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APPLICATIONS OF ERGODIC THEORY TO COVERAGE
ANALYSIS

Martin W. Lo~

The study of differential equations, or dynamical systems in general, has two
fundamentally different approaches. We are most familiar with the construction of
solutions to differential equations. Another approach is to study the statistical behavior of
the solutions. Ergodic Theory is one of the most developed methods to study the
statistical behavior of the solutions of differential equations. In the theory of satellite
orbits, the statistical behavior of the orbits is used to produce “Coverage Analysis” or
how often a spacecraft is in view of a site on the ground. In this paper, we consider the
use of Ergodic Theory for Coverage Analysis. This allows us to greatly simplify the
computation of quantities such as the total time for which a ground station can see a
satellite without ever integrating the trajectory, see Lo . More over, for any quantity
which is an integrable function of the ground track, its average may be computed
similarly without the integration of the trajectory. For example, the data rate for a simple
telecom system is a function of the distance between the satellite and the ground station.
We show that such a function may be averaged using the Ergodic Theorem.

THE SATELLITE COVERAGE ANALYSIS PROBLEM

The study of differential equations, or dynamical systems in general, has two
fundamentally different approaches. The more familiar approach is the construction and
study of the solutions to differential equations. Another approach is the study of the
statistical behavior of the solutions. Ergodic theory is one of the most developed methods
for studying the statistical behavior of the solutions of differential equations. See Sinai’
and Arnold * for references and an introduction to this field. In this paper, we apply these
methods to the Satellite Coverage Analysis Problem.

The Satellite Coverage Analysis Problem is the study of the statistics of interactions
between a satellite and other objects in space. The most common example of this problem
is the analysis of the visibility of satellites to ground stations on Earth. A more complex
problem is the analysis of the coverage between a rover on Mars and the Deep Space
Network on Earth through a telecommunications spacecraft orbiting Mars such as the
Mars Telecommunications Orbiter. In this paper we use ergodic theory to compute
satellite coverage performance. This approach greatly simplifies the computation of
quantities such as the total time for which a ground station can see a satellite without
integrating the trajectory. This was shown by Lo 12 More over, for any quantity which is
an integrable function of the satellite position or ground track, its average may be
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compuied similarly without the integration of the trajectory. For example, the data rate
for a simple telecom system is a function of the distance between the satellite and the
ground station. In this paper we show that such a function may be averaged using ergodic
theory.

The Coverage Analysis Problem, at its simplest, is the study of the visibility
properties of a satellite in orbit around the Earth from a point on Earth. In Figure 1, we
depict the satellite ground track of a circular orbit and the circular region of visibility
from a point P (at the center of the circle) on the Equator in the Pacific Ocean.
Geometrically, whenever the satellite ground track enters this circle, it is in view from the
station on the Equator. We define the following variables for this discussion. Let D be the
circular region of visibility of a spacecraft from a ground station centered on the Equator
in the Pacific Ocean. Let A be the annulus region defined by the ground tracks of the
spacecraft. Let (D) denote the area function, it this example, the area of the region D on
the sphere. See Figure 1.

Simplistically, one may think that the percentage of time T spent by the satellite in
the circle D would be well approximated by the area of the intersection between the circle
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Figure O The ground tracks of a circular satellite forming the annulus A and the circular
coverage region D of a point P on the Equator in the Pacific Ocean. The orbital radius is
7714.14 km and the inclination is 28.5 deg. The circle centered at P on the equator labeled
CASE 4 is the station maks of a fictitious station on an ocean platform with longitude
equator to that of the DSN Goldstone Station.



and the annulus defined by the ground track, divided by the area of the annulus defined
by the ground track, i.e. T would be equal to the expression: X (DN A)/X(A).In
fact, this is a very bad approximation. A clue as to why this is a bad approximation is
given by the density of the ground tracks which depends on the latitude and is quite
uneven. Moreover, the speed of the nadir of the satellite along the ground track is not
constant because the Earth is rotating. Also, the orbital plane is precessing due to the J,
gravity harmonic. But all is not lost.

The heuristics of this reasoning is intuitively correct. But, instead of the ratio of the
geometric areas of the two regions mentioned earlier, we need to weigh the area
depending on the ground velocity and some how account for the expansion and
contraction of the ground tracks. This new weighted area function is technically called an
“invariant measure > usually denoted by “p”. As a weighted area element following the
satellite nadir along the ground track, the area of the element is preserved. Hence the
weighted area element is invariant under the motion of the satellite ground track. When
such a measure of the area is available, then indeed the percentage of time spent by the
satellite in the circular region is given by the measure of the intersection of the circular
region with the annulus, divided by the measure of the annulus, i.e. T is equal to the

expression: p (A ND)/p(A).

