalues. 

After solving (21) for a and 8, we can calculate the mean 
square error of i (t*) as follows: 

MSE = E [X ( t , )  ~ 2 (t,)12 

= E [x i t * )  - nTx ( T ) ]  [x ( t , )  - z (!!")'I a] 

= s, ( 0 )  - ~~a - aT ( r  - Ra) by Theorem 1, 

(23) MSE = (0) - rTa ~ gTO by (21). 

We mention three methods for solving (21). First, if n = d, 
then G is a nonsingular square matrix, and we can solve (21) 
for a and then for 8. Second, if R is nonsingular3, then we 
can write a solution in the following form (R-' method): 

A = G V I G T ,  
6' = h-l (GR-lr - 9)  , 
(L = R-l ( r  -- GTB) . 

Third, we can set up the system (21) as the single matrix 

and tell Matlab4 to solve it in one operation ("brute force" 
method). Although Matlab often says that the big matrix is 

'.['he author does not know any conditions for R tn be nonsingular 
4Copyr~ght by The Mathworks, lnc 



badly scaled or nearly singular, the solution seems to work 
anyway. 

Bcfore carrying out this solution, we should reduce the trend 
coefficient to zero as explained earlier, either subtracting the 
trend from :c ( t )  if cd is known, or increasing d by I if c d  is 
unknown. Then 2 ( t+)  is unbiased for :c ( t * )  because 7: ( t , )  - 
.i (t.) t hld (x), all of whose members have zero expectation. 
The penalty for increasing d is a greater MSE for the BLIE, 

v%%/T for both T sets and for t ,  = r = 1 ,2 ,4 . .  . . ~ 256. 
The lower horizontal line is - / T  for optimal prediction 
from the continuous past, t 5 0. The upper horizontal tine is 
JIEE/T for simple linear extrapolation from T = { -7.  o } as 
before. We observe only a small error penalty for using the 4- 
point set instead of the 33-point set. As T becomes large, the 
linear extrapolator becomes better than the other predictors, 
which see only 32 units into the past of this long-memory 

hecause thc set of LIES shrinks. process 

A.  E x i m p  Ic.s 

1. Model: white FM, ( I  = 1, / L O  = 1, average frequency 
c1 = 0, T = { O .  -1: . . . ~  -IO}, t ,  = 5. We get the expected 
rcsult: ir (5) = :c (o), MSE -.- ;ho t ,  : 2.5. 

2. The same example, but with an unknown frequency 
(phase slope) added. We perform the estimation with d = 2 
to get an estimator that is invariant to the added frequency. 
The rcsult is 5: (3) - $2; (0) - ix (-lo), 11% = 3.75. This 
is a simple demonstration of the penalty paid for a lack of 
knowledge of the trend. But, as 2' reaches farther and farther 
into the past, the estimator recovers the unknown frequency, 
and the MSE tends to +hot , .  

3. Model: white FM (/LO = 2 )  + random walk FM ( h - 2  = 
1 . 5 3 ~  10-"), d = 2. Figure 2 shows normalized rms prediction 
error, -/T, of : I :  (t  + T) for three predictors: a) linear 
extrapolation from x i t )  , :c ( 1  
times Allan deviation for T ;  b) optimal prediction based on 
the entire discrete past :E (1 .- 10n), 71, = 0: 1. . . ., calculated in 
closed form by solving for the stationary covariancc matrix of 
a Kalman filter [9]; c) optimal prediction based on IC ( t  - lo?!), 
7 1  7 0, , , . ,5, calculated by the method given here. 

71, wiiose rms error is 

-4 
-35 -30 -25 -20 -15 -10 -5 0 

Fig. 3. Regrcssion cocfficicnts for predicting flickcr PM 

Iv. T R E N D  ES'IIMh'l'lON 

Let :c (1)  have stationary dth increments (d  2 O ) ,  with an 
unknown trend coefficient crj. Then 

( 2 5 )  
t" 

: I ' ( f , )  = I :<I-  + 2() ( t )  : 
d!  

I mherc :c0 (0 has trend coeficient 7ero It is convenient to 
denote the GACV of .ql (t) by 6 ,  ( 1 )  instead of -sr,, ( t )  Again 

0 6  

c 
2 0 4 -  
0 

0 2  . , , , . .  

IO' 1 o2 i o 3  
prediction interval, T 

Fig. 2. N o r m a l i d  rms error ol'prcd1ctor.s o f a  zum ufwhitc FM and random 
walk t'M. 

4. Model: flicker FM, (l = 2, h - 1.  For t ,  7 8, the 
squares in figure 3 show the regression coefficients for the 
33-point prediction set T -- { -32 ,  -31, ... : O ) .  Because the 
coefficients art: small off the set { -32. -31: -1, O } ,  we also 
try the latter set for prediction (filled circles). Figure 4 shows 

1.4 1 
1 oo I O 1  I o2 

prediction interval. 7 



there will be invariance and orthogonality conditions to deter- 
mine the optimal linear estimator & = CttT a ( t )  .7: ( t )  of c d  

from 2 ( t )  , t E T .  The invariance condition is determined by 
the requirement that the estimation error cd - & be unchanged 
if a polynomial of degree I d is added to x (t) .  Thus the error 
is invariant to the trend cdtd /d !  itself as well as to polynomials 
12 ( t )  of degree 5 d - 1 added toz  ( t ) .  After rewriting (25) as 
2 i t )  = cC,f.'/d! + 20 ( t )  + p  ( t ) ,  we obtain 

