
VERSE - Virtual Equivalent Real-time Simulation
Environment

Yang Zheng*, Bryan J. Martin, Ph.D’, and Nathaniel Villaumef
Jet Propulsion Laboratory, Pasadena, California, 91109

Distributed real-time simulations provide important timing validation and hardware in-
the-loop results for the spacecraft flight software development cycle. Occasionally, the need
for higher fidelity modeling and more comprehensive debugging capabilities - combined
with a limited amount of computational resources - calls for a non real-time simulation
environment that mimics the real-time environment. By creating a non real-time
environment that accommodates simulations and flight software designed for a multi-CPU
real-time system, we can save development time, cut mission costs, and reduce the likelihood
of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation
Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time
Application Interface) into an event driven simulator that runs in virtual real time. Designed
to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI’s
many capabilities, VERSE was implemented with remarkably little change to the RTAI
source code. This small footprint together with use of the same API allows users to easily
run the same application in both real-time and virtual time environments. VERSE has been
used to build a workstation testbed for NASA’s Space Interferometry Mission (SIM
PlanetQuest) instrument flight software. With its flexible simulation controls and
inexpensive setup and replication costs, VERSE will become an invaluable tool in future
mission development.

I. Introduction
s space technology becomes more advanced and flight applications more complex, the need for high fidelity A and real-time simulations constantly increases, as does the computational load required to support them.

Expensive hardware costs have traditionally limited developers’ access to hardware in-the-loop testbeds, or simply
rendered them inaccessible except during very late stages of the software development cycle. The size, complexity,
and cost constraints of today’s flight applications call for many more developers collaborating to work on different
components of the software and hardware simultaneously. Finding a way to test and integrate these components in a
simulation environment becomes essential in order to increase the availability of early testing tools, thus reducing
the risk of rework, unanticipated interactions between software and hardware, and even faulty sofiware causing
damage to critical hardware. Distributed simulations’ can be used to meet the computational needs of modem flight
and instrument software development. Non real-time simulation testbeds are used to ensure algorithm validity and
correct data flow prior to integration with real-time simulation testbeds, which are typically used to provide timing
and software validation. The desire to fly what you test, and test what you fly is enabled by a supporting simulation
infrastructure that requires little or no changes to flight code to switch between different testbed types.

A. Goal of VERSE
The VERSE environment is designed to ease the transition between the early software development environments

for flight software (FSW) and simulation & support equipment (SSE) for flight missions by providing an API-
identical environment these types of s o h a r e between workstation testbeds and real-time testbeds. By eliminating
the need to re-code or conditionally compile for the different environments, VERSE reduces errors and increases the
effectiveness of early testing. In addition, later high-fidelity simulations are often not ported back to the early
software development environments due to cost and time constraints, which often forces late testing and problem

* Staff Engineer, Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 198-235, Pasadena, CA, AIAA Member
+ Program Element Manager, Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 198-235, Pasadena, CA, AIAA Member

Associate Engineer, Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 198-235, Pasadena, CA, AIAA Member

1
American Institute of Aeronautics and Astronautics

solving off of these platforms, or significantly reduces their effectiveness. By eliminating the need to port to a
hfferent environment, VERSE increases the useful lifetime of software-only test environments throughout the life of
the flight program. In addition, these “workstation testbeds” have much lower cost and much higher availability, and
thus reduce the traditional bottlenecks associates with hardware-poor development environments. Even more
ambitiously, by writing emulation layers as kernel-level drivers with identical APIs to the real drivers, the VERSE
and associated emulators/simulators* eliminate even the need for recompilation of the SSE software, allowing a
single binary release to run in the simulated hardware and hardware in-the-loop environments.

