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Abstract— We show how to solve two problems of optimal
linear estimation from a finite set of phase data. Clock noise is
modeled as a stochastic process with stationary dth increments.
The covariance properties of such a process are contained in
the generalized autocovariance function (GACYV). We set up two
principles for optimal estimation; with the help of the GACY,
these principles lead to a set of linear equations for the regression
coefficients and some auxiliary parameters. The mean square
errors of the estimators are easily calculated. The method can
be used to check the results of other methoeds and to find good
suboptimal estimators based on a small subset of the available
data.

I. INTRODUCTION

Suppose that the phase residual x (t) of a clock (or dif-
ference of clocks) is given at a finite set of times, T =
{t1....,t.}, which don’t have to be equally spaced. We
consider two estimation targets: 1) the phase value z (t,)
at some . ¢ T; 2) the overall “trend” coefficient of z (¢).
Depending on the model for z (£) and what else is known, this
can mean the long-term average value of phase or of its dth
time derivative: frequency, drift rate, or aging rate (d = 1,2,
or 3). For each target, we want to calculate the linear estimator
>y a;x(t;) that is optimal in the mean-square sense while
satisfying an invariance condition that will be explained below.

To carry out this program, we need a stochastic model for
x (£}. The general model used here is the class of stochastic
processes with stationary dth increments, the subject of a
monograph of Yaglom [1]. These include stationary processes,
indefinite integrals of stationary processes, and all the power-
law processes familiar to the time and frequency field: flicker
PM, white FM, flicker FM, and so on. Yaglom showed how
to solve problems of optimal prediction and filtering for these
processes based on their values on unbounded or bounded time
intervals. For pure power-law processes, other authors have
derived the mean square error (MSE) of the predictor that is
based on the infinite past [2]-[4]. For finite-state clock models,
a recursive predictor and its MSE, based on all discrete-time
past measurements, can be calculated from a Kalman filter
{9]. The MSE of various suboptimal drifi-rate estimators has
been calculated for power-law noises [5]-[8]. Here we show
how to calculate the regression coeflicients «; and the MSE
of the optimal linear estimators of both targets, using systems
of linear equations that generalize the equations of orthogonal
projection for stationary x (£).

II. CLOCK NOISE MODELS

A real-valued, mean-square continuous! stochastic process
x (t) is said to have stationary dth increments (d > 1) if for
each T the process
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is stationary. It is convenient to let SI{d) denote the class
of all such processes, and to et SI(0) denote the stationary
processes. Evidently, SI{d) C SI{d + 1), and it is convenient
to define the degree of 2 (t) as the least d such that z € SI(d).

Everything we know about a process x € SI(d) is wrapped
up in the dth increments (1), which do not change if we add a
polynomial of degree < d—1 to z (). In this sense, a process
in SI(d) is ambiguous. Any use of these processes must take
account of this ambiguity.

For any = € SI{d), Yaglom established a two-sided spectral
density function® S, {f) > 0. Here, we are using the two-
sided, even version: Sy (—f) = 5. (f). Ford > 1, 8, (f)} can
diverge as f — 0 but obeys the restrictions

/ F25, (f)df < oo,
[ fl<1

The process also has an average trend coeflicient, denoted
by ¢y, that can be defined as the infinite-time average of the
stationary process Adx (t):

S: (fdf <oo. (2)
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the limit being taken in the mean-square sense. In this treat-
ment, ¢, can be a random variable. We often want to get rid of
cq, and there are two ways to do it. First, if we know ¢y, then
we can consider the process zp (£) = 2 (t) — cyt?/d!, which is
also in SI () but has trend coefficient zero. Second, if we don’t
know ¢y, then we may treat x (£) as a member of SI(d + 1);
as such, its trend coefficient ¢y Is always zero. For example,
a stationary process with an unknown mean can be treated as
a member of SI{1). If a random walk of phase (white FM),
which is in SI{1), has an unknown slope (frequency) added
to It, we can treat it as a member of SI{2). In this way we
can get results that are invariant to the unknown trend.

'This means that B [z (u) — 2 (8)] — 0 as u — 1.
ZActually, a measure on the punctured trequency axis f # 0.



