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Distributed real-time simulations provide important timing validation and hardware in- 
the-loop results for the spacecraft flight software development cycle. Occasionally, the need 
for higher fidelity modeling and more comprehensive debugging capabilities - combined 
with a limited amount of computational resources - calls for a non real-time simulation 
environment that mimics the real-time environment. By creating a non real-time 
environment that accommodates simulations and flight software designed for a multi-CPU 
real-time system, we can save development time, cut mission costs, and reduce the likelihood 
of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation 
Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time 
Application Interface) into an event driven simulator that runs in virtual real time. Designed 
to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI’s 
many capabilities, VERSE was implemented with remarkably little change to the RTAI 
source code. This small footprint together with use of the same API allows users to easily 
run the same application in both real-time and virtual time environments. VERSE has been 
used to build a workstation testbed for NASA’s Space Interferometry Mission (SIM 
PlanetQuest) instrument flight software. With its flexible simulation controls and 
inexpensive setup and replication costs, VERSE will become an invaluable tool in future 
mission development. 

I. Introduction 
s space technology becomes more advanced and flight applications more complex, the need for high fidelity A and real-time simulations constantly increases, as does the computational load required to support them. 

Expensive hardware costs have traditionally limited developers’ access to hardware in-the-loop testbeds, or simply 
rendered them inaccessible except during very late stages of the software development cycle. The size, complexity, 
and cost constraints of today’s flight applications call for many more developers collaborating to work on different 
components of the software and hardware simultaneously. Finding a way to test and integrate these components in a 
simulation environment becomes essential in order to increase the availability of early testing tools, thus reducing 
the risk of rework, unanticipated interactions between software and hardware, and even faulty sofiware causing 
damage to critical hardware. Distributed simulations’ can be used to meet the computational needs of modem flight 
and instrument software development. Non real-time simulation testbeds are used to ensure algorithm validity and 
correct data flow prior to integration with real-time simulation testbeds, which are typically used to provide timing 
and software validation. The desire to fly what you test, and test what you fly is enabled by a supporting simulation 
infrastructure that requires little or no changes to flight code to switch between different testbed types. 

A. Goal of VERSE 
The VERSE environment is designed to ease the transition between the early software development environments 

for flight software (FSW) and simulation & support equipment (SSE) for flight missions by providing an API- 
identical environment these types of s o h a r e  between workstation testbeds and real-time testbeds. By eliminating 
the need to re-code or conditionally compile for the different environments, VERSE reduces errors and increases the 
effectiveness of early testing. In addition, later high-fidelity simulations are often not ported back to the early 
software development environments due to cost and time constraints, which often forces late testing and problem 
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solving off of these platforms, or significantly reduces their effectiveness. By eliminating the need to port to a 
hfferent environment, VERSE increases the useful lifetime of software-only test environments throughout the life of 
the flight program. In addition, these “workstation testbeds” have much lower cost and much higher availability, and 
thus reduce the traditional bottlenecks associates with hardware-poor development environments. Even more 
ambitiously, by writing emulation layers as kernel-level drivers with identical APIs to the real drivers, the VERSE 
and associated emulators/simulators* eliminate even the need for recompilation of the SSE software, allowing a 
single binary release to run in the simulated hardware and hardware in-the-loop environments. 

E. Virtual time Simulation Model 
In fixed time-step 

simulation models, time advance in fixed increments and the system state is updated at the end of each time 
increment. In some cases (typically monolithic or single-CPU simulations and systems), time may be scaled by a 
constant factor, so that simulated time runs faster or slower than real time, but still at a constant rate (See Ref 9, 
section 4.3.4). This model may be inefficient when time steps are small and few or no state changes occur at each 
time increment, and these implementations normally run much more slowly than the real-time system due to the 
overhead involved in measuring and managing the flow of time. The simulation even in quiescent periods will 
consume computational resources, since the flow of time must be maintained. In discrete-event simulation models, 
time does not flow at a constant rate, but jumps hom one even to the next. In these systems an event is normally 
defined as the exchange of state information between different models, as these are the significant points that must 
be maintained in order to preserve the integrity of the simulation or testbed. In discrete-event simulations the system 
state changes instantaneously upon the occurrence of an event, at discrete points in simulated time that are usually 
not evenly spaced. This paper refers to the progression of the simulated discrete time points in the discrete-event 
simulator as virtual time3. In VERSE, virtual time advances by jumping from one scheduled task time to the next as 
soon as execution of the preceding task is complete. When multiple events are scheduled to occur at the same time9, 
the simulated virtual time remains unchanged until all the events scheduled for that time are executed4. Also, as 
opposed to execution in real time where time advances at a constant rate, virtual time sirnulation skips over unused 
periods between consecutively scheduled tasks. This makes it possible for the simulation to progress much faster 
than real time when large time gaps exist between events or when event executions require minimal computation**. 
The actual speed gain (or loss) depends largely on model complexity, task-switching times, and level of parallelism 
in the original system. Since there are no hard time deadlines, a virtual time simulator can be paused after the 
execution of any particular task, stepped to aIlow execution of the next scheduled task, or continuously run so all 
subsequent tasks are executed. These features provide the user with enormous control over the simulation. 

Our real-time testbed simulators necessarily operate as fmed time-step simulations’. 

C. RTAI 
VERSE is an extension of the Real-Time Application Interface’ (RTAI) scheduler. To understand how VERSE 

works, a brief review of what RTAI is and what it does is in order: 
RTAI is an open source project designed to supply features of an industrial-grade real-time operating system on 

top of the powerful GNWLinux environment. The code is constantly being improved and is extensively tested by a 
world-wide community, but the project uses the Debian development modeltt for releases to ensure users have 
stable code. The name (“Application Interface”) seems to imply RTAI is just an API, but the code actually 
implements a real-time Linux kernel extension that runs real-time tasks seamlessly along side of the host Linux 
system. RTAI has its own scheduler and provides a full set of real-time inter-process communication mechanisms. 
Altogether, RTAI provides deterministic timing - “hard” real-time scheduling with nominal jitter on the order of 
microseconds on typical systems. 

This problem is somewhat unique to distributed simulations. In a non-distributed system two events cannot occur 
at the same physical time, because one of them will have higher priority, thus excluding simultaneity. So, for 
instance, if two different models need to execute at time T, only one of them actually will, and the other will begin 
execution immediately following, In a scaled-time simulation computational resources are constantly expended to 
track these overlaps, In a distributed simulation, many tasks can and normally do occur simultaneously, 

Which is normally the case. Real-time systems must leave gaps between high priority tasks to insure that 
variations in computation times do not cause violation of deadlines, so all tasks are planned around worst-case time 
constraints. 
tt There are three recognized development stages in the Debian model, each with it’s own release branch 
development, testing, and stable. 