E. Virtual time Simulation Model
In fixed time-step

simulation models, time advance in fixed increments and the system state is updated at the end of each time
increment. In some cases (typically monolithic or single-CPU simulations and systems), time may be scaled by a
constant factor, so that simulated time runs faster or slower than real time, but still at a constant rate (See Ref 9,
section 4.3.4). This model may be inefficient when time steps are small and few or no state changes occur at each
time increment, and these implementations normally run much more slowly than the real-time system due to the
overhead involved in measuring and managing the flow of time. The simulation even in quiescent periods will
consume computational resources, since the flow of time must be maintained. In discrete-event simulation models,
time does not flow at a constant rate, but jumps hom one even to the next. In these systems an event is normally
defined as the exchange of state information between different models, as these are the significant points that must
be maintained in order to preserve the integrity of the simulation or testbed. In discrete-event simulations the system
state changes instantaneously upon the occurrence of an event, at discrete points in simulated time that are usually
not evenly spaced. This paper refers to the progression of the simulated discrete time points in the discrete-event
simulator as virtual time3. In VERSE, virtual time advances by jumping from one scheduled task time to the next as
soon as execution of the preceding task is complete. When multiple events are scheduled to occur at the same time9,
the simulated virtual time remains unchanged until all the events scheduled for that time are executed4. Also, as
opposed to execution in real time where time advances at a constant rate, virtual time sirnulation skips over unused
periods between consecutively scheduled tasks. This makes it possible for the simulation to progress much faster
than real time when large time gaps exist between events or when event executions require minimal computation**.
The actual speed gain (or loss) depends largely on model complexity, task-switching times, and level of parallelism
in the original system. Since there are no hard time deadlines, a virtual time simulator can be paused after the
execution of any particular task, stepped to aIlow execution of the next scheduled task, or continuously run so all
subsequent tasks are executed. These features provide the user with enormous control over the simulation.

Our real-time testbed simulators necessarily operate as fmed time-step simulations’.

C. RTAI
VERSE is an extension of the Real-Time Application Interface’ (RTAI) scheduler. To understand how VERSE

works, a brief review of what RTAI is and what it does is in order:
RTAI is an open source project designed to supply features of an industrial-grade real-time operating system on

top of the powerful GNWLinux environment. The code is constantly being improved and is extensively tested by a
world-wide community, but the project uses the Debian development modeltt for releases to ensure users have
stable code. The name (“Application Interface”) seems to imply RTAI is just an API, but the code actually
implements a real-time Linux kernel extension that runs real-time tasks seamlessly along side of the host Linux
system. RTAI has its own scheduler and provides a full set of real-time inter-process communication mechanisms.
Altogether, RTAI provides deterministic timing - “hard” real-time scheduling with nominal jitter on the order of
microseconds on typical systems.

This problem is somewhat unique to distributed simulations. In a non-distributed system two events cannot occur
at the same physical time, because one of them will have higher priority, thus excluding simultaneity. So, for
instance, if two different models need to execute at time T, only one of them actually will, and the other will begin
execution immediately following, In a scaled-time simulation computational resources are constantly expended to
track these overlaps, In a distributed simulation, many tasks can and normally do occur simultaneously,

Which is normally the case. Real-time systems must leave gaps between high priority tasks to insure that
variations in computation times do not cause violation of deadlines, so all tasks are planned around worst-case time
constraints.
tt There are three recognized development stages in the Debian model, each with it’s own release branch
development, testing, and stable.

**

2
American Institute of Aeronautics and Astronautics

RTAI’s enabling technology is ADEOS - Adaptive Domain
Environment for Operating Systems6, another open-source project,
whose premise is to use a nano-kernel inserted between operating
systems and the hardware to eliminate direct hardware-dependent
code in the kernel. The sole purpose of the nano-kernel is to
dispatch hardware interrupts to the operating systems in priority
order. Hosted operating systems, or domains, must register with the
nano-kernel to get interrupts. Official Linux kernels releases are
unaware of ADEOS, and so must be patched to interface with
ADEOS. When this is done in concert with RTAI, the patchmg
process ensures that Linux registers with the nano-kernel dispatcher
at a lower priority than that of the RTAI scheduler. Thus, the RTAI
scheduler gets hardware control before Linux, and RTAI tasks run
before Linux tasks, ensuring deterministic timing. See Figure 1 for
a diagram of the relationship between RTAI, Linux, and ADEOS.