Yaglom’s treatment of SI(d) was based on the spectral
density. For stationary processes, we have the autocovariance
(ACV) functlion

5. (1) = i

s, (L —uw)=Ez{t)z(u). {4
The estimation methods given here are based on a gencralized
ACY (GACV) function [10][11], also called s, (¢), that can be

obtained from S, (f) and ¢, by a generalized Fourier integral
as follows:

e TS (f) df, (3)

which satisfies
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One may add a polynomial of degree < 2d—1 10 s, {t) without
changing the value of any formula in which s, (f) is properly
used. With this ambiguity understood, Table 1 gives the GACV
for power-law components of clock noise, specified by the one-
sided spectral density of frequency, SF (f) = 2 (27 f¥° S, (f).
For any stationary phase component, the GACV is the ACV.
The flicker PM entry is obtained by passing pure 1/f noise
through a moving-average filter of width + to satisfy the
second condition in (2). The trend coefficients are zero. The
degree of a sum of noises is the maximum degree of the
summands, and the GACV of the sum of orthogonal noiscs is
the sum of the GACVs. By (5) we may and will assume that
the GACYV is an even function: s, (—t) = s, (#).

(5)

TABLE 1
GENERALIZED AUTOCOVARIANCE OF POWER-[.AW NOISES

Name degree 9 * (f) sa 1)
Flicker PM l n f 2 ;_ o (§-mr). t=0
(lowpass) 4;-‘1; Inff. t» ¢
ko bl
While FM ! ho _ *“T
hoyi?lnt
Flicker FM 2 hoyft L,'_z ]
) h_gm? |t)?
Rundom walk FM 2 hogf? ngl
il
g i 20 In |t
Flicker walk FM 3 hooaf=d ”Lﬁ{‘.,,' ‘
h_gmt |1
Random run ¥M 3 h_af=* 77\%%'0 4

Now we have to say how the GACV is used. In the following
discussion, « (t) and b (t) denote functions that are zero except
on some unspecified finite set of times; by using this notation
we can freely perform and combine sums over ¢ without
worrying about the range of the summations. Such a function
a(t) is said to satisty the moment condition for 4 [12] if

Sa) =0, j=0.,d-1, (6)

i

In other words, if w(t) in >, a(f)z{t) is replaced by a
polynomial p(t) of degree < d — 1, the resuli is zero. The
coeffictents of the dth increment (1) satisfy this condition. All
the covariances nceded for the estimation problemis can be
caleulated by the following theorem.

Theorem 1: Let s, (t) be the GACV of x(¢), a process
with stationary dth increments, where o > 1. If o (¢) and b (1)
satisfy the moment condition for d, then

E (Z a(t)r (f)) (Z bty (f))
= Za (t—u). (N

Lo

For stationary processes, (7) follows from (4), and no
moment conditions are ngeded. For > 1, we are only allowed
to take the covariance of linear combinations of x (t) whose
coefficients satisfy the moment condition. According to the
theorem, we may do so as if (4) were true. In reality, s, {f)
is not an ACV, and (4) does not hold. Nevertheless, the entire
formula (7) is cormrect, even though the corresponding terms
of the expansions of its left and right sides are not equal.

It is convement to define My (x) as the set of random
variables Y, a{t) 2 {t) whose coefficients a (¢} satisfy the
moment condition for d. Then A, (2} is a linear subspace,
and Theorem 1 tells us how to calculate the covariance of
two members of M, (). It can be shown that any member of
Mgy (x) 1s a mean-square limit of lincar combinations of dth
merements of z (¢); for this reason, if ¢; = 0 then the members
of M, () have zero expectation. We also define M, (x, T) as
those members of M,; () whose coefficients are supported on
the finite set 7",

b (1)

111. CLOCK PREDICTION

Let @ (¢f) have stationary dth increments. The estimation
target is = (#.), and the estimators are of form

Pty = Z al{tyx(t). (8)

LET
where 7' = {¢,..... ty} with n > d. (Although this problem
is called “prediction”, there is no need to insisi that #, >
maxt;.). We now have to make the problem invariant to
the ambiguity of a (¢) with respect to polynomials p(t} of
degree < d —~ 1. We do so by insisting that the estimation
error = {t,) - & {f.) should not change if x{t) is replaced
by 2 {t) + p(t). Then the estimator, il applicd to p (£} itself,
predicts p{t.) perfectly from the values p(t),t ¢ 1. Take
d = 2, for example: if we add a constant phase and frequency
to @ (t), the estimate Z (t,) should automatically adjust itself
s0 that the error docs not change. An equivalent statement ot

this invariance condition is that

(t)y - wlt,) € My(x). (9)