** 
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RTAI’s enabling technology is ADEOS - Adaptive Domain 
Environment for Operating Systems6, another open-source project, 
whose premise is to use a nano-kernel inserted between operating 
systems and the hardware to eliminate direct hardware-dependent 
code in the kernel. The sole purpose of the nano-kernel is to 
dispatch hardware interrupts to the operating systems in priority 
order. Hosted operating systems, or domains, must register with the 
nano-kernel to get interrupts. Official Linux kernels releases are 
unaware of ADEOS, and so must be patched to interface with 
ADEOS. When this is done in concert with RTAI, the patchmg 
process ensures that Linux registers with the nano-kernel dispatcher 
at a lower priority than that of the RTAI scheduler. Thus, the RTAI 
scheduler gets hardware control before Linux, and RTAI tasks run 
before Linux tasks, ensuring deterministic timing. See Figure 1 for 
a diagram of the relationship between RTAI, Linux, and ADEOS. 

Real-time software developers have considerable design 
flexibility because RTAI tasks can be run from either kernel- or 
user-space. Kernel-space tasks offer the highest performance and 
are suitable for high performance or low-latency embedded 
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a-function that will be run as real-time task, much like 
VxWorks’ taskspawn() specifies a function to be run as a 
task. RTAI’s LXRT is a user-space interface that provides 
a symmetric MIEx that may be used by both real-time 
RTAI tasks and linux processes. A user-space process 
makes special calls at the beginning and end of code 
sections that need to operate in real time. When such 
sections are entered from a non-real-time context, the 
entire process is elevated to real-time status, and is 
scheduled as a real-time task until the section is exited. 
User-space tasks are useful for prototyping kernel tasks 
and when performance is less important than debugging 
capability. Under RTAI versions 3.0.x and up, the 
performance hit associated with LXRT has been 
significantly reduced, so much so that the decision 
between kernel-space and LXRT now depends primarily 
on other factors. 

The set of RTAI IPCs is extensive and complete - 
RTAI supports semaphores, messages, condition variables 
and a slew of other mechanisms. Furthermore, they are 
usable between kernel-, LXRT, and in some cases even 
user-space processes. A registry with character-string 
names facilitates the IPC object lookup on either side. 
Real-time data can also be queued on FIFOs for processing 
by a non-real-time process. Figure 2 shows some 
measurements of the exchange of several IPC types 
between kernel-space and user-space tasks. The tests were 

The RTAI LXRT and kernel-space API’s are symmetric, appearing identical to the user. A glue layer exists 
below the LXRT API that maps it into kernel-space calls. 
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nm on a machine with dual AMD Athlon 1800+ processors running Redhat Linux version 9.0 with an ADEOS- 
patched kernel. 

One of RTAI’s advantages is that it co-exists well with Linux. Hard real-time tasks can be running while users 
on the same machine run applications as normal, including intensive graphical tasks. To be sure, if the real-time duty 
cycle is too demanding, the non-real-time processes will be less responsive. ,However, outside those cases this mode 
is usefkl because it can be used to turn regular PCs into real-time development stations and testbeds. 

11. VERSE Design and Architecture 
VERSE uses the existing RTAI scheduler design as the basis for accomplishing our virtual time goals. The most 

efficient and effective design for VEFSE involved modifying the RTAI scheduler to seamlessly handle virtual time 
tasks and real-time tasks alike. rU this implementation, virtual time tasks use the same API calls as real-time tasks, 
so that application code does not have to be changed when switching between virtual time and real-time operation. 
Basing the virtual time scheduler within RTAI’s scheduler has an additional advantage: common implementations of 
task-control and scheduling architectures us POSIX threads and semaphores for process control and task switching. 
Compared to the context switch times of POSIX threads and semaphores that typically run at the kernel granularity 
in the worst case (10 milliseconds), RTAI’s context switch times are several orders of magnitude faster. Even 
though VERSE is a non-real-time simulation environment, utilizing such timing advantage will provide significantly 
faster simulation performance by reducing task-switching overhead, especially in environments where the base rate 
of the underlying models are very high, as is the case in the SIM Instrument simulation. We also wanted VERSE to 
be able to single-step tasks, enabling much more extensive debugging capabilities for the end user. Because the 
virtual time scheduler maintains inter-task deadlines and is not synchronized to wall-cIock time, users can 
effectively control simulation time to any granularity. Ultimately, this means the user has control to suspend and 
restart task-scheduling at the individual event level. Tasks can then be time-wise single-stepped and task simulation 
states can be reviewed before and after each task’s execution cycle. VERSE was designed with all the above goals in 
mind. 

Ideally, real-time and virtual time tasks should coexist in VERSE, requiring VERSE to maintain both real time and 
virtual time simultaneously. (Ths is ideal for setting real-time watchdog timers for preventing simulation runaway, 
or interfacing faster-than-realtime virtual time simulations with external real-time systems.) By controlling task 
mode (virtual- or real-time) via the existing RTAI task control structures, and adding a single new API to switch 
tasks in and out of virtual time, we can control how tasks are scheduled and which clock is reported when tasks 
request timestamps. The one problem experienced has been the extent to which RTAI provides highly optimized 
operation through extensive use of pre-compiler macros. Each of these macros needs to be found and modified to 
take the new dual-mode model into account. Doing so has had a destabilizing effect on the RTAI scheduler, so for 
now we decided it is currently acceptable for VERSE to only accommodate non-real-time simulations, since our 
current simulations have clean-cut goals in the real-time versus non-real-time environment. 

RTAI provides various schedulers for different platforms, based on the capabilities of the architecture and the 
needs of the user. These include two MultiProcessor (MP) kernel schedulers, a UniProcessor (UP) kernel scheduler, 
and an LXRT combined user and kernel space scheduler. VERSE is designed as an extension of the EXRT scheduler 
since it already handles multi-processor rnachmes and provides easy access horn both kernel- and user-space 
applications. Multiprocessor systems not only provide extra processing power for todays demanding and complex 
software applications, they also grant simulations more flexibility in distributing the workload. For example, one 
processor can be completely dedicated to running computation-intensive work while the other processor still can 
handle graphical user interface and less essential peripheral tasks@. 

Writing applications in user space using LXRT instead of kernel space has many benefits as well. Developing in 
user-space offers a layer of protection against crashing the OS when errors occur, since user-space tasks don’t have 
direct access to kernel services. Users also have access to a variety of debugging and development tools not 
available in kernel space, and it allows the testbed to run securely as developers need no special permissions to 
execute their software (which they would need to load kernel modules). Of course, user space applications will 
suffer some performance loss compared to kernel space, but in exchange for all the benefits, a few microseconds of 
extra latency is acceptable for a non-real-time application like VERSE. 

s;s In fact, the first thing a user typically notices when first transitioning to a multiprocessor system is that the OS 
rarely loses responsiveness. 
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Since VERSE is designed for simulations originally hosted in multi-CPU environments, it is import to address 
how tasks are run that are normally executed in parallel on multiple CPUs. In RTAI, LXRT tasks can be executed 
simultaneously by the available CPUs. In VERSE, executing virtual time tasks in parallel on separate CPUs would 
lead to synchronization errors due to the inability to know precisely when a CPU executes its task relative to another 
CPU. Here, the most straight-forward alternative has been chosen: all tasks are scheduled on a single CPU, and if 
two tasks are scheduIed to run at the same virtual time, the task that is first in the task queue will be executed first 
(FIFO). Thus, tasks that would normally run in parallel are run sequentially, but the virtual time remains the same 
until all tasks scheduled to run at that particular time are finished. With these design parameters defmed, it is 
possible to identify areas of the RTAI LXRT scheduler that require modification in order to implement VERSE. 