Real-time software developers have considerable design
flexibility because RTAI tasks can be run from either kernel- or
user-space. Kernel-space tasks offer the highest performance and
are suitable for high performance or low-latency embedded

8 u c
0”
b m
5
CO

IPC Configurations

RT-RPC user space kernel Space

user space 13 +/- 1 ps NIA

kernel space 2.4 +/- 0.8 p 0.21 +/- 0.5 p

user-

module

Sender Receiver
--. .- . ..

Receiver Context

I kernel space I 2.6 +I- I PS 1 0.26 +/- 0.1 ~ L S I

Figure 2. RTAI IPC Timing Measurements

applicatio
ns. A task
is started
from a

kernel
module by
specifying

-_-I-

Figure 1. Relationship between RTAI,
Linux, and ADEOS

a-function that will be run as real-time task, much like
VxWorks’ taskspawn() specifies a function to be run as a
task. RTAI’s LXRT is a user-space interface that provides
a symmetric MIEx that may be used by both real-time
RTAI tasks and linux processes. A user-space process
makes special calls at the beginning and end of code
sections that need to operate in real time. When such
sections are entered from a non-real-time context, the
entire process is elevated to real-time status, and is
scheduled as a real-time task until the section is exited.
User-space tasks are useful for prototyping kernel tasks
and when performance is less important than debugging
capability. Under RTAI versions 3.0.x and up, the
performance hit associated with LXRT has been
significantly reduced, so much so that the decision
between kernel-space and LXRT now depends primarily
on other factors.

The set of RTAI IPCs is extensive and complete -
RTAI supports semaphores, messages, condition variables
and a slew of other mechanisms. Furthermore, they are
usable between kernel-, LXRT, and in some cases even
user-space processes. A registry with character-string
names facilitates the IPC object lookup on either side.
Real-time data can also be queued on FIFOs for processing
by a non-real-time process. Figure 2 shows some
measurements of the exchange of several IPC types
between kernel-space and user-space tasks. The tests were

The RTAI LXRT and kernel-space API’s are symmetric, appearing identical to the user. A glue layer exists
below the LXRT API that maps it into kernel-space calls.

3
American Institute of Aeronautics and Astronautics

nm on a machine with dual AMD Athlon 1800+ processors running Redhat Linux version 9.0 with an ADEOS-
patched kernel.

One of RTAI’s advantages is that it co-exists well with Linux. Hard real-time tasks can be running while users
on the same machine run applications as normal, including intensive graphical tasks. To be sure, if the real-time duty
cycle is too demanding, the non-real-time processes will be less responsive. ,However, outside those cases this mode
is usefkl because it can be used to turn regular PCs into real-time development stations and testbeds.

11. VERSE Design and Architecture
VERSE uses the existing RTAI scheduler design as the basis for accomplishing our virtual time goals. The most

efficient and effective design for VEFSE involved modifying the RTAI scheduler to seamlessly handle virtual time
tasks and real-time tasks alike. rU this implementation, virtual time tasks use the same API calls as real-time tasks,
so that application code does not have to be changed when switching between virtual time and real-time operation.
Basing the virtual time scheduler within RTAI’s scheduler has an additional advantage: common implementations of
task-control and scheduling architectures us POSIX threads and semaphores for process control and task switching.
Compared to the context switch times of POSIX threads and semaphores that typically run at the kernel granularity
in the worst case (10 milliseconds), RTAI’s context switch times are several orders of magnitude faster. Even
though VERSE is a non-real-time simulation environment, utilizing such timing advantage will provide significantly
faster simulation performance by reducing task-switching overhead, especially in environments where the base rate
of the underlying models are very high, as is the case in the SIM Instrument simulation. We also wanted VERSE to
be able to single-step tasks, enabling much more extensive debugging capabilities for the end user. Because the
virtual time scheduler maintains inter-task deadlines and is not synchronized to wall-cIock time, users can
effectively control simulation time to any granularity. Ultimately, this means the user has control to suspend and
restart task-scheduling at the individual event level. Tasks can then be time-wise single-stepped and task simulation
states can be reviewed before and after each task’s execution cycle. VERSE was designed with all the above goals in
mind.