Such a measure was constructed in Lo . However, for this to work, it is necessary
that the ground tracks not be periodic. But it is shown that even when the ground track is
periodic, provided the repeat cycle is not too small, this approximation is fairly good.
This means that instead of finding the view periods from a propagated trajectory to
compute the amount of time a satellite is in view of a ground station, also called the “time
average”, we can replace this by a simple area integral with a weighted area. This
weigted average is called the “space average”. This in essence is the Ergodic Theorm that
we can replace time averages by space average. Typically, time averages are more
difficult to compute since it requires the solution of differential equations. Where as the
space average is much easier to solve as it requires only a single area integral. Note, for
the space average, J, is only used for the verification that the orbit ground track is not
periodic. It never enters into the area integral.

We should note here that we are assuming that the satellite orbit is being maintained
so that effects of the Earth gravity’s higher harmonics, the luni-solar perturbation, solar
radiation pressure, and drag are being compensated. The maneuvers will perturb the orbit
node, but the orbital elements such as semimajor axis, eccentricity are essentially
preserved. Assuming the maneuvers are sufficiently random without a bias that would
cause the ground tracks to become periodic in some fashion, this theory applies to the
coverage problem.

ERGODIC THEORY

" Measure is a generalization of the concept of area and volume for sets of arbitrary dimensions.



Ergodic theory has its origins in the study of statistical mechanics in the 19" centu-
ry. Maxwell, Boltzmann, Gibbs, and Poincaré were the first to propose a statistical
approach to study differential equations. A classical problem is the following: Given a
particle moving randomly within a closed and bounded box B; at time O the particle is
known to be in the subset C of our box B; how frequently will this particle visit the subset
C within our box as the time goes to infinity? Poicaré’s Recurrence Theorem tells us that
the particle will repeatedly visit the set C infinitely often (see Sinai’). In fact, the
probability that the particle can be found in C is given by the volume of the set C divided
by the volume of the box B. This is geometrically intuitive.

The fact that the probability the particle can be found in the set C is given by the
quantity Volume( C ) / Volume ( B ) is a profound result. Our original question is about
the time average of the particle visiting the set C; our answer is that it is given by the
space average of the set C, i.e. its volume normalized by the total volume of the box B.
This equivalence of “time average” with “space average” is at the heart of ergodic theory.
The reason this is so powerful is because we can replace knowledge of the time history of
a particle (its trajectory) in a dynamical system (a set of differential equations) by a
definite integral over subsets within the phase space (such as the 6 dimensional state
space of position and velocity for a satellite). This means that without integrating the
differential equations, we can obtain valuable statistical information about the dynamical
systems by computing definite integrals which are often much easier to do.

In order to apply ergodic theory to a dynamical system described by a set of
differential equations, one must first obtain a volume function on the phase space which
is invariant under the trajectory flow @(x)' prescribed by the differential equations. This
is known as an “invariant measure”; it is just a volume element weighted by a function to
compensate for the contractions and expansions of the trajectories in the phase space. The
construction of the invariant measure is the hard part of the problem. Fortunately for our
problem, this has been done in Lo ! We denote this measure, or the volume function by
1, which is normalized to give a total volume equal to 1. We indicate the differential
volume element by dii. We now define more precisely what we mean by time and space
averages.

The time mean < { > of a function { is defined by:
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The space mean of a function f is defined by:

F:LfmmL (2)

" The flow @(x) is the solution to the differential equation at time “t” with initial condition “x in the phase
space. It describes the complete set of solutions to the differential equation. The analogy is to streamlines in
a fluid flow.



Here x is a point in the phase space M, and R is the set of real numbers. The fundamental
theorem of ergodic theory is the Birkhoff-Khinchin theorem (Theorem 6.4 in Arnold 8!
which simply states that the time mean (1) is equal to the space mean (2) for dynamical

systems. In other words, that < f > = f. We will not get into the details of the
necessary conditions for this theorem to hold; suffice it to say that for satellite motion
under the gravitation of an oblate planet, these conditions are satisfied.

THE SATELLITE VIEW PERIOD PRBLEM

We first review the results from Lo ' for the view period problem. Given a ground
station located at “x” on Earth, we want the amount of time the ground station is in view
of the satellite. We assume the satellite is moving in a circular orbit about an oblate
planet with J, perturbation resulting in the drifting of the ascending node of the orbit.
However, to compute the station visibility, we treat the planet as a sphere. In order for the
Birkhoff-Khinchin Theorem to apply, we must further assume that the orbital ground
track is not repeating. Although this excludes some of the most important satellite orbits,
all is not lost. For those orbits with short ground track repeat cycles, the statistics may be
quickly computed using the standard trajectory integration approach. For those orbits
with long repeat cycles, the ergodic theory provides a reasonable approximation for quick
analyses as noted in Lo '. The interesting thing is that the only place where the value of J,
is needed is in the verification that the satellite ground track is non-repeating. The
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Figure 2. This shows the geometry of the station mask which is determined by the
altitude of the spacecraft.



expression for the invariant measure itself, di, does not include the J coefficient. The
long-term station view period p is defined by Lo ' as

p = Jim L2 3)

where P(T) is the total time the satellite is in view of the ground station from time O to
time T. In other words, p is the fraction-of time the satellite can see the ground station;
and pT gives a good approximation for value of P(T) for sufficiently large T.