111. VERSE Implementation 
The RTAI scheduler is a complex and sparsely documented code base to work with. It is necessarily complex 

because the rigors and optimization required for low-latency real-time operation lead to difficult to read code, 
especially due to extensive use of pre-compiler macros. It is sparsely documented (unlike the rest of RTAI) because 
the internals of the scheduler is not an area the normal user of RTAI would venture into. After some examination, 
we found that the RTAI scheduler maintains three lists of task pointers: 

+ Complete list: a list containing pointers to all the real-time tasks created in RTAI. 
Timed list: a chronologically ordered list that points to all tasks scheduled to nm in the future. 
Ready list: a list ordered by priority containing pointers to tasks that are ready to be executed 
immediately"*". 

Each of these task lists is implemented as a circular list with the first - and also the last - task as the Linux kernel 
task. (Recall that in the ADEOSiRTAI paradigm the Linux kernel itself runs as the lowest-priority real-time task. 
The Lhux task pointer is used to pass control to the Linux operating system so nun-RTAI tasks can run. At each 
time tick, the scheduler determines which timed task(s) are ready to run based on the scheduled execution time of 
the tasks. Those that are ready are transferred into the ready list, and then all the tasks on the ready list are executed 
singly based on their priority. The Linux task has the chance to run only if no real-time ready tasks are ready in this 
interval, thus ensuring RTAI's priority over Linux. Periodic tasks are automatically rescheduled back onto the 
timed Iist after execution; a-periodic tasks reschedule themselves using a variety of methods. For multi-CPU 
machmes, the scheduler assigns a Linux task pointer to each of the CPUs and uses the pointer to access each CPU's 
unique set of timed list and ready list. 

VERSE adds a new virtual task list to the RTAI scheduler that contains pointers to the virtual time tasks as seen in 
Figure 3. These new tasks are identified through a new flag in the RTAI task structure, and the new virtual task list 
is implemented in the same way as the original RTAI lists: it is circular with the headtail of the list pointing to the 
Linux task. The RTAI scheduler was modified so that when the scheduler is called and no real-time tasks need to 
run at the current time, the scheduler pulls the first task off the virtual list and puts it onto the ready list. In order to 
have strict control over the execution of the v h a l  time tasks and ensure that tasks can be single-stepped, only one 
virtual time task is placed on the ready list at a time (contrasting normal tasks in RTAI where multiple real-time 
tasks can in reside on the ready list). Also, as mentioned earlier all virtual time tasks are run on only one CPU to 
ensure that they are executed in chronological order. 

I** 
Where immediately in this case actually indicates that the task desires to be executed at any time during the next 

basic RTAI interval, which turns out to be a very small time interval. 
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The most straightforward and least error-prone way to handle 
virtual time tasks in RTAI is to modify the functions that add, 
remove, and wake up timed tasks. These functions allow VERSE 
to replace real-time tasks with virtual time tasks cleanly and 
conveniently, without changing the RTAI API. When adding a 
task to be scheduled in VERSE, the scheduler places the task in the 
virtual list if the task’s virtual flag is set. In RTAI, waking up a 
timed task involves transferring it from timed list to the ready list. 
This process is modified in VEME to transfer a vimal time task 
from the virtual list to the ready list only if there are no tasks in 
the timed list that can be transferred, By changing these few 
functions, virtual time tasks are seamlessly inserted into RTAI 
task processing. The handling of ready tasks and their 
interactions with Linux do not need to be touched at all, thus fully 
utilizing the existing RTAI code and design. 

Several other aspects of RTAI, however, still had to be 
tweaked to accommodate full functionality for virtual time tasks 
in VERSE. One such area is the handling of semaphores. In 
RTAI, three things happen when a task waits on a semaphore: the 
task’s state flag is set to reflect that the task is pending on a 
semaphore; the task is removed from the ready list, and the task 
registers with the blocked task-list in the semaphore data- 
structure. The task remains in the timed list. When a semaphore 
is signaled, the corresponding inverse functions occur: the task is 
unregistered from the semaphore block, the task is moved from 
the timed list to the ready list, and the task’s semaphore flag is 
cleared. 

ready list 

timed list 

Original RTAI implementation 

VERSE additionsichanges 

Figure 3. VERSE scheduler design 

In VERSE, however, a task cannot be moved immediately to the ready list when it receives a semaphore; since 
virtual time tasks must be run in FIFO order, and there must only be one virtual time task on the ready list at a time. 
There might be virtual time tasks that should run prior to the just-signaled task. Therefore, the VERSE scheduler 
resets the signaled task to run at the current time and reinserts it into the virtual list, which places the new task at the 
end of the list of tasks to be run at the current time. 

Similar principles apply to the task suspend and resume features of VERSE. RTAI simply removes a task from 
the ready list and pIaces it on the timed list when it is suspended and sets the task’s suspend flag. When the task is 
resumed, the RTAI scheduler clears the suspend flag and transfers the task horn the timed list to the ready list. In 
VERSE, however, when a task is suspended, it is not only removed from the ready list but also the virtual list. If the 
task is not removed from the virtual list, it could accidentalIy run before it is actualIy resumed. However, the task is 
not lost since the task-resume call provides the task pointer as a parameter. The scheduler can then put it back into 
the virtual list with its execution time set to the current virtual time. 

To give the user access to virtual-task information and easy control over the virtual time simulation, V‘EmE 
extended the RTAI proc interface to include the current virtual time and made some entries writable. The proc file 
system is a pseudo-file system which is used as an interface to kernel data structures, and is typically mounted at 
iproc. Some entries are read-only for viewing kernel information, but others can be written to, €or post-load 
modification of associated kernel parameters. The RTAI scheduler registers iproc entries for members of each task 
list and task information such as period, state, process id, and resume time with the proc interface. VERSE registers 
entries the additional virtual time task list as well as the current virtual time. %le the original RTAI proc interface 
purely displays read-only information way to the user, the VERSE proc interface extension was improved so the user 
can write information to the scheduler for control purposes. By writing simple ASCII commands such as PAUSE, 
STEP, and RUN to the VERSE proc interface, users can control execution of virtual time tasks. VERSE also provides 
a debug option through the proc interface so users can view extremely detailed information on scheduler operations. 
This option can be turned on and off at will so users will not be overwhelmed with the flood of information. This 
interface is easily expanded to provide the user with more detailed information and finer control over the scheduler. 
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IV. VERSE Application 
VERSE is currently incorporated in the instrument flight software development workstation €or the Jet Propulsion 

Laboratory’s SIM PlanetQuest mission. SIM PlanetQuest is scheduled for launch in 201 1 and will determine the 
positions and distances of stars several hundred times more accurately than any previous program. This accuracy 
will allow SIh4 to determine the distances to stars throughout the galaxy and to probe nearby stars for Earth-sized 
planets. The real-time control (RTC) element of SIM is building multiple testbeds with varying levels of hardware 
fidelity and numerical fidelity to develop and test flight software throughout the development lifecycle(shown on 
Fig. 4). The RTC Workstation Testbed (WSTB) provides a non real-time workstation-only environment that 
support f eakes  such as symbolic debugging, unlimited data dumping, and fast turnaround time. It will be used 
heavily in the early stages of flight software development to explore designs, determine feasibility, and validate data 
flow. The Real-time Development Testbed (RDTB) is a mixed workstation and real-time environment that 
incorporates a flight-like processor and other hardware components such as 1553 and reflective memory cards. The 
RDTB allows the flight software to run on its own processor and provides data dumping capabilities as well as 
simulation of other subsystems. A component diagram of RDTB is 
provided in Fig. 5.  Finally, the Software Integration Testbed, 
another mixed workstation and real-time environment, offers the 
most hardware intensive environment with multiple flight-like 
processors and cages for FSW development and validation. FSW 
will be executing on all three testbeds throughout its development 
cycle, so it is ideal to eliminate the need to modify code when 
moving between testbeds. VERSE is the tool that makes this a 
reality, by bridging the gap between real-time and non real-time 
environments. 