Ideally, real-time and virtual time tasks should coexist in VERSE, requiring VERSE to maintain both real time and
virtual time simultaneously. (Ths is ideal for setting real-time watchdog timers for preventing simulation runaway,
or interfacing faster-than-realtime virtual time simulations with external real-time systems.) By controlling task
mode (virtual- or real-time) via the existing RTAI task control structures, and adding a single new API to switch
tasks in and out of virtual time, we can control how tasks are scheduled and which clock is reported when tasks
request timestamps. The one problem experienced has been the extent to which RTAI provides highly optimized
operation through extensive use of pre-compiler macros. Each of these macros needs to be found and modified to
take the new dual-mode model into account. Doing so has had a destabilizing effect on the RTAI scheduler, so for
now we decided it is currently acceptable for VERSE to only accommodate non-real-time simulations, since our
current simulations have clean-cut goals in the real-time versus non-real-time environment.

RTAI provides various schedulers for different platforms, based on the capabilities of the architecture and the
needs of the user. These include two MultiProcessor (MP) kernel schedulers, a UniProcessor (UP) kernel scheduler,
and an LXRT combined user and kernel space scheduler. VERSE is designed as an extension of the EXRT scheduler
since it already handles multi-processor rnachmes and provides easy access horn both kernel- and user-space
applications. Multiprocessor systems not only provide extra processing power for todays demanding and complex
software applications, they also grant simulations more flexibility in distributing the workload. For example, one
processor can be completely dedicated to running computation-intensive work while the other processor still can
handle graphical user interface and less essential peripheral tasks@.

Writing applications in user space using LXRT instead of kernel space has many benefits as well. Developing in
user-space offers a layer of protection against crashing the OS when errors occur, since user-space tasks don’t have
direct access to kernel services. Users also have access to a variety of debugging and development tools not
available in kernel space, and it allows the testbed to run securely as developers need no special permissions to
execute their software (which they would need to load kernel modules). Of course, user space applications will
suffer some performance loss compared to kernel space, but in exchange for all the benefits, a few microseconds of
extra latency is acceptable for a non-real-time application like VERSE.

s;s In fact, the first thing a user typically notices when first transitioning to a multiprocessor system is that the OS
rarely loses responsiveness.

4
American Institute of Aeronautics and Astronautics

Since VERSE is designed for simulations originally hosted in multi-CPU environments, it is import to address
how tasks are run that are normally executed in parallel on multiple CPUs. In RTAI, LXRT tasks can be executed
simultaneously by the available CPUs. In VERSE, executing virtual time tasks in parallel on separate CPUs would
lead to synchronization errors due to the inability to know precisely when a CPU executes its task relative to another
CPU. Here, the most straight-forward alternative has been chosen: all tasks are scheduled on a single CPU, and if
two tasks are scheduIed to run at the same virtual time, the task that is first in the task queue will be executed first
(FIFO). Thus, tasks that would normally run in parallel are run sequentially, but the virtual time remains the same
until all tasks scheduled to run at that particular time are finished. With these design parameters defmed, it is
possible to identify areas of the RTAI LXRT scheduler that require modification in order to implement VERSE.

111. VERSE Implementation
The RTAI scheduler is a complex and sparsely documented code base to work with. It is necessarily complex

because the rigors and optimization required for low-latency real-time operation lead to difficult to read code,
especially due to extensive use of pre-compiler macros. It is sparsely documented (unlike the rest of RTAI) because
the internals of the scheduler is not an area the normal user of RTAI would venture into. After some examination,
we found that the RTAI scheduler maintains three lists of task pointers:

+ Complete list: a list containing pointers to all the real-time tasks created in RTAI.
Timed list: a chronologically ordered list that points to all tasks scheduled to nm in the future.
Ready list: a list ordered by priority containing pointers to tasks that are ready to be executed
immediately"*".

