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SUMMARY & CONCLUSIONS 

Ideally, planning and managing the design and 
development of a complex systems should: 
0 Consider the entire lifecycle (design, development, 

testing, integration, deployment, operation and 
decommissioning). 
Take risk and reliability into account, as well as more 
traditional measures such as cost and performance, when 
making tradeoff decisions. 
Provide understanding, and therefore motivation, as to the 
purpose of design artifacts (that piece is there to ...) and 
development activities (we’ll be performing this test to 
. . .). 
A key enabler to all of the above is the ability to relate 

design and development choices to risk and reliability 
predictions. If the number of choices were small (e.g., 
selection between a mere handhl of alternatives) then it would 
suffice to perform reliability analysis on them individually, 
and view the results side-by-side. The challenge is that in 
many cases the number of design and development 
alternatives is large. In this context, the problem of relating 
reliability predictions to design and development choices is 
non-trivial. 

Ongoing work towards a solution to this problem is the 
focus of this paper. Over several years we have developed a 
risk-based model the hallmark of which is the explicit 
representation of risk mitigations as options. We describe how 
this model functions, and the major implications of making 
mitigation options first class objects within an (otherwise 
relatively simple) analysis model. We also describe 
elaborations to this model’s representation of risks, notably by 
the incorporation of fault tree notions. These improve the 
fidelity of the designs we are able to represent, and also offer 
the ability to represent design alternatives within the same 
framework. Finally, we describe the connections we are 
building between our risk analysis tool and other risk tools. 
The latter have greater strengths in their ability to represent 
and calculate over more elaborate risk structures, while our 
approach lends to them the aforementioned explicit treatment 
of the various forms of options for risk reduction. 
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1. INTRODUCTION 

Our work originated as a method intended for planning 
the quality assurance of hardware systems [I]. In this context 
there are many possible assurance activities. Some focus on 
the prevention of defects - for example, up-front planning, 
adoption of design standards, configuration management, 
training, etc. Others focus on the detection of defects - either 
to detect latent defects in a system (and so be able to correct 
them before actual deployment of the system), or to increase 
confidence that such defects are not present. For example, a 
wide gamut of reviews, design walkthroughs, tests, 
inspections, analyses, etc. can be applied to systems and their 
components. 

Generally the total costs (e.g., time and budget) were all 
these activities and practices to be adopted would far exceed 
the resources available. In order to help in planning which of 
these activities and practices to adopt, Cornford developed the 
“Defect Detection and Prevention” (DDP) process. It treats 
assurance activities and practices as options, each of which are 
linked to the kinds of defects they prevent or detect. Each 
option-defect link is accompanied by a quantitative measure, 
of eflect - the proportion by which the option will prevent or 
detect reduce the defect. These defects are in turn linked to the 
system-level objectives that they threaten. Again, each defect- 
objective links is accompanied by a quantitative measure, of 
impact - the proportion by which the defect, were it present, 
would detract from attainment of the objective. This scheme is 
illustrated abstractly in Figure 1. 
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Figure 1 - Influence diagram of DDP concepts 



The net result is the ability to estimate both the cost of a 
selection of options (what resources it would take to perform 
that selection), and the benefit of that selection (in terms of 
attainment of objectives). The latter is calculated by taking 
into account the defect reducing effects (preventions and 
detections) of the selected options, and in turn the (reduced) 
extent to which the defects that evaded prevention or detection 
would have on attainment of objectives. 

Cornford’s initial experiments in 1998 showed the merits 
of this approach in the area of assurance planning, where 
options are choices among the gamut of assurance-related 
activities. It makes apparent situations where the selection of 
options is less than ideal - for example, where overly-many 
options are selected to reduce the same defect, while other 
defects go relatively unaddressed. It also clarifies the purpose 
of the selected options - namely as preventions or detections 
of the kinds of defects to which they are linked. These two 
areas of insight help improve both the planning and conduct of 
assurance activities, by helping to arrive at a cost-effective 
selection of them, and by clarifying the purpose(s) of the 
individual assurance activities themselves. 

Cornford’s initial experiments employed spreadsheets as 
the means to store and calculate with the quantitative 
information. These proved sufficient to demonstrate the value 
of the approach, but suggested ways in which custom software 
should be developed to enable the process to proceed more 
smoothly. Such software has since been developed [2]. In the 
years since we have applied this approach to a wide range of 
problems, most often to systems and technologies that are at a 
relatively early stage in their development lifecycles to help 
plan their subsequent development. 