In this case, the function f (x) is the characteristic function of the station mask, A
(e.g. see Figures 1 and 2). In other words, f (x) is 1 when x is in A and O otherwise. The
set A is the circular region on the planet centered around the ground station defined by
the minimum elevation angle € of the ground station. The resulting space average integral
is given by

p = ["swhpdp ., )
where
g(@) = 2 acos[(cos ff, —sin@sing,)/cos@,cos @], (5)
h(g) = cos@/(2724/sin®i—sin’ @),
and
¢ o = station latitude, (6)
0o = station longitude,

Bo = station mask angular radius = 90° - € — asin( Rg cos(€) / R),

Rg = planet radius,

R = spacecraft circular orbit radius,

€ = minimum station elevation angle,

i = spacecralt orbit inclination, assume always = 0,
Li = i(fori



Orkhit 2ltitude:

0.0

Station Lat4s.0
-4

Figure 3. The total visibility for any satellite at 3900 km altitude to every point on the
Earth. The X-axis is orbital inclination, the Y-axis is station latitude, and the Z-axis is
the total visibility period in minutes per day.

Figure 3 above shows the power of this approach. We are able to provide the global
coverage properties of all circular orbits at 3900 km altitude to every point on the Earth
using the visibility ratio provided by equation (7). This required a few seconds to
compute. Where as if we were to compute this using the integration of trajectories, it
would require many hours, perhaps even days of computation to provide such a result.
The simplicity of the equations allows analysts to use them in tools such as Excel or
Matlab for quick studies of coverage analysis.Since this is a first-order approximation,
the results around critical inclination are inaccurate.

THE DATA TRANSMISSION PROBLEM

The Data Transmission Problem refers to the problem of estimating the total
volume of data transmitted between the satellite and the ground. For this application of
the ergodic integral (6), we assume the transmission is from the ground to the satellite;
for example, a Mars rover transmitting data to a telecommunications relay satellite
around Mars for eventual transmission to the Earth. Here we examine the data
transmission from the ground to the satellite only.



We assume the data transmission rate is f (r), where “r” is the distance between the
spacecraft and the ground station. Then according to the Birkhoff-Khinchin Theorem, the
average data rate is given by the following integral

s = [0 [ rome)dddg, ®

glp)/2

and the average volume of data transmitted for the period T is just T3.

Suppose we assume the data rate is the following simple expression
f(r) = w/r* MBPS (megabits per second), 9)

where k is a constant characterizing the link. We need to express r in terms of the
integration variables ¢ and 0 (latitude and longitude). This is simple using spherical
coordinates. Suppose the satellite ground track is at the latitude and longitude (o, 0), this
means the satellite is at the location S = (R, ¢, 0) in spherical coordinates rotating with
the Earth. Similarly, the ground station is located at G = (Rg, @ o, 9 ¢ ). The distance r
between S and G is just |S — G| which may be easily computed by converting to Cartesian
coordinates.

For more complex data transmission rate functions, one simply follows the recipe
outlined above in equation (8) and proceed accordingly.

CONCLUSION

The Satellite Coverage Problem is a challenging problem even for simple circular
orbits. This is because the coverage is both dynamical and combinatorial in nature. To
provide statistical analysis using conventional methods requires the computation of the
trajectory geometry for long durations. The use of ergodic theory allows one to estimate
some of these statistical parameters without trajectory computations at all. One simply
replaces the time average process by a space averaging process which results in definite
integrals that can be easily and quickly computed numerically. The time averaging
process is tedious and consumes a tremendous amount of resources being
computationally and time-wise, requiring serious sofiware development. Whereas the
space averaging process is easily implemented in Matlab or Excel spreadsheets. For
architectural studies, parametric what-if scenario analyses, the ergodic approach is
extremely attractive.

In this paper, we presented the measure Ic du as a surface integral in equation (7)
which is suitable for computing the space average of various quantities f (x ), where X is
the satellite state. By the ergodic theorem, this definite integral is equal to the time
average of the same quantity f (x(t)). As an application, we used the data transmission
rate from a rover on Mars to a telecommunications satellite orbiting Mars in a circular
orbit with non-repeating ground track given in equation (8).



For elliptical orbits, the problem is much more challenging. In addition to the
variation in the node, the argument o f p eriapsis i s also e volving. H ence the a veraging
process must take both effects into consideration. This increases the dimensions of the
problem. Once again, the construction of the invariant measure on the proper parameter
space is the hard part of the problem. The resulting multidimensional integral over space
may be easily implemented using montecarlo integration techniques.
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