Each of these task lists is implemented as a circular list with the first - and also the last - task as the Linux kernel
task. (Recall that in the ADEOSiRTAI paradigm the Linux kernel itself runs as the lowest-priority real-time task.
The Lhux task pointer is used to pass control to the Linux operating system so nun-RTAI tasks can run. At each
time tick, the scheduler determines which timed task(s) are ready to run based on the scheduled execution time of
the tasks. Those that are ready are transferred into the ready list, and then all the tasks on the ready list are executed
singly based on their priority. The Linux task has the chance to run only if no real-time ready tasks are ready in this
interval, thus ensuring RTAI's priority over Linux. Periodic tasks are automatically rescheduled back onto the
timed Iist after execution; a-periodic tasks reschedule themselves using a variety of methods. For multi-CPU
machmes, the scheduler assigns a Linux task pointer to each of the CPUs and uses the pointer to access each CPU's
unique set of timed list and ready list.

VERSE adds a new virtual task list to the RTAI scheduler that contains pointers to the virtual time tasks as seen in
Figure 3. These new tasks are identified through a new flag in the RTAI task structure, and the new virtual task list
is implemented in the same way as the original RTAI lists: it is circular with the headtail of the list pointing to the
Linux task. The RTAI scheduler was modified so that when the scheduler is called and no real-time tasks need to
run at the current time, the scheduler pulls the first task off the virtual list and puts it onto the ready list. In order to
have strict control over the execution of the v h a l time tasks and ensure that tasks can be single-stepped, only one
virtual time task is placed on the ready list at a time (contrasting normal tasks in RTAI where multiple real-time
tasks can in reside on the ready list). Also, as mentioned earlier all virtual time tasks are run on only one CPU to
ensure that they are executed in chronological order.

I**
Where immediately in this case actually indicates that the task desires to be executed at any time during the next

basic RTAI interval, which turns out to be a very small time interval.

5
American Institute of Aeronautics and Astronautics

The most straightforward and least error-prone way to handle
virtual time tasks in RTAI is to modify the functions that add,
remove, and wake up timed tasks. These functions allow VERSE
to replace real-time tasks with virtual time tasks cleanly and
conveniently, without changing the RTAI API. When adding a
task to be scheduled in VERSE, the scheduler places the task in the
virtual list if the task’s virtual flag is set. In RTAI, waking up a
timed task involves transferring it from timed list to the ready list.
This process is modified in VEME to transfer a vimal time task
from the virtual list to the ready list only if there are no tasks in
the timed list that can be transferred, By changing these few
functions, virtual time tasks are seamlessly inserted into RTAI
task processing. The handling of ready tasks and their
interactions with Linux do not need to be touched at all, thus fully
utilizing the existing RTAI code and design.

Several other aspects of RTAI, however, still had to be
tweaked to accommodate full functionality for virtual time tasks
in VERSE. One such area is the handling of semaphores. In
RTAI, three things happen when a task waits on a semaphore: the
task’s state flag is set to reflect that the task is pending on a
semaphore; the task is removed from the ready list, and the task
registers with the blocked task-list in the semaphore data-
structure. The task remains in the timed list. When a semaphore
is signaled, the corresponding inverse functions occur: the task is
unregistered from the semaphore block, the task is moved from
the timed list to the ready list, and the task’s semaphore flag is
cleared.

ready list

timed list

Original RTAI implementation

VERSE additionsichanges

Figure 3. VERSE scheduler design

In VERSE, however, a task cannot be moved immediately to the ready list when it receives a semaphore; since
virtual time tasks must be run in FIFO order, and there must only be one virtual time task on the ready list at a time.
There might be virtual time tasks that should run prior to the just-signaled task. Therefore, the VERSE scheduler
resets the signaled task to run at the current time and reinserts it into the virtual list, which places the new task at the
end of the list of tasks to be run at the current time.

Similar principles apply to the task suspend and resume features of VERSE. RTAI simply removes a task from
the ready list and pIaces it on the timed list when it is suspended and sets the task’s suspend flag. When the task is
resumed, the RTAI scheduler clears the suspend flag and transfers the task horn the timed list to the ready list. In
VERSE, however, when a task is suspended, it is not only removed from the ready list but also the virtual list. If the
task is not removed from the virtual list, it could accidentalIy run before it is actualIy resumed. However, the task is
not lost since the task-resume call provides the task pointer as a parameter. The scheduler can then put it back into
the virtual list with its execution time set to the current virtual time.