The relevance of this approach to risk and reliability 
stems from its probabilistic treatment of defects, using the 
traditional decision statistic risk factor of expected loss [3]. It 
treats a defect as having a likelihood of occurrence (which 
may be decreased by adoption of the assurance options), and 
impacts on various objectives. The sum total of those impacts 
is equivalent to the traditional risk notion of “severity” (a.k.a. 
“consequence”). In subsequent work, we have broadened the 
area of application to early-phase project planning, and for 
such purposes often switch terminology accordingly, using 
“failure mode” or “risk” in place of “defect”, and “mitigation” 
in place of “option”. Indeed, this approach is very much 
motivated by techniques drawn from the Probabilistic Risk 
Assessment (PRA) community (e.g., for an overview, see [4]). 
It is the explicit treatment of (defect- or risk-reducing) options 
that sets this work apart from traditional PRA. 

In the sections that follow we investigate issues that arise 
from making explicit the options for defect-reduction (or 
equivalently, risk-reduction), and the work we are performing 
to extend the model to incorporate (or connect to other tools 
with) more elaborate representations of risk. 

2. IMPLICATIONS OF MAKING OPTIONS EXPLICIT 

The focus of most of the mainstream work on risk and 
reliability has been on methods that, given a design, assess the 
risk or reliability of that design. Adding into these approaches 
the explicit treatment of defect- or risk-reducing options has 

some benefits, outlined next. We then discuss some of the 
mechanisms we found need for to realize those benefits. 

2.1 Benefits of making options explicit 

The main benefits of adding into these approaches the 
explicit treatment of defect- or risk-reducing options are as 
follows: 

Ability to incorporate consideration of design practices 
when performing risk and reliability calculations. For 
example, the effects of preventative measures can be assessed 
in terms of their reduction on the prevalence of defects; test, 
analyses, inspections, reviews, etc., can be assessed in terms 
of their ability to detect defects (in advance of deployment and 
operation of the system, and therefore in time to correct them). 

Ability to perform tradeoff decisions that take risk into 
account. In the DDP approach, risk is an intermediate concept 
- intermediate between the objectives whose attainments it 
threatens, and the options whose adoption (at a cost) decreases 
risk. The overall DDP model allows for the computation of 
benefit(s) (with respect to expected attainment of the specified 
objectives), and costs (the resource cost(s) of the selected 
options). By varying the selection of those options, it is 
possible to consider alternate points within the space of 
possible development decisions, each with their own costs and 
benefits. 

Ability to trace the purpose of the selected risk- or defect- 
reducing options. Within the DDP model these trace to the 
risks or defects they reduce, which in turn trace to the 
threatened objectives. As a result, a development activity (e.g., 
a preventative measure such as training) can be traced to the 
defects whose prevalence it decreases, and in turn to the 
increase in expected attainment of objectives that will accrue. 
Interestingly, the DDP model is capable of showing the net 
benefit of early-lifecycle risk-reduction measures in terms of 
both their improvement to the ultimate quality of the final 
product, and their net reduction in development costs (because 
the prevention or early detection of problems often saves upon 
their much more costly repair should they be discovered later 
in the lifecycle). (For examples drawn from the software 
assurance domain, see [ 5 ] ) .  

In order to attain the above benefits, it is necessary to (i) 
gather the information ( e g ,  the information on the risk- 
reducing effectiveness of the various options), (ii) perform the 
appropriate calculations with that information, and (iii) present 
the results in such a way as to support decision-making over 
those options. We discuss these next. 

2.2 Information elicitation 

The DDP approach requires gathering information that 
would not normally be asked for, in particular, the information 
on the risk-reducing effectiveness of the various options. In a 
traditional risk assessment, what would be asked for would be 
the risk status of the artifact itself (e.g., the reliability 
anticipated of an appropriately qualified part purchased from a 
trusted vendor). Instead, the DDP approach calls for asking for 
the risk-reducing effectiveness of the steps that went into that 
artifact’s construction and qualification. It takes additional 



Figure 2 - linkages among DDP concepts of an actual DDP study 

time and effort to gather this information. In practice we 
perform detailed information gathering on just those aspects 
pertinent to the case at hand - typically those which represent 
the novel aspects of the design being studied. 