When integrated with our VxWosks and reflective memory 
emulators, VERSE completely encapsulates flight soRware 
applications written to run in a VxWorks environment on a single 
board computer, and stimulated by hardware signals in a Linux 
workstation. The VxWorks emulator is an OS glue layer that 
consists of a set of header files and shared object libraries that 
implement a subset of VxWorks calls using RTAI functions. The 
reflective memory emulator simulates behavior of the reflective 
memory board, including memory mapping and the sending and 
receiving of interrupts. Both of these emulators depend heavily on 
the VERSE environment which, when combined with these tools, 
enables flight sofware to run on a Lhux workstation after a direct 
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Figure 5. RDTB components 
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re-compilation (no modification of source code is required). Since 
only one single board computer is currently available in our 
testbeds, ths  provides PSW developers with a additional platforms 
to build their software. 

The flight software currently in development is an architectural 
framework built to control the SIM interferometers to acquire 
predefmed stars. The software includes components such as path 
length controller (PLC), delay line manager (DLM), internal 
metrology manager (IMM), device driver (DDR), fringe camera 
manager (FCM), and IFC mode controller (IMC). The FSW 
scheduler spawns threads at different rates to run these components 
as shown in Fig. 6.  The scheduler itself operates at a base rate, 
which is a fundamental rate for the instrument. The task associated 
with each thread enters a  loot^ after being created and after each 

Y 
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iteration in the loop the task suspends itsel5 to be resumed by the 
scheduler at a later time. The scheduler maintains the different rates 
by incrementing an internal counter every time it's called and 
resuming tasks only when the counter is a multiple of the thread Figure FSW Diagram 
task rate. In VxWorks, the scheduler is activated by a real-time 
interrupt (RTI) provided by the reflective memory card. In VERSE, FSW makes the same calls to register this 
reflective memory RTI but the underlying mechanism is replaced by the reflective memory emulator. Since there 
are no real-time constraints in WSTB, the reflective memory emulator can be controlled so that the RTI is issued at 
the user's discretion. Not only can the rate of RTIs be controlled, the entire WSTB simulated operating system can 
also be paused and single-stepped by VERSE. The user can pause to check the contents of the reflective memory, 
make sure tasks are executed in the expected order, and trace through variable changes step by step. 

When VERSE is set to run mode - running tasks one after another as fast as the CPU allows - it actually m s  so 
fast that no room is left for Linux to run. Due to insufficient funding, we have not yet implemented a 
comprehensive solution to this problem. Instead, Linux is forced to run after each virtual time task, resulting in a 
run mode significantly slower than it could potentially be. 

The simulation side of these testbeds consists of an interface simulator that ensures all data passing through the 
system is of the correct size and format. The interface simulator is implemented using a distributed system 
architecture called  HYDRA^. Each model is encapsulated in a client that communicates with other clients through 

Data interface 

Archiving 
Guide #I Simulator i I CPUO Real-time I 

Figure 7. Testbed Software Overview 

services established by a 
central server. Clients 
can run on the same 
workstation or different 
workstations depending 
on the type of service 
connection available. 
Figure 6 details the many 
interactions that takes 
place within the interface 
simulator, including the 
propagation of timing 
signals to facilitate model 
execution order, inter- 
model communication 
via reflective memory, 
data archiving using real- 
time FIFOs, and data 
exchange between 
simulation models and 
FSW through the high 
speed interface (HIS). 
Currently the interface 
simulator runs on the 
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RDTB testbed, but using VERSE makes it also run on the WSTB testbed. In the future, the framework will be 
carried onto the SITB. Running the same core software on all three testbeds saves a tremendous amount of work by 
eliminating the possibility of introducing new errors during such ~ K O C ~ S S .  When problem occur, it is also very 
useful to test the software on different testbeds, providing the user with different levels of dormation about the 
problem. 

V. Future Work 
One of the most challenging aspects of VERSE is maintaining two independent times: one for real-time, and the 

other for virtual time. All of the timer calls need to be modified to reflect the correct time value back based on the 
task type, virtual time or real-time, While the scheduler is capable of handling both real-time and virtual time tasks, 
running both types of tasks currently has undefined results, as we haven’t set up bullet-proof safeguards to this mix- 
mode execution. As addressed in the previous section, VERSE has not yet achieved ideal run mode speed. Ths 
issue must be addressed to fully realize VERSE’S potential. Possible solutions include running L i n u  after a set 
number of virtual time tasks are executed, and setting flags to ensure Linux is run periodically. There may be other 
features in RTAI not completely ported in VERSE since applications currently running on it use only a subset of the 
RTAI features. Future work to complete the API should be relatively straight forward, however, since VERSE has 
retained so much of the original RTAI archtechre and its footprint within RTAI is minimal. 

VI. Conclusion 
As aerospace applications have become increasingly complicated, it becomes more and more important to set up 

simulated hardware environments in addition to hardware in-the-loop testbeds. These hardware testbeds are 
typically oversubscribed, and very expensive to create and maintain as the complexity and capability of spacecraft 
increases. VERSE is a tool that helps fill that gap by creating inexpensive, easily replicated environments far 
software development and testing. Although certain features of hardware testbeds are outside the reach of virtual 
time simulation, VERSE helps users integrate and extensively test software before moving onto the next phase of 
development without extensive modification to the software, and facilitates the ability to perform full source-level 
debugging when anomalies are observed in the hardware testbeds. This allows for more efficient use of resources 
and reduces the possibility of inadvertent damage to critical hardware. Since VERSE is based on inexpensive COTS 
hardware, it is now feasible for developers to each have their own software testbed. With its flexible simulation 
controls and inexpensive setup costs, VERSE is an invaluable tool for future mission development. 
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Distributed real-time simulations provide important timing validation and hardware in- 
the-loop results for the spacecraft flight software development cycle. Occasionally, the need 
for higher fidelity modeling and more comprehensive debugging Capabilities ~ combined 
with a limited amount of computational resources - calls for a non-real-time simulation 
environment that mimics the real-time environment. By creating a non-real-time 
environment that accommodates simulations and flight software designed for a multi-CPU 
real-time system, we can save development time, cut mission costs, and reduce the likelihood 
of' errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation 
Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-Time 
Application Interface) into an event driven simulator that runs in virtual time. Designed to 
kccp the original RTAT architecture as intact as possible, and therefore inheriting RTAI's 
many capabilities, VEKSE was implemented with remarkably little change to the RTAI 
source code. This small footprint together with use of the same API allows users to easily 
run the same application in both real-time and virtual-time environments. VERSE has been 
used to build a workstation testbed for NASA's Space Interferometry Mission (SIM 
PlanetQuest) instrument flight software. With its flexible simulation controls and 
inexpensive sctup and replication costs, VERSE will become an invaluable tool in future 
mission development. 