To give the user access to virtual-task information and easy control over the virtual time simulation, V‘EmE
extended the RTAI proc interface to include the current virtual time and made some entries writable. The proc file
system is a pseudo-file system which is used as an interface to kernel data structures, and is typically mounted at
iproc. Some entries are read-only for viewing kernel information, but others can be written to, €or post-load
modification of associated kernel parameters. The RTAI scheduler registers iproc entries for members of each task
list and task information such as period, state, process id, and resume time with the proc interface. VERSE registers
entries the additional virtual time task list as well as the current virtual time. %le the original RTAI proc interface
purely displays read-only information way to the user, the VERSE proc interface extension was improved so the user
can write information to the scheduler for control purposes. By writing simple ASCII commands such as PAUSE,
STEP, and RUN to the VERSE proc interface, users can control execution of virtual time tasks. VERSE also provides
a debug option through the proc interface so users can view extremely detailed information on scheduler operations.
This option can be turned on and off at will so users will not be overwhelmed with the flood of information. This
interface is easily expanded to provide the user with more detailed information and finer control over the scheduler.

6
American Institute of Aeronautics and Astronautics

hardware fidelitv ,
4

numerical fidelity

WSTB

FSW & SIM

RDTB SlTB

Core Software

Figure 4. SIM PSW Testbeds

IV. VERSE Application
VERSE is currently incorporated in the instrument flight software development workstation €or the Jet Propulsion

Laboratory’s SIM PlanetQuest mission. SIM PlanetQuest is scheduled for launch in 201 1 and will determine the
positions and distances of stars several hundred times more accurately than any previous program. This accuracy
will allow SIh4 to determine the distances to stars throughout the galaxy and to probe nearby stars for Earth-sized
planets. The real-time control (RTC) element of SIM is building multiple testbeds with varying levels of hardware
fidelity and numerical fidelity to develop and test flight software throughout the development lifecycle(shown on
Fig. 4). The RTC Workstation Testbed (WSTB) provides a non real-time workstation-only environment that
support f eakes such as symbolic debugging, unlimited data dumping, and fast turnaround time. It will be used
heavily in the early stages of flight software development to explore designs, determine feasibility, and validate data
flow. The Real-time Development Testbed (RDTB) is a mixed workstation and real-time environment that
incorporates a flight-like processor and other hardware components such as 1553 and reflective memory cards. The
RDTB allows the flight software to run on its own processor and provides data dumping capabilities as well as
simulation of other subsystems. A component diagram of RDTB is
provided in Fig. 5. Finally, the Software Integration Testbed,
another mixed workstation and real-time environment, offers the
most hardware intensive environment with multiple flight-like
processors and cages for FSW development and validation. FSW
will be executing on all three testbeds throughout its development
cycle, so it is ideal to eliminate the need to modify code when
moving between testbeds. VERSE is the tool that makes this a
reality, by bridging the gap between real-time and non real-time
environments.

When integrated with our VxWosks and reflective memory
emulators, VERSE completely encapsulates flight soRware
applications written to run in a VxWorks environment on a single
board computer, and stimulated by hardware signals in a Linux
workstation. The VxWorks emulator is an OS glue layer that
consists of a set of header files and shared object libraries that
implement a subset of VxWorks calls using RTAI functions. The
reflective memory emulator simulates behavior of the reflective
memory board, including memory mapping and the sending and
receiving of interrupts. Both of these emulators depend heavily on
the VERSE environment which, when combined with these tools,
enables flight sofware to run on a Lhux workstation after a direct

lynarnics
iimulator,
;CS Simulator.
:onsale PC

I PCI I

Figure 5. RDTB components

7
American Institute of Aeronautics and Astronautics

re-compilation (no modification of source code is required). Since
only one single board computer is currently available in our
testbeds, ths provides PSW developers with a additional platforms
to build their software.