By (8). the moment condition for the left side of (9) says that

> el =t

el

j=0,....d—1 (109



In matrix form, Ga = g, where

o = [ats) a(tn)]”, (11)
P
t sea Gy
G=| . .y (12)
til.—-l tci;l
g=[1 & t=1]" (13)

A random variable £ {t,) that satisfies (9) is called a linear
invarignt estimator (LIE) of = (¢,} based on = (t),t € T.
Since n > d, a LIE exists, namely, the value at t, of the
interpolating polynomial determined by z (#,},...,x (fq). For
d = 2, this LIE is the linear extrapolator of x (t;) and x (t3)
to t., formulas for whose MSE were given by Boulanger and
Douglas [13] for power-law phase noises. Supposing that 1 <
to < 1., one can often optimize ts —t) to give an MSE that is
acceptably close to the minimum MSE that one can get from
LIEs using the infinite past ¢ < 25 [4].

Of all the LIEs of = {t,), we want the one with the smallest
MSE, called the best LIE (BLIE). The set of LIEs, call it
{LIE}, is determined by the inhomogeneous equations (10)
for o (t). The difference of any two LIEs is a random variable
2 er b(t)z (t) whose coefficients satisfy the corresponding
homogenous equations, that is, it belongs to the linear sub-
space My (z, T}. Thus, {LIE} is an affine set, a shifted version
of My {x, T) that does not pass through the origin. To find the
closest point of {LIE} to @ (¢,) in the mean-square sense, we
drop a perpendicular from  (t,) to {LIE}. Thus, & (£.) has to
be a member of {LIE} and also has to satisfy the orihogonality
condition

x(ty) — &t L My(z, T}, (14)
which means that
Efr(t.) — £(t)]Y =0 whenever Y € My (xz,T). (15)

Figure 1 should make the geometry clear, It can be proved
from basic facts about orthogonal projections that the BLIE
& (t,) exists and is unique.

Fig. 1. Geometic interpretation of the conditions for a BLIE

(16)

Then (15) can be rewritten as

E [z (t.) ~a 2z (T) [L ()" b} = 0 whenever b" A = 0.
{17)
Both factors on the left side of (17} belong to My (z); by
Theorem 1, the expectation can be evaluated as if (4) were
true. Doing so gives the condition

(TT — aTR) b= (0 whenever Gb = (), (18)

where r is a column vector and R a symmetric n x n matrix
formed from the GACV of x {t):

7 =[50 (t1 — 1) 8y (tn —t*)}T,
R:[Sx(t.i—tj)Ii,jrl,...,n].

(19)
(20)
In turn, condition (18) says that the row vector r* — a7 R is

orthogonal to all vectors b that are orthogonal to the rows of
G. Therefore, rT — a® R belongs to the row space of G, that

is, r — Ra = G789 for some d-vector § = [90 B4-1] T
We now have the system of equations
Ga=g, Ra+GT9=r 2D

which constitute n + d equations in the n + d unknowns a, 4.
They generalize the Yule-Walker equations

Ra=r (22)

for stationary = (£); in that case, R is a genuine covariance
matrix, and & (¢, ) is the orthogonal projection of = (£,) on the
unrestricted subspace generated by z (t).t € T. For d > 1,
V is symmetric if s, (¢) is even, but usually has positive and
negative ¢igenvalues.

After solving (21) for e and #, we can calcufate the mean
square error of & (£,) as follows:

MSE = E[z(t.) — # (t,)]*
=E[2(t,) — a"z (T)] [a: (t)—=z(T) " a
=35, (0) —7Ta —a' {r — Ra)
MSE = s, (0) —rTa — g7 by (21).

by Theorem 1,
(23)
We mention three methods for solving (21). First, if n = d,
then G is a nonsingular square matrix, and we can solve (21)

for a and then for 4. Second, if R is nonsingular’, then we
can write a solution in the following form (R~! method):

A=GViGgT,
6=A"1(GR™'r—g),
a=R"" (r = GTG) .