J. Introduction 
s space technology becomes more advanced and flight applications more complex, the need for high fidelity A and teal-time simulations constantly increases, as does the computational load required to support them. 

Expensive hardware costs have traditionally limited developers' access to hardware in-the-loop testbeds, or simply 
rendered them inaccessible except during late stages of the software development cycle. The size, complexity, and 
cost constraints o f  today's flight applications call for more developers to collaborate and work on different 
components of the software and hardware simultaneously. Finding a way to test and integrate these components in a 
simulation environment becomes essential in order to increase the availability of early testing tools, thus reducing 
the risks of rework, unanticipated interactions between software and hardware, and faulty software causing damage 
to critical hardware. Distributed simulations' can be used to meet the computational needs of modern flight and 
instrument software development. Non-real-time simulation testbeds are used to ensure algorithm validity and 
correct data flow prior to integration with real-time simulation testbeds, which are typically used to provide timing 
and software validation. The desire to fly what you test, and test what you fly is enabled by a supporting simulation 
infrastructure that requires little or no changes to flight code when switching between different testbed types. 

A+ Goal of VERSE 
The V t  RSE environment is designed to ease the transition between early software development environments 

(software-only and hardware in-the-loop) for flight software (FSW) and sirnulation & support equipment (SSE). It 
does so by providing flight missions with an API-identical environment between workstation testbeds and real-time 
testbeds. By eliminating the need to re-code or conditionally compile for the different environments, VERSE reduces 
crrors and increases the effectiveness of early testing. In addition, Iater high-fidelity simulations are often not ported 
back io the early software developnient environments due to cost and time-constraints. This often forces late testing 
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and problem solving on these platforms, and significantly reduces their effectiveness. By eliminating the need to 
port between the different environments, VERSE increases the useful lifetime of software-only test environments 
throughout the life of the flight program. In addition, these “workstation testbeds” have much lower cost and much 
higher availability, thus reducing the traditional bottlenecks associated with hardware-deprived development 
environments. Even more ambitiously, by writing emulation layers as kernel-level drivers with identical APIs to the 
real drivers, the VERSE and associated emulatorsisirnulators* eIiminate even the need for recompiIation of the SSE 
software, allowing a single binary release to run in the simulated hardware and hardware in-the-loop environments. 

B. Virtual Time Simulation Paradigm 
In fixed time-step 

simulation models, time advances in fixed increments and the system state is updated at the end of each time 
increment. In some cases (typically monolithic or single-CPU simulations and systems), time may be scaled by a 
constant factor, so that simulated time runs faster or slower than real time, but stilI at a constant rate4. This model 
may be inefficient when time steps are small and few or no state changes OCCUK at each time increment. These 
implementations normally run much slower than the real-time system due to the overhead involved in measuring 
and managing the flow of time. Even in quiescent periods, the simulation will consume computational resources 
since the flow of time must be maintained. In discreteevent simulation’ models, time does not flow at a constant 
rate, but jumps from one even to the next. In these systems an event is normally defined as the exchange of state 
infoi-niation between different models, as these are the significant points that must be maintained in order to preserve 
the integrity of the simulation or testbed. In discrete-event simulations the system state changes instantaneously 
upon the occurrence of an event, at discrete points in simulated time that are usually not evenly spaced. This paper 
refers to the progression of the simulated discrete time points in the discrete-event simulator as virtual time’. 

I n  VERSE, virtual time advances by jumping from one scheduled task time to the next as soon as execution of the 
preceding task is complete. When multiple events are scheduled to occur at the same time’, the simulated virtual 
time remains unchanged until all the events scheduled for that time are executed7. Also, as opposed to execution in 
real time where time advances at a constant rate, virtual-time simulation skips over unused periods between 
consecutit*cly scheduled tasks. This makes it possible for the simulation to progress much faster than in real time 
when large time gaps exist between events or when event executions require minimal cornputation**. The actual 
speed gain (or loss) depends largely on model complexity, task-switching times, and level of parallelism in the 
original system. Since there are no hard time deadlines, a virtual-time simulator can be paused after the execution of 
any particular task, stepped to allow execution of the next scheduled task, or run continuously so all subsequent 
iasks are cxecuted. These features provide the user with enormous control over the simulation. 

Our real-time testbed simulators necessarily operate as fuced time-step simulations3. 

C. RTAI 
VIXSE is a11 extension of the Real-Time Application Interface’ (RTAI) scheduler. To understand how VERSE 

\vork:j, a brief review of what RTAI is and what it does is in order. 
RTAI is an open source project designed to supply features of an industrial-grade real-time operating systcrn on 

top of  the powerful GNUiLinux environment. The code is constantly being improved and is extensively tested by B 

world-wide community. The project also uses the Debian development modeltt for releases to ensure users have 
stable code. The name “Application Interface” seems to imply RTAI is just an APT, but the code actually 
implements a real-time Liiiux kernel extension that runs real-time tasks seamlessly along side of the host Linux 
system. RTM has its own scheduler and provides a full set of real-time inter-process communication (IPC) 
mechanisms. Altogether, RTAI provides deterministic timing - “hard” real-time scheduling with nominal jitter on 
the order of microsecorids on typical systems. 

_- ~ 

I This problem is somewhat unique to distributed simulations. In a non-distributed system, two events cannot occur 
at the same physical time because one of them will have higher priority, thus excluding simultaneity. So, for 
instance, if two different models need to execute at time T, only one of them actually will, and the other will begin 
execution immediately following. In a scaled-time simulation computational resources are constantly expended to 
track these overlaps. In a distributed simulation, many tasks can and normally do occur simultaneously. 

l’his is normally the case. Real-time systems musr leave gaps between high priority tasks to insure that variations 
in coniputation times do not cause violation of deadlines. Therefore, all tasks are planned around worst-case time 
constraints. ’’ There are three recognized development stages in the Debian model, each with its own release branch: 
~/c~~elo,n?rncw 1 ,  testing, arid stable. 

* *  
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RTRl‘s enabling technology is ADEOS - Adaptive Domain 
Environment for Operating Systems’. ADEOS is an open-source 
project whose premise is to use a nano-kernel inserted between the 
operating system and the hardware to eliminate direct hardware- 
dependent code in the kernel. The sole purpose of the nano-kernel is to 
dispatch hardware interrupts to the operating system in priority order. 
Hosted operating systems, or domains, must register with the nano- 
kernel to receive interrupts. Official Linux kernels releases are 
unaware of ADEOS, and therefore must be patched to interface with 
ADEIOS. When this is done in concert with RTAI, the patching 
process ensures that Linux registers with the nano-kernel dispatcher at 
a lower priority than that of the RTAI scheduler. Thus, the RTAI 
scheduler obtains hardware control before Linux, and RTAI tasks run 
before 1.inux tasks, ensuring deterministic timing. See Figure 1 for a 
diagram of the relationship between RTAI, Linux, and ADEOS. 