The flight software currently in development is an architectural
framework built to control the SIM interferometers to acquire
predefmed stars. The software includes components such as path
length controller (PLC), delay line manager (DLM), internal
metrology manager (IMM), device driver (DDR), fringe camera
manager (FCM), and IFC mode controller (IMC). The FSW
scheduler spawns threads at different rates to run these components
as shown in Fig. 6. The scheduler itself operates at a base rate,
which is a fundamental rate for the instrument. The task associated
with each thread enters a loot^ after being created and after each

Y

threads resume'%*c.., "_.I , k= . . . '

-. ~
-... '-...I

iteration in the loop the task suspends itsel5 to be resumed by the
scheduler at a later time. The scheduler maintains the different rates
by incrementing an internal counter every time it's called and
resuming tasks only when the counter is a multiple of the thread Figure FSW Diagram
task rate. In VxWorks, the scheduler is activated by a real-time
interrupt (RTI) provided by the reflective memory card. In VERSE, FSW makes the same calls to register this
reflective memory RTI but the underlying mechanism is replaced by the reflective memory emulator. Since there
are no real-time constraints in WSTB, the reflective memory emulator can be controlled so that the RTI is issued at
the user's discretion. Not only can the rate of RTIs be controlled, the entire WSTB simulated operating system can
also be paused and single-stepped by VERSE. The user can pause to check the contents of the reflective memory,
make sure tasks are executed in the expected order, and trace through variable changes step by step.

When VERSE is set to run mode - running tasks one after another as fast as the CPU allows - it actually m s so
fast that no room is left for Linux to run. Due to insufficient funding, we have not yet implemented a
comprehensive solution to this problem. Instead, Linux is forced to run after each virtual time task, resulting in a
run mode significantly slower than it could potentially be.

The simulation side of these testbeds consists of an interface simulator that ensures all data passing through the
system is of the correct size and format. The interface simulator is implemented using a distributed system
architecture called HYDRA^. Each model is encapsulated in a client that communicates with other clients through

Data interface

Archiving
Guide #I Simulator i I CPUO Real-time I

Figure 7. Testbed Software Overview

services established by a
central server. Clients
can run on the same
workstation or different
workstations depending
on the type of service
connection available.
Figure 6 details the many
interactions that takes
place within the interface
simulator, including the
propagation of timing
signals to facilitate model
execution order, inter-
model communication
via reflective memory,
data archiving using real-
time FIFOs, and data
exchange between
simulation models and
FSW through the high
speed interface (HIS).
Currently the interface
simulator runs on the

8
American Institute of Aeronautics and Astronautics

RDTB testbed, but using VERSE makes it also run on the WSTB testbed. In the future, the framework will be
carried onto the SITB. Running the same core software on all three testbeds saves a tremendous amount of work by
eliminating the possibility of introducing new errors during such ~ K O C ~ S S . When problem occur, it is also very
useful to test the software on different testbeds, providing the user with different levels of dormation about the
problem.

V. Future Work
One of the most challenging aspects of VERSE is maintaining two independent times: one for real-time, and the

other for virtual time. All of the timer calls need to be modified to reflect the correct time value back based on the
task type, virtual time or real-time, While the scheduler is capable of handling both real-time and virtual time tasks,
running both types of tasks currently has undefined results, as we haven’t set up bullet-proof safeguards to this mix-
mode execution. As addressed in the previous section, VERSE has not yet achieved ideal run mode speed. Ths
issue must be addressed to fully realize VERSE’S potential. Possible solutions include running L i n u after a set
number of virtual time tasks are executed, and setting flags to ensure Linux is run periodically. There may be other
features in RTAI not completely ported in VERSE since applications currently running on it use only a subset of the
RTAI features. Future work to complete the API should be relatively straight forward, however, since VERSE has
retained so much of the original RTAI archtechre and its footprint within RTAI is minimal.