For example, one of our studies was applied to determine 
the risks of using a terrestrial technology in a space setting, 
with the objective being to determine the set of qualification 
tests needed to perform on the candidate technology. The 
focus of concern was on whether the technology would 
survive the temperature swings if used on the surface of Mars 
(where the dayhight temperature swings are quite large, and, 
relative to Earth, have unusual low points). Thus we spend the 
majority of the time and effort identifying potential failure 
modes that would be caused by temperature swings, and 
assessing the effectiveness of various prevention and detection 
measures against those failure modes. We spent relatively less 
time and effort on other failure modes (e.g., that the 
technology would exceed the mass and size limitations) 
which, while no less important, were felt to be better 
understood. To get an idea of scale, this study (a fairly typical 
one) took into account 50 distinct objectives, 31 defects, and 
58 options for development practices. The connectivity 
between these items is seen in Figure 2. The top row of circles 
represent the 50 objectives, the middle row of circles the 31 
defects, and the bottom row of circles the 58 options. 
Approximately 500 quantitative impact links connected 
defects to objectives, and 300 quantitative effect links 
connected options to defects. 

Gathering this amount of information is typically done in 
several half-day sessions, during which experts representing 
each of the disciplines involved are simultaneously present. 
The DDP software helps by allowing for on-the-fly capture of 
information as expressed by the experts. For more details, see 
[a 
2.2 Risk calculations 

Calculation over the accumulated information is done by 
the DDP software. Because the DDP risk model is relatively 
simple (albeit in practice involving hundreds or thousands of 
items), for a given selection of options it is fast to compute 

the cost and benefit - typically less than one second on a 
modern-day laptop computer. 

2.3 Decision making 

The purpose of gathering and calculating with this 
information is to help in decision making. The primary area of 
decisions that this approach supports are those of which 
options to select, the issue being that in most circumstances 
the cost were all the risk-reducing options to be selected 
would far exceed the available resources, hence the need for 
judicious selection among those options. On occasion it 
becomes apparent that, for a limited amount of resources and a 
set of high expectations for objective attainment (both of 
which are recurrent phenomena in our setting), there does not 
exist any selection from among the options that stays within 
the resource limits and achieves the requisite levels of 
objective attainment. In such situations another option is to 
discard some of the objectives (i.e., reduce expectations). In 
our studies of technologies, this may correspond to limiting 
somewhat the intended range of application for the technology 
in question. At the project‘mission level, this may 
corresponding to discarding, or downgrading, some of the 
overall objectives. In our setting this process is often referred 
to as “descoping”. 

The key to enabling this kind of decision-making is the 
calculation of cost and benefit of a given selection of options. 
As mentioned above, this is speedily performed by the DDP 
software. The DDP software offers several ways of visualizing 
the information calculated from a DDP model, discussed next. 

2.3 Information visualization for decision-makers 

Several forms of visualizing the results are supported to 
enable human decision makers understand the status of a 
given selection of options: in addition to displaying the overall 
figures of cost and benefit, DDP also can display the status of 
individual elements - for objectives, the degree to which each 
objective’s attainment is detracted from by the extant risks; 
for risks, the sum total reduction in objective attainment 
attributable to each of the risks; for options, the increase in 



objective attainment that accrues from the selection of that 
option (because it decreases risks’ severities andor 
likelihoods, and hence leads to increased objective 
attainment). 

The DDP software employs straightforward bar-chart 
presentations of these sets of information. An example is seen 
in Figure 3, where the status of 3 1 risks is shown as a series of 
bars: the height of the green bars indicate the initial risk levels 
(were no mitigation options selected), while the height of the 
red bars indicate current risk levels, as reduced through the 
current selection of mitigation options. Bar charts such as 
these are appropriate for detailed scrutiny of the risk-reducing 
effects of a single selection of mitigation options. For 
example, from this bar chart it is obvious that risk number 1.4 
1 m r o  
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Figure 3 - bar chart of risks’ status 

is one of the most serious ones, and remains completely 
unmitigated. 

These kinds of bar charts can also be used to compare a 
pair of risk mitigation option selections. An example is seen in 
Figure 4, where some changes have been made to the selection 
of mitigations; any decrease to risks (from the status shown in 
l o r n  
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Figure 5 - risk status display of several option selections 

DDP software, using which we can automatically locate near- 
optimal selections of mitigation options. For example, for a 
given cost bound, we use heuristic search to locate the 
selection of mitigations that maximizes attainment of 
objectives while costing no more than that cost bound. Our 
current implementation uses simulated annealing [7] as the 
heuristic search mechanism. We have also experimented with 
Genetic Algorithms, and a form of machine learning. 
Generally, these take several minutes to arrive at a reasonably 
near-optimal solution. The course of one such heuristic search 
is seen in Figure 6 .  In this chart each point represents an entire 
selection of mitigation options; it is located with respect to the 
horizontal axis based on its cost (as computed by DDP) and 
with respect to the vertical axis based on its benefit (objectives 
attainment, again as computed by DDP). In this example the Figure 4 - bar chart risk comparison 

Figure 3) is shown in yellow, while any increase to risk is 
shown in black. 