Real-time software developers have considerable design flexibility 
because RTAI tasks can be run from either kernel- or user-space. 
Kernel-space tasks offer the highest performance and are suitable for 
high pcrfommance. low-latency, embedded applications. A task is 
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Figure 2. RTAI IPC timing measurements. 
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much like 
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Figure 1. Relationship between RTAI, 

Linux, and ADEOS. 

VxWorks’ taskspawn() specifies a function to be run as a 
task. RTAI’s LXRT is a user-space interface that provides a 
symmetric APItt that may be used by both real-time RTAI 
tasks and Linux processes. A user-space process makes 
special calls at the beginning and end of code sections that 
need to operate in real time. When such sections are entered 
from a non-real-time context, the entire process is elevated to 
real-time status, and is scheduled as a real-time task until the 
section is exited. User-space tasks are useful for prototyping 
kernel tasks and when performance is less important than 
debugging capability. Under RTAI versions 3.0.x and up, the 
performance hit associated with LXRT has been significantly 
reduced, so much so that the decision between kernel-space 
and LXRT now depends primarily on other factors. 

The set of RTAT IPCs is extensive and complete -RTAI 
supports semaphores, messages, condition variables and 
many of other mechanisms. Furthermore, they are usable 
between kernel-, LXRT, and in some cases even user-space 
processes. A registry with character-string names facilitates 
the IPC object lookup on either side. Real-time data can also 
be queued on FTFOs for processing by a non-real-time 
process. Figure 2 shows some measurements ofthe exchange 
of several IPC types between kernel-space and user-space 
tasks. The tests were run on a machine with dual AMD 
Athlon 1800+ processors running Redhat Linux version 9.0 
with an ADEOS-patched kernel. 

One o f  RTAI’s advantages is that i t  co-exists well with 

t- 
i +  Thc R‘lAI LXRT and kernel-space API’s are symmetric, appearing identical to the user. A glue layer exists 
below the LXK1’ API that maps i t  into kernel-space caIls. 
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Linux. IIard-real-time tasks can be running while users on the same machine run applications as normal, including 
intensive graphical tasks. If the real-time duty cycle is too demanding, the non real-time processes will be less 
responsive. However, outside those cases this mode is useful because it turns regular PCs into real-time 
development stations and testbeds. 

11. VERSE Design and Architecture 
V E J ~ S I I  uses the existing RTAI scheduler design as the basis for accomplishing our virtual time goals. The most 

efficient and effective design for VERSE involves modifying the RTAI scheduler to seamlessly handle virtual-time 
tasks and real-time tasks alike. In this implementation, virtual-time tasks use the same API calls as real-time tasks, 
so that application code does remains unchanged when switching between virtual-time and real-time operation, 
Basing the virtual-time scheduler on RTAI's scheduler has an additional advantage: common implementations of 
task-control and scheduling architectures using POSIX threads and semaphores for process control and task 
switching. Compared to the context switch times of POSIX threads and semaphores that typically run at the kernel 
granularity in the worst case (10 milliseconds), RTAI's context switch times are several orders of magnitude faster. 
Even though Vt;RSE is a non-real-time sirnulation environment, utilizing such timing advantages will provide 
significantly faster simulation performance by reducing task-switching overhead. This is especially important in 
environments where the base rate of the underlying models is very high, as is the case in the SIM PlanetQuest 
Instrument simulation. We also wanted VERSE to be able to single-step tasks, enabling much more extensive 
debugging capabilities for the end user. Since the virtual-time scheduIer maintains inter-task deadlines and is not 
synchronized to wall-clock time, users can effectively control simulation time at any granularity. Ultimately, this 
means thc user can suspend and restart task-scheduling at the individual event level. Tasks can then be time-wise 
single-stepped and task simulation states can be reviewed before and after each task's execution cycle. VE,RSE is 
designed with all the above goals in mind. 

Ideally. real-time and virtual-time tasks should coexist in VERSE, requiring VERSE to maintain both real time and 
virtu;il time simultaneously. (This is useful for setting real-time watchdog timers for preventing simulation 
mnaway, or interfacing faster than real time virtual-time simulations with external real-time systems.) By 
controlling task mode (virtual- or real-time) via the existing RTAT task control structures, and adding a single new 
API i o  switch tasks in and out of virtual time, we can control how tasks are scheduled and which clock (virtual or 
real) is reported. The one problem experienced has been the extent to which RTAI provides highly optimized 
operation through extensive use of pre-compiler macros, Each of these macros needs to be found and modified to 
take The new simultaneous virtual- and real-time approach into account. This has had a destabilizing effect on the 
KTAI scheduler. Currently, VERSE only accommodates non-real-time simulations. Since our current simulations 
have clean-cut goals in the real-time versus non-real-time environment this is not a limit. 

R'TA1 provides various schedulers based on the capabilities of the platform and the needs of the user, These 
include two multi-processor (MP) kernel schedulers, a uni-processor (UP) kernel scheduler, and an LXRT combined 
user- and kernel-space scheduler, VERSE is designed as an extension of the LXRT scheduler since LXRT already 
handles multi-processor machines and provides easy access from both kernel- and user-space applications. 
Multiprocessor systems provide extra processing power for todays demanding and complex software applications, 
and grant simulations more flexibility in distributing the workload. For example, one processor can be completely 
dedicated to running computation-intensive work while the other processor can handle graphical user interface and 
Icss esscntial peripheral tasks$$. 

Writing applications in user-space using LXRT instead of in kernel-space has many benefits as well. 
Dcvelopiiig in user-space offers a layer o f  protection against crashing the OS when errors occur, since user-space 
tasks Idon't have direct access to kernel services. Users also have access to a variety o f  debugging and development 
tools not available in kernel-space. The testbed can also run securely since developers need no special permissions 
i o  cxecute their software (which they do need when loading kernel modules). Of course, user-space applications 
will suffer some performance loss compared to kernel-space, but in exchange for all the benefits, a few 
miuroscconds of' extra latency is acceptable for a non-real-time application like VERSE. 

Since Vmsr. is designed for simulations originally hosted in distributed environments, it is import to address 
how tasks are run that are nonnally executed in parallel on multiple CPUs. Tn RTAI, LXRT tasks can be executed 
simultaneous[y on the available CPUs. In VERSE, executing virtual-time tasks in parallel on separate CPUs would 
lead tcr synchronization errors due to the inability to know precisely when a CPU executes its task relative to another 

b e  In fax,  the.firsl thing a user typically notices when first transttioning to a multiprocessor system is that the OS 
rarely loses responsiveness. 
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CPU. Here, the most straightforward alternative has been chosen: all tasks are scheduled on a single CPU. If two 
tasks arc scheduled to run at the same virtual time, the task that is first in the task queue will be executed first 
(FIFO). Thus, tasks that would normally run in parallel are run sequentially, but the virtual time remains the same 
until all tasks scheduled to run at that particular time are finished. With these design parameters defined, it is 
possible to identify areas of the RTAI LXRT scheduler that require modification in order to implement VERSE. 