- EL ( t )  [ 2 0  ( t )  + p (t)l ' 
LET 

If r d  - fd is invariant to ~ : d  and p ( t ) ,  then 

CU.(t)tJ = o ;  j = o ,  . . . ,  d - 1 ,  (27) 

1 n ( t )  td = d!.  
t€T 

(28) 
L€T 

and the estimator gives the right answer c d  if x ( t )  is a 
polynomial of degree 5 d. A random variable E,,, u ( t )  z ( t )  
is said to be a LIE of c d  if (27) and (28) hold, We write this in 
the matrix foim Ga = g again, but with different definitions 
of G and g :  

Theorem I for xo (t) to evaluate this expression, giving the 
condition 

-aT&b = 0 whenever Gb = 0. (34) 

where R is defined by (20). By the same argument as before, 
-nu = GTH for some ( d  + 1)-vector B = [do 8dIrr.  
We arrive at the system of equations 

. . .  

GU = ,y, Ra + GTB = 0, ( 3 5 )  

which is like (21), except that now there are ? ~ + d + l  equations 
and unknowns, the definitions of G and y are different, and T 

has become 0. The same solution methods are available, 
By (31), & is unbiased for cd because all the members of 

ni&+l (x) have mean zero. By (32), Theorem 1, and (35 ) ,  we 
can calculate the MSE of 2d by 

MSE = E (Q ~ Ed)' = E [--a'l'ro (T)] [-q ( T )  T a] 

(36) T = ~1 Ro. = -gTB = - d ! B d .  

A .  Examples 
1. Model: z ( t )  = white FM + clt  (unknown frequency), 

d 1, /LO = 1, 7' = { O , l ,  ..., 10).  Result: E l  

h[ : '~(10) - - .2 : (0) ] ,MSE= &. 
2. Model: x ( t )  1 xu ( t )  f +cat2 where 50 it) is white 

FM, flicker FM, or random walk FM, T = {0, 1, ..., 10). The 
regression coefficients for 22 are shown in Fig. 5. Even though 
white FM is in SI(l), we have to treat it as a member of SI(2) 
to extract a quadratic trend, independently of any linear trend 

G =  I .  (29) that may also be present. 

Assume that T has at least d + 1 points. Then a LIE of 
c d  exists, namely, the coefficient of t'/ld! in the interpolating 
polynomial determined by z ( t l )  , . . . , LC ( t d + l ) .  Moreover, the 
difference of any two LIES is in the subspace M d + l  ( x , T ) ,  
the set of CtEr b ( t )  2 (t) such that b ( t )  satisfies the moment 
condition for d i- 1. As with the prediction problem, a LIE 
t d  = L E T  a (t) n. ( t )  of cd is the BLIE if it satisfies the 
orthogonality condition 

Cd - Ed I M d + l  (x, T )  . (31) 

0.1 

0.05- 

0- 

~ 

-0.1 - 

-0.15- 

- 

-0.05 

-9- Flicker FM -9- Flicker FM 

".- 
Fig. 5. 
presence 01' white FM, flicker FM, or random walk FM. 

Regression coetficients lor estimating quadratic drift rate in thc 
which belongs to j& (XO) by (27). Also, .l$d+l (2 ,  T )  = 
M d +  (xu,  T )  c M d  ( ZO), because every member of Md+ has 
coefficients that kill the trend. Therefore, (31) can be written 

E [---u']'z~ ( T ) ]  [ql (T)r b] = 0 whenever Gb = 0, (33) 

where zn ( T )  is a column vector like 5 (7'). Because both 
factors in the left side of (33) belong to hf, (zo), we may use 

as v. ADDITIONAL RESULTS 

A .  Prediction from equally spaced data 

Solving the prediction problem from the Yule-Walker equa- 
tions (22) (when d = 0) or their generalization (21) by general 
linear equation solving methods requires 0 (n3)  operations 



for fixed d, where 11 is the number of elements in T .  If 

a Toeplitz matrix. For stationary x ( t ) ?  the Levinson-Durbin 
algorithm [ 141, which is a loop on n, calculates the regression 
coefficients and the MSE in 0 (n2)  operations. The author 
has been able to extcnd this algorithm to the case td 2 I while 
keeping the 0 ( 7 ~ ~ )  property for fixed d. In cases that have 
been tried, the two general algorithms (E1 and brute force) 
and the extended Levinsori algorithm agree within roundoff 
error. 

1141 I? .). 13rockwelI and t<. A. Davis, LswicsS: lheort, nnci ~ c l i ~ i ~ .  
T is an equally spaced set of times, however, then H is Second Eddilion, 5.5 2 .  Sprii~gcr, 1001. 

B. 7i-end.fiam symmetric datu 
Suppose that T is symmetric about some point, which we 

assume to be zero; then -T = T .  Tt can be shown that the 
optimal trend coefficient estimator has coefficients that are 
even (n  ( - t )  = a ( t ) )  if d is even, and odd (cr ( - t )  = -u i t ) )  
if d i s  odd. In either case one can set up equations like (35) 
for CL ( b ) ,  t 2 0 ,  and a smaller auxiliary vector H .  Thus, the 
dimension 71. + d + I of the system (35) can be reduced by 
approximately a factor of two. 

This work was carried out at the Jet Propulsion Laboratory, 
California Institute of Technology, under a contract with the 
National Aeronautics and Space Administration. 
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