For detailed scrutiny of several alternate risk mitigation 
option selections we switch to use of Kiviat charts (a.k.a. 
“Spider” charts). An example is seen in Figure 5 ,  showing the 
individual risks’ status corresponding to three selections of 
mitigation options (the points on the radial lines joined by the 
blue, purple and black line segments respectively), plus the 
completely unmitigated risk status (indicated by the green line 
segments). Further out along a radial line denotes a larger 
value (in the actual DDP tool, a numerical scale is located on a 

Hand-selection and detailed scrutiny of mitigation options 
is not necessarily the most effective way of arriving at an 
optimal selection of mitigations. The challenges stem from the 
sheer number of possible selections (for 58 mitigation options, 
there are 258, approximately lo”, possible selections), and the 

options (clearly evident in Figure 2) ,  a recurring phenomena. 
In response, we have incorporated heuristic search into the 
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Figure 6 - heuristic search 



Significant improvement possible Sweet spot! *... Region of diminishing returns 

i 

a m -  

. .  . ‘  
LowCost, . . High cost, 

, Low%emfi t  lmmoD - sod XDDmD Low %t?neflt 

search was set to locate selections costing no more then $1 
million, denoted by the vertical green line; thus only the points 
on or to the left of that line are acceptable cost-wise, and the 
best of these are those highest up. Note: the chart plots all the 
points explored in the course of the heuristic search, including 
those which exceed the cost bound. Color reflects the progress 
of the search itself. For more details of our studies of search 
techniques in this setting, see [8]. 

In order to gain an understanding of the overall 
costhenefit tradespace, we use a series of heuristic searches 
spaced across the cost spectrum. This is computationally 
expensive, taking several hours on a typical DDP dataset. The 
plot, for the same dataset as used in the previous figures, is to 
be seen in Figure 7. Each of the approximately 300,000 
individual points in the black “cloud” (a single point color is 
used throughout) corresponds to a selection of mitigation 
options. For any given cost (position along the horizontal 
axis), the optimal solutions (selection of mitigation options) 
are those that lie closest to the top of the chart. Hence the 
upper boundary of the black cloud indicates the optimal 
frontier - also referred to as the “Pareto front” [9]. This is very 
revealing as to what levels of objective attainment can be had 
for varying levels of funding. Apparent are phenomena such 
as a “law of diminishing returns”, where the frontier levels off 
- increasing the funding only marginally increases the 
possible benefit. Conversely, at low cost levels, only modest 
increases in funding lead to significant improvement in the 
benefit that can be attained. 

A wealth of information underpins these charts. For 
example, in Figure 7 each of the hundreds of thousands of 
points represents a distinct selection from among the 58 
mitigation options. We have explored mixtures of further 
visualization and computation to gain additional insights from 
this data. In [lo] we describe using metrics of “difference” 
between selections (based on the differences between the 

options they each employ) to identify interestingly dissimilar 
designs and clusters of designs. In [11] we describe a 
visualization that highlights the contributions of individual 
mitigation options within the costhenefit tradespace. To date 
we have preferred to build these capabilities into the DDP tool 
itself, but have also begun to experiment with utilizing 
sophisticated information visualization capabilities that others 
have built, e.g., we have experimented with ATSV (the ARL 
Trade Space Visualizer) tool from the University of 
Pennsylvania [ 121 to examine large sets of selections. 

3. EVOLUTIONS OF THE DDP MODEL TO EXTEND ITS 
REPRESENTATION OF DESIGN 
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Cost = cost of Mitigations & Repairs 

Figure 8 - fault trees within the DDP model 



Figure 9 - actual DDP model with fault trees 
Our core model, discussed above, has a relatively simple 

representation of risk (equivalently, defects) - atomic entities 
that were independently related to the objectives they 
detracted from, and the mitigation options (e.g., standards, 
tests, analyses) that would reduce those risks. We recognized 
the need to expand our model to better represent designs. We 
have explored two paths towards this end: elaborations within 
the DDP model itself, and interfaces to complementary 
models. 