111. VERSE Implementation 
The R T A I  scheduler is a complex and sparsely documented code base to work with. It is necessarily complex 

because the rigors and optimization required for low-latency real-time operation lead to difficult-to-read code, 
especially with RI’AI’s extensive use of pre-compiler macros. It is sparsely documented (unlike the rest of RTAI) 
because the intemals of the scheduler are not an area the normal user of RTAI would venture into. After some 
examination, we found that the RTAI scheduler maintains three lists of task pointers: 

Complete list: a list containing pointers to all the real-time tasks created in RTAI. 
Tinicd list: a chrono~ogically ordered list that points to all tasks scheduled to run in the future. 
Ready list: a priority based list containing pointers to tasks that are ready to be executed immediately***. 

Each o f  these task pointer lists is implemented as a circular list with the first - and also the last ~~ element pointing to 
the L inux kcrncl task. (Recall that in the ADEOSiRTAT paradigm the Linux kernel itself runs as the lowest-priority 
real-lime task.) The Linux task pointer is used to pass control to the Linux operating system so non-RTAI tasks can 
run. At each time tick, the scheduler determines which timed task(s) are ready to run based on the scheduled 
execution time of the tasks. Those that are ready are transferred into the rendy list, and then all the tasks on the 
ready list are executed singly based on their priority. The Linux task has the chance to run only if no real-time ready 
tasks are ready in this interval, thus ensuring RTAI’s priority over Linux. Periodic tasks are automatically 
rescheduled back onto the timed list after execution; a-periodic tasks reschedule themselves using a variety of 
mcthods. For multi-CPU machines, the scheduler assigns a Linux task pointer to each of thc CPUs and uses the 
pointer to access each CPU’s unique set of timed list and ready 
list. 

VERSE adds a new virtual task list to the RTAI scheduler that 
contains pointers to the virtual-time tasks as seen in Fig. 3. These 
tasks are identified through a new flag in the RTAI task structure, 
and the new virtual task list is implemented in the same way as the 
original RTAI lists; it is circular with the headtail of the list 
pointing to the Linux task. The RTAI scheduler was modified so 
that ,when the scheduler is called and no real-time tasks need to 
run at the current time. the scheduler pulls the first task off the 
virtual list and puts it onto the ready list. In order to have strict 
control over thc execution of the virtual-time tasks and ensure that 
tasks can be single-stepped, only one virtual-time task is placed on 
the ready list a t  a time (contrasting normal tasks in RTAI where 
multiple real-time tasks can in reside on the ready list). Also, as 
mentioned earlier, all virtual-time tasks are run on only one CPU 
to ensure that they are executed in chronological order. 

The inost straightforward and least error-prone way to handle 
virtu;il-time tasks in RTAI is to modify the functions that add, 
I-eniove, and wake up timed tasks. Thcse functions allow VERSE 
lo replace real-time tasks with virtual-time tasks cleanly and 
conveniently, without changing the RTAI APT. When adding a 
task lo be scheduled in VERSE, the scheduler places the task in the 
virtual list if the task’s virtual flag is set. In RTAI, waking up a 
timed task involves transferring it from the timed list to the ready 
list. This process is modified in VFRSE to transfer a virtual-time 

-6 Original RTAI implementation 

VERSE additionslchanges 

Figure 3, VERSE scheduler design. 

1 1 1  

i n ! m r t l i ~ r t u ~  in this case actually indicates that the task desires to be executed at any time during the next basic 
liTA[ interval, which turns out to be a very small time interval. 
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task from the virtual list to the ready list only if there are no tasks in the timed list that can be transferred. By 
changing these few functions, virtual-time tasks are seamlessly inserted into RTAI task processing. The handling of 
ready tasks and their interactions with Linux do not need to be touched at all, thus fully utilizing the existing RTAI 
code and design. 

Several other aspects of RTAI, however, still had to be modified to accommodate full functionality for vn-tual- 
time tasks in VEnSE. One such area is the handling of semaphores. In RTAI, three things happen when a task waits 
on a semaphore: the task’s state flag is set to reflect that the task is pending on a semaphore, the task is removed 
from the ready list, and the task registers with the blocked task-list in the semaphore data-structure. The task 
remains in the timed list. When a semaphore is signaled, the corresponding inverse functions occur: the task is 
unregistered from the semaphore block, the task is moved from the timed list to the ready list, and thc task’s 
semaphore flag is cleared. 

In VE:KSI-,, however, a task cannot be moved immediately to the ready list when it receives a semaphore since 
virtual-time tasks must be run in FIFO order, and there must only be one virtual-time task on the ready list at a time. 
There might be virtual-time tasks that should run prior to the just-signaled task. Therefore, the VFKSE scheduler 
resets the signaled task to run at the current time and reinserts it into the virtual list. This places the new task at the 
end of the list of tasks to be run at the current time. 

Similar principles apply to the task suspend and resume features of VERSE. RTAI simply removes a task from 
the ready list and places it on the timed list when it is suspended and sets the task’s suspend flag. When the task is 
resumed, the RTAI scheduler cIears the suspend flag and transfers the task from the timed list to the ready list. In 
V ~ i < s e .  however, when a task is suspended, it is not only removed from the ready list but also the virtual list. If the 
task is not removed from the virtual list, it could accidentally run before it is actually resumed. However, the task is 
not lost since the task-resume call provides the task pointer as a parameter. The scheduler can then put it back into 
the virtual list with its execution time set to the current virtual time. 

To give the user access to virtual-task information and easy control over the virtual-time simulation, VERSE 
extended the RTAI proc interface to include the current virtual time and made some entries witable. The proc file 
system is a pseudo-file system which is used as an interface to kernel data structures, and is typically mounted at 
iproc. Some entries are read-only for viewing kernel information, but others can be written to, for post-load 
modification of associated kernel parameters. The RTAI scheduler registers proc entries for members of each task 
list and task information such as period, state, process id? and resume time. VERSE registers the new virtual task list 
as we11 as the current virtual time. While the original RTAI proc interface purely displays read-only information to 
the user. the VI:RSE proc interface extension was improved so the user can write information to the scheduler for 
control purposus. By writing simple ASClI commands such as PAUSE, STEP, and RUN to thc VERSE proc 
interface, users can control execution of virtual-time tasks. VERSE also provides a debug option through the proc 
interf’ace so users can view extremely detailed information on scheduler operations. f i s  option can be turned on 
and off at will so users will not be overwhelmed with the flood of infomation. This interface is easily expanded to 
provide the user with more detailed information and finer control over the scheduler. 