Third, we can set up the system (21} as the single matrix

equation
R G [a] _ir
G 0|8 [g|°

and tell Matlab* to solve it in one operation (“brute force”
method). Although Matlab often says that the big matrix is

(24)

¥The author does not know any cenditions fer R to be nonsingular.
4Copyright by The MathWorks, Inc.



badly scaled or nearly singular, the solution seems to work
anyway.

Before carrying out this solution, we should reduce the trend
coeflicient to zero as explained earlicr, cither subtracting the
trend from x (¢) if ¢y is known, or increasing d by 1 if ¢ is
unknown, Then f (#.) is unbiased for x (t..) because x (£,) —
&{t.) e My (z), all of whose members have zero expectation.
The penalty for increasing d is a greater MSE for the BLIE,
because the set of LIEs shrinks.

A. Examples

1. Model: white FM, d = 1, kg = 1, average frequency
e =0, T =1{0,—1,....—10}, £, = 3. We get the expected
result: & (5) = 2 (0), MSE = %hot* = 2.5.

2. The same example, but with an unknown frequency
(phase slope) added. We perform the estimation with d = 2
to get an estimator that is invariant to the added frequency.
The result is #(3) = 22(0) — Lz (10}, MSE = 3.75. This
is a simple demonstration of the penalty paid for a lack of
knowledge of the trend. But, as 7" reaches farther and farther
into the past, the estimator recovers the unknown frequency,
and the MSE tends to 2hqt..

3. Model: white FM (kg = 2) + random walk FM (h_, =
2.53<10™%), d = 2. Figure 2 shows normalized rms prediction
error, VMSE/7, of @ (¢ 4+ 1) for three predictors: a) lingar
extrapolation from  (t),x ({ ~ 7), whose mms error is /27
times Allan deviation for 7; b) optimal prediction based on
the entire discrete past x (1 -~ 10n), n = 0,1... ., calculated in
closed form by solving for the stationary covartance matrix of
a Kakman filter [9]; ¢) optimal prediction based on x (£ — 10n),

n=10,...,5, calculated by the method given here.
086
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Fig. 2. Normalized rms error of predictors of a sum of white FM and random
walk FM.

4, Model: flicker FM, d = 2, h_; — 1. For t, — &, the
squares in figure 3 show the regression coefficients for the
33-point prediction set T == {—32, —31,...,0}. Because the
coefficients are small off the set {—32,--31, —1,0}, we also
try the latter set for prediction {filled circles). Figure 4 shows

vﬁ/? for both 7' sets and for . = 7 = 1,2,4,.... 256,
The lower horizontal line is vMSE/7 for optimal prediction
from the continuous past, £ < 0. The upper horizontal [ine is
v MSE /7 for simple linear exirapolation from 7" = {—7,0} as
before. We observe only a small error penalty for using the 4-
point set instead of the 33-point set. As 7 becomes large, the
linear extrapolator becomes better than the other predictors,
which see only 32 units into the past of this long-memory

process.
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Fig. 3. Regression cocfficients for predicting flicker FM

IV. TREND ESTIMATION

Let x () have stationary dth increments (d > (), with an
unknown trend coefficient ¢;. Then

of

w{t)y = Gy + xo (),
where mg (f) has trend coefficient zero. It is convenient to

denote the GACV of wy (#) by s, (t) instead of 5., (£). Again

{25)
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T R {—n0,0] !
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g
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Fig. 4. Normalized rms crrors of predictors of flicker FM



there will be invariance and orthogonality conditions to deter-
mine the optimal linear estimator é; =}, pa(t)x(t) of cg
from z (¢}, ¢ € T. The invariance condition is determined by
the requirement that the estimation error g — &4 be unchanged
if a polynomial of degree < d is added to z (). Thus the error
is invariant to the trend e t% /4! itself as well as to polynomials
7 (t) of degree < d — 1 added tox (t). After rewriting (25) as
x {t) = cgt?/dl + wq (£) + p (£), we obtain

. 1
Cy — Cg = Cq [1—(—{—!Za(t)td}

LeT

=S a{t) [z () +p (1) (26)
teT
If eg — &4 1s invariant to ¢y and p(¢), then
da®) =0, j=0,...,d-1, (27)
teT
> algyet =d, (28)
teT

and the estimator gives the right answer ¢, if x () is a
polynomial of degree < d. A random variable }, . a (t) z (t)
18 said to be a LIE of ¢4 1if (27) and (28) hold. We write this in
the matrix form Ga = g again, but with different definitions
of G and ¢:

11
by - in
tf -t

g=1[0 0 4", (30)

Assume that T has at least d + 1 points. Then a LIE of
cq exists, namely, the coefficient of t?/d! in the interpolating
polynomial determined by = (t1),. ..,z {t441). Moreover, the
difference of any two LIEs is in the subspace My.q (z,T),
the set of 3, . b(t) & (t) such that b (t) satisfies the moment
condition for d + 1. As with the prediction problem, a LIE
¢ = Y eralt)yz(t) of ¢y is the BLIE if it satisfies the
orthogonality condition

g — g L My (2,7). (3D

By (26), (27), and (28),
Cy *(A)d: = ﬁZa(t):}:o (t),

teT

(32)

which belongs to My (zq) by (27). Also, Mgy (2, T) =
Mayy (o, T) C My (), because every member of M,y has
coefficients that kill the trend. Therefore, (31} can be written
as

E [-—-uT:r:O (T)] [.’L‘() [T)T b] = 0 whenever Gb =0, (33}

where w®q (T) is a column vector like z (7). Because both
factors in the left side of (33) belong to My (xp), we may use

Theorem 1 for xzp (¢} to evaluate this expression, giving the
condition

—aVRb = 0 whenever Gb = 0, (34)

where I? is defined by (20). By the same argument as before,

—Ra = GT for some (d + 1)-vector 8 = [fy Bd}q.
We arrive at the system of equations
Ga=g, Ra+G"9=0, (35)

which is like (21), except that now there are n+d+1 equations
and unknowns, the definitions of ¢ and g are different, and r
has become 0. The same solution methods are available.

By (31), ¢, is unbiased for ¢4 because all the members of
Mgay1 {x) have mean zero. By (32), Theorem 1, and (35), we
can calculate the MSE of ¢4 by

MSE = E(cg — &5) = E [~a"zo (T}] [wmo ()" a]

=a'Ra=—¢T0 = —d8,. (36)

A. Examples

1. Model: x () = white FM + ¢;¢ {(unknown frequency),
d = 1, hh = 1, T = {0,1,..,10}. Result: & =
=+ [z (10) — 2 (0)], MSE = &.

2. Model: z(t) = x4 (t) + Lcat? where zq (t) is white
FM, flicker FM, or random walk FM, T' = {0, 1, ..., 10}. The
repression coefficients for é; are shown in Fig. 5. Even though
white FM is in SI{1), we have to treat it as a member of SI{2)
to extract a quadratic trend, independently of any linear trend
that may also be present.

0.1
0.05¢
Or S et . i
-0.05¢
0.1 —+— White FM
' —6— Flicker FM
-0.15 —8— Rand. walk F
_02 1 1 L I I 1
0 2 4 6 8 10
t
Fig. 5. Regression coeflicients for estimating quadratic drift rate in the

presence of white FM, flicker FM, or random walk FM.

V. ADDITIONAL RESULTS
A. Prediction from equally spaced data

Solving the prediction problem from the Yule-Walker equa-
tions (22) (when d = 0) or their generalization (21) by general
linear equation solving methods requires O (n?}) operations



for fixed d, where n is the number of elements in T. If
T is an equally spaced set of times, however, then R is
a Toeplitz matrix. For stationary z (¢), the Levinson-Durbin
algorithm [14], which is a loop on n, calculates the regression
coefficients and the MSE in O (n?) operations. The author
has been able to extend this algorithm to the case d > 1 while
keeping the O (n?) property for fixed d. In cases that have
been tried, the two general algorithms (R~! and brute force)
and the extended Levinson algorithm agree within roundeff
eITOr.

B. Trend from symmerric data

Suppose that T is symmetric about some point, which we
assume to be zero; then —7 = T. Tt can be shown that the
optimal trend coefficient estimator ¢, has coefficients that are
even (a(—t) = a()) if d is even, and odd (a{—#) = —~a (1))
if d is odd. In either case one can set up equations like (35)
for a(t), ¢ > 0, and a smaller auxiliary vector §. Thus, the
dimension n + d 4 1 of the system {35) can be reduced by
approximately a factor of two.

This work was carried out at the Jet Propulsion Laboratory,
California Tnstitute of Technology, under a contract with the
National Aeronautics and Space Administration.
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