3.1 Elaborations within the DDP model - realization 

The key step we have taken in this direction is 
introduction of more structure into the representation of the 
risks in our model. We adopted the notions of fault trees [ 131, 
in particular the “And” and “Or” gates from which fault trees 
are constructed. In place of the simple layer of atomic risks, 
we now have fault tree structures, as sketched abstractly in 
Figure 8. 

The root nodes of these fault trees represent failures with 
potential for impact on objectives. Their likelihoods are 
computed from the structure of the tree, and the likelihoods of 
the leaf nodes. Thus in DDP, the links that connect risks to 
objectives now connect the roots of fault trees to the 
objectives, where occurrence of those root events would 
detract from the attainment of those objectives. (On occasion 
it is also appropriate to link non-root nodes of a fault tree to 
objectives). The unique feature of DDP - its explicit treatment 
of mitigation options linked to the risks they effect (generally, 
reduce) - is retained in this elaboration; the mitigation options 
are linked to the appropriate nodes in a fault tree, depending 
on their nature. When a mitigation is of the kind that reduces 
the severity of a risk, it is connected to the root of the fault 
tree, and serves to diminish the severity of the impacts that 
fault has on objectives. When a mitigation is of the kind that 
reduces by prevention the likelihood of adverse events (faults), 

it is linked to the leaf-nodes representing those faults, and 
(when selected) serves to decrease their likelihoods of 
occurrence. Since the likelihoods of the root nodes are 
calculated from the structure of the fault tree, and the 
likelihoods of the leaf nodes of the tree, effecting the 
likelihoods of leaf nodes is a way of effecting the likelihoods 
of the root nodes, and therefore their overall expected 
detraction from objectives. Finally, when a mitigation is of the 
kind that reduces by detection and repair the likelihood of 
adverse events (faults), it is linked to whatever level in the 
fault tree that detection is applied. For example, if the leaves 
of a fault tree represent potential faults in individual 
components, then unit testing of a component (followed by 
repair of any problems found) will yield a net decrease in the 
likelihood of such faults remaining in that component. 
Similarly, if a system test is performed, any problems it finds 
will be repaired in the components themselves, so the net 
result is again a net decrease in the likelihood of the faults 
remaining in those components, and hence in the system. For 
further details, see [14]. 

An illustration of this from a DDP application is shown in 
Figure 9. Just barely visible in this figure are tiny logical fault 
trees among the middle “risk” layer. The considerations that 
stemmed from a multitude of risk mitigations options in the 
original kind of DDP models continue to apply here - namely, 
the challenge of determining cost-effective selections. 
Fortunately, having extended the DDP calculations of risk to 
perform the fault tree likelihood calculations, DDP’s other 
mechanisms continue to apply. In particular, optimization 
utilizing heuristic search is still available. The introduction of 
fault trees into the risk layer complicates the internal DDP 
calculations (of risk likelihoods, and therefore of benefit, 
measured as the sum of objective attainment levels), but from 
the point of view of the optimizer, a DDP model continues to 
be utilized to compute the cost and benefit of a selection of 
mitigation options, just as before. 



We are experimenting with ways to give the users 
detailed insight into the individual contributions of the 
elements of the fault tree structures themselves. One of these 
uses color-coding of the fault tree elements to indicate 
likelihoods. This is just barely discernable in Figure 9 - to 
show this better, Figure 10 presents a “zoom-in” to a small 
portion of the fault trees (the left end of those in the larger 
figure). The colors are allocated on a red-to-green spectrum, 
with red representing the higher likelihood values, green the 
lower ones (in the actual DDP tool, a numerical scale is 
located on a separate portion of the display) . Thus we can see 
that the red-colored “Or” gate is one of the larger contributors 
to likelihood in the visible portion of this structure; in turn, its 
leftmost child is an orange color, whereas the other two 
children are colored with greenish tints - hence we can see 
that its leftmost child is the most likely of the three. 

3.1 Elaborations within the DDP model - utilization 

Having added fault trees to the DDP model, we use them 
to expand DDP’s ability to represent design and development 
alternatives. 

The most obvious of these is to represent the structure of 
a proposed design in the manner for which fault trees are 
traditionally applied. That is, the manner by which fault(s) in 
combination give rise to failures (e.g., as in systems with built- 
in redundancy to make them fault tolerant). 

We also have found a use for them to represent design 
alternatives. To represent a design alternative, we add both the 
purpose that design fulfils as a risk (which more intuitively 
could be thought of as a problem), and the design option itself 
as a mitigation option that, if selected, mitigates (solves) that 
risk. 