TV. VERSE Application 
VERSE is currentIy incorporated in the instrument flight software development workstation for Jet Propulsion 

Laboratory’s SIM PlarietQuest mission. SIM PlanetQuest is scheduled for launch in 2011 and will determine the 
positions and distances of stars several hundred times more accurately than any previous program. This accuracy 
will allow SIM to determine the distances to stars throughout the galaxy and to probe nearby stars for Earth-sized 
p1anei.s. The real-time control (RTC) element of SIM is creating multiple testbeds with varying levels of hardware 
fidelity and numerical fidelity to deveiop and test flight software throughout the development lifecycle (shown on 
Fig. 4). The KI’C Workstation Testbed (WSTB) provides a non-real-time workstation-only environment that 
support features such as symbolic debugging, unlimited data dumping, and fast turnaround time. It will be used 
heavily in the early stages of flight software development to explore designs, determine feasibility, and validate data 
flow. The Real-time Development Testbed (RDTB) is a mixed workstation and reaI-time environment that 
incorporates a flight-like processor and other hardware components such as 1553 and reflective memory cards. The 
RDTB allows the flight software to run on its own processor in a single board computer (SBC) and provides data 
dumping capabilities as well as simulation of other subsystems. A component diagram of RDTB is provided in Fig. 
5.  Finally, the Software Integration Testbed (SITB), another mixed workstation and real-time environment, offers 
the most hardware intensive environment with multiple flight-like processors and cages for FSW deveIopment and 
validation. FSW will be executing on all three testbeds throughout its development cycle, so it is advantageous to 
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Figure 4. SIM FSW testbeds. 

eliminate the need to modify code when moving between testbeds. By bridging the gap between real-time and non- 
real-rime environments, VERSE is the tool that makes this a reality. 

Whcn integrated with our VxWorks and reflective memory emulators, VERSE completely encapsulates flight 
software applications ~ originally written to run in a VxWorks environment on a SBC - so that it may execute on a 
Linux workstation. The VxWorks emulator is an OS glue layer that implements a subset of VxWorks calls using 
R7'AI functions. I t  consists of a set of header files and shared object libraries that replaces those provided by 
VxU'orks. The reflective memory emulator simulates behavior of the reflective memory board, including memory 
mapping and the sending and receiving of interrupts. Both of these emulators depend heavily on the VERSE 
environment which, when combined with these tools, enables flight software to run on a Linux workstation after a 
direct re-compilation (no modification of source code is required). Since only one single board computer is 
currently available in our testbeds, VERSE provides FSW developers with additional platforms to build their 
software. 

The flight software currently in development is an architectural framework built to control the SIM 
interferometers while acquiring and measuring stars. The software components include a path length controller 
(PLC), delay line managkr (DLM), internal &3rology manager 
(IMM), dcvice driver (DDR), fringe camera manager (FCM), 
high-speed interface (HIS), and instrument flight computer (IFC) 
mode controller (IMC). The FSW scheduler spawns threads at 
different rates to run these components as shown in Fig. 6. The 
scheduler itself operates at a base rate, which is a fundamental 
rate for the instrument. The task associated with each thread 
enters a loop after being created, and after each iteration in the 
loop the task suspends itself, to be resumed by the scheduler at a 
later time. The scheduler maintains the different rates by 
incrementing a n  internal counter every time i t  is called and 
resumes tasks only when the counter is a multiple of the thread 
task rate. In VxWorks, the schcdulcr is activated by a real-time 
interrirpt (RTI) provided by the reflective memory card. In 
V13R5;Et FSW rnakes the same calls to register this reflective 
memory R T 1  but the reflective memory emulator repIaces the 
underlying hardware mechanism. Since there are no real-time 
constraints in WSTB, the reflective memory emulator can be 
controlled so that the R'r1 is issued at the user's discretion. Not 
only can the rate of RTIs be controlled, the entire WSTB 
simulated operating system can also be paused and single-stepped 
b y  V I ; t w .  The user can pause to check the contents of the Figure 5, RDTB components. 
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reflective memory, make sure tasks are executed in the expected 
order, and trace through variable changes step by step. 

When VWSE is set to run mode - running tasks one after 
another as fast as the CPU allows - it can actually take over the 
CPL so that no room is left for Linux to run. This is due to the 
conflict betwecn the need to have Linux as the lowest priority 
RTAI task and the fact that there is always another virtual-time 
task 10 run. In real-time operation this is not an issue, because 
there are always small gaps in the real-time execution during 
which the Linux kernel can be executed. Due to a sudden 
reduction in personnel, we have not yet implemented a 
comprehensive solution to this problem. Instead, we have forced 
Linux to run after each virtual-time task, resulting in a run mode 
significantly slower than it should be. 

The simulation side of these testbeds consists of an interface 
simulator that ensures all data passing through the system is of the 
correct size, format, content, and timing. The interface simulator 
is implemented using a distributed system architecture called 
HYDKA''. Each model is encapsulated in a client executable that 
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Figure 6. FSW application diagram. 

conunimicates with other clients through services established by a central server. Clients can run on the same 
workstation or different workstations depending on the type of service connections available. Figure 7 details the 
many interactions that takes place within the interface simulator, including the propagation of timing signals to 
facilitate model execution order, inter-model communication via reflective and shared memory, data archiving using 
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Data Interface 
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Drivers 

Sofhvare 
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Figure 7. Testbed software overview. 

RTAI real-time FIFOs, and 
data exchange between 
simulation models and 
FSW through the STM HSI. 
Currently the interface 
simulator runs on the 
RDTB testbed, but Vmsr 
permits it to also run on the 
WSTB testbed. In the 
future, the framework will 
be carried onto the SITB. 
Running the same core 
software on all three 
testbeds saves a tremendous 
amount of work and 
eliminates the possibility of 
introducing new errors 
during the software porting 
process. Also, when 
problems occur, it  is very 
useful to test the software 
on different testbeds, which 
provides the user with 
different levels of 
information about the 
problem. 

V. Future Work 
One of the most challenging aspects of VERSE is maintaining two independent times: one for real-time processes, 

and the other for virtual-time processes. All of the RTAI timer calls need to be modified to reflect the correct time 
value based on the task type: virtual-time or real-time. While the scheduler is capable of handling both real-time 
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and virtual-time tasks, running both types of tasks currently reduces system stability, as we have not set up 
saleguards to this dual-mode execution. As addressed in the previous section, VERSE has not yet achieved ideal run 
mode speed. ‘lhis issue must be addressed to fully realize VERSE’S potential. PossibIe solutions include running 
Linux after a set number of virtual-time tasks are executed, or setting flags to ensure Linux is run periodically. 
Significant speed gains could also be realized when simulating processes that originally ran in a distributed 
environment by letting simultaneous processes run on different processors, although synchronization guarantees 
requirc that a single scheduler manage this. There may be other features in RTAI not completely ported in VERSE 
since applications currently running on it use only a subset of the RTAI features. Future work to complete the API 
should be relatively straightforward, however, since VERSE has retained much of the origina1 RTAI architecture and 
its footprint within RTAI is minimal. 

VI. Conclusion 
!is acrospaze applications have become increasingly complicated, it becomes more important to create simulated 

hard ware environments in addition to hardware in-the-loop testbeds. These hardware testbeds are typically 
oversubscribed, and very expensive to create and maintain as the complexity and capability of spacecraft increases. 
VERSE: i s  a tool that helps fill that gap by creating inexpensive, easily replicated environments for software 
development and testing. Although certain features of hardware testbeds are outside the reach of virtual-time 
simulation, V t . i ~ i  helps users integrate and extensively test software before moving onto the next phase of 
development without extensive modification to the software. VERSE also facilitates the ability to perform full 
source-level debugging when anomalies are observed in the hardware testbeds. This allows for more efficient use of 
resources and reduces the possibility of inadvertent damage to critical hardware. Since VEKSE is based on 
inexpensive COTS hardware, it is now feasible for developers to each have their own software testbed. With its 
flexible simulation coiitrols and low setup costs, VERSE is an invaluable tool for future mission development. 
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