For example, if we have need for electrical power, then 
“lack of electrical power” is added as a DDP risk, and the 
design alternatives for providing power are added as DDP 
mitigations, each linked to that same risk. Thus if we didn’t 
select any of those design alternatives, the “lack of electrical 
power” risk would be unmitigated, and presumably detract 
from attainment of all the objectives requiring electrical 
power. If we select one of those design options, the “lack of 
electrical power” risk will be mitigated. If we select more than 
one of those design options, the “lack of electrical power” risk 
will be doubly (maybe with no net improvement over singly) 
mitigated. If one power source is sufficient, and since, 
presumably, the costs of selecting more than one will 
accumulate, the usual way of locating cost-effective mitigation 
option selections will home in on the choices among single 

Figure 10 - zoom in on fault tree elements 

selections of power sources - i.e., handle them as alternatives. 
We can also represent risks specific to a given design 

alternative (for example, some kinds of electrical power 
sources may be potential sources of dangerous levels of heat, 
which would pose risks to other components in the design). To 
do this, we include those risks as DDP risks, but give them an 
initial likelihood of occurrence of zero. Then, each design 
option whose selection would trigger that risk is linked to it by 
a DDP effect link which increases, rather than decreases, the 
risk likelihood. DDP effect links that increase risks were 
already present within the DDP model, intended to represent 
things like tests with potentially detrimental side effects (e.g., 
vibrating a piece of equipment in a shake test may be an 
effective way of revealing the presence of certain defects, but 
may itself create damage, especially if done incorrectly). Here 
we make use of this same capability to turn “on” risks. 

The net result is that we are able to represent within the 
same DDP framework both development practices 
(preventions, tests, analyses etc) as options, and design 
alternatives as options. 

To date we have dealt primarily with risk factors of 
expected loss, as described herein. We have recently 
incorporated the notion of ranges of values (of defect 
likelihoods, impacts, effects and costs). Using these we can 
calculate best-case and worst-case extremes. For example, the 
best-case extreme is calculated assuming the low-ends of 
defect likelihoods, the low-ends of impact values, the low- 
ends of costs, and the high-ends of effect values (high-ends of 
these because the higher effect value reduces a defect more, 
and so is the best-case). However, this incurs the extra time 
and effort to elicit ranges (rather than a single value). We are 
able to minimize this by first eliciting just the expected values, 
performing sensitivity analysis on them, and eliciting ranges 
for only those values to which the overall computations are 
most sensitive. 

As pointed out by a reviewer of this paper another avenue 
worthy of exploration is of time-dependent failure rates, as 
would be needed for calculations of availability and reliability. 
This represents an area of future work. 

3.2 Interfaces to complementary models 

We have also explored an approach in which we interface 
to other models, ones that already have in place structures 
(such as fault trees and event trees) but which lack an explicit 
representation of options. This allows us to call upon the 
power of those other models to represent and reason over 
those structures, while retaining our ability to explore 
(compare, optimize over, etc) options and their combinations. 

Our most extensive such study to date has been 
connecting DDP with the dynamic fault tree tool 
GalileoiASSAP, developed at the University of Virginia: [ 151 
and [16]. This connection is sketched in Figure 11. Fault trees 
are constructed in DDP, written out in the textual format that 
the Galileo/ASSAP tool understands, opened up in 
GalileoiASSAP for it to evaluate likelihoods, and the 
evaluation results written back into a file for DDP to read. We 
have made this information flow an automated process. 



The net result is that DDP is able to utilize the fault tree Kenneth Hicks, Jelly Moran, Irem Tumer & Stephen Prusha 
calculations already implemented in GalileoiASSAP. In the for making this work possible, and Profs. Joanne Dugan and 
case of large fault trees, with numerous “shared” nodes (where Kevin Sullivan of the University of Virginia for their 
the same fault plays a role in multiple places within a tree), the cooperation in the DDP-Galileo/ASSAP connection work. 
Galileo/ASSAP implementation is much more efficient than 
DDP’s, making use of binary decision diagrams (BDDs) to 
solve static sub-trees [I71 rather than the naive DDP 
implementation. Meanwhile, the DDP contribution to this 
pairing of the two tools is its representation of the risk 
reducing mitigations as options, and the built-in simulated 
annealing optimizer can be brought to bear. 

In ongoing work we are following a similar approach to 
connect DDP to another tool, one that represents event- 
consequence trees. Again, the purpose is to take advantage of 
the pre-built analysis capabilities offered by that other tool, in 
conjunction with DDP’s explicit representation of risk 
mitigations as options. 
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