VI. Conclusion
As aerospace applications have become increasingly complicated, it becomes more and more important to set up

simulated hardware environments in addition to hardware in-the-loop testbeds. These hardware testbeds are
typically oversubscribed, and very expensive to create and maintain as the complexity and capability of spacecraft
increases. VERSE is a tool that helps fill that gap by creating inexpensive, easily replicated environments far
software development and testing. Although certain features of hardware testbeds are outside the reach of virtual
time simulation, VERSE helps users integrate and extensively test software before moving onto the next phase of
development without extensive modification to the software, and facilitates the ability to perform full source-level
debugging when anomalies are observed in the hardware testbeds. This allows for more efficient use of resources
and reduces the possibility of inadvertent damage to critical hardware. Since VERSE is based on inexpensive COTS
hardware, it is now feasible for developers to each have their own software testbed. With its flexible simulation
controls and inexpensive setup costs, VERSE is an invaluable tool for future mission development.

Acknowledgments
The research described in th~s paper was performed at the Jet Propulsion Laboratory (JPL), California Institute of

Technology, under contract with the National Aeronautics and Space A h i s t r a t i o n . T h s development effort was
fully funded by the SIM PlanetQuest mission as a part of the Simulation and Support Equipment development effort
for the development of Instrument Flight Software.

References

J. Misra, “Distributed Discrete-Event Simulation”, ACM Computing Surveys, Vol. lS, No. 1, pp. 39-65, March 1986
Discrete time simulator reference
David R. Jefferson, “Virtual Time”, ACM Transactions on Programming Languages and Systems, 7(3), July 1985.
Lee, E., “Modeling Concurrent Real-time processes using discrete events,”
’ Gerum, P., “Xenomai - Implementing a RTOS Emulation Framework on GNU/Linux,” The “Politecnico di Milano”

TechincaI University, Milano, Italy, 2004.
Yaghmour, K., “Adaptive Domain Enrionrnent for Operating Systems,” http://home.gna.org/adeos
Martin, B. and Sohl G., “HYDRA: High-speed Simulation Architecture for Precision Spacecraft Formation

Martin, B. “HYDRA: Advances in the High-speed Simulation Framework”, AIAA Modeling and SimuZation

Gerum, P., “The Xenomai Project: Implementing a RTOS emulation framework on GW/Linux.”, unpublished

6

Sirnulation,” AIAA Modeling and Sirnulation Technologies Conference, Aug. 2003

Technologies Conference, San Francisco, California, Aug. 15-1 8,2005

wh itepaper, http:llwww.nongnu. org/xenomai/doc/papers/xenomi.pdf

9
American Institute of Aeronautics and Astronautics

VERSE - Virtual Equivalent Real-time Simulation
Environment

Yang Zheng', Bryan J. Martin, Ph.Dt, and Nathaniel Villaurne:
JCI Propulsion Laboratory, Calforniu Institute of Technology, Pusadena, Californiu, 91 109

Distributed real-time simulations provide important timing validation and hardware in-
the-loop results for the spacecraft flight software development cycle. Occasionally, the need
for higher fidelity modeling and more comprehensive debugging Capabilities ~ combined
with a limited amount of computational resources - calls for a non-real-time simulation
environment that mimics the real-time environment. By creating a non-real-time
environment that accommodates simulations and flight software designed for a multi-CPU
real-time system, we can save development time, cut mission costs, and reduce the likelihood
of' errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation
Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-Time
Application Interface) into an event driven simulator that runs in virtual time. Designed to
kccp the original RTAT architecture as intact as possible, and therefore inheriting RTAI's
many capabilities, VEKSE was implemented with remarkably little change to the RTAI
source code. This small footprint together with use of the same API allows users to easily
run the same application in both real-time and virtual-time environments. VERSE has been
used to build a workstation testbed for NASA's Space Interferometry Mission (SIM
PlanetQuest) instrument flight software. With its flexible simulation controls and
inexpensive sctup and replication costs, VERSE will become an invaluable tool in future
mission development.

J. Introduction
s space technology becomes more advanced and flight applications more complex, the need for high fidelity A and teal-time simulations constantly increases, as does the computational load required to support them.

Expensive hardware costs have traditionally limited developers' access to hardware in-the-loop testbeds, or simply
rendered them inaccessible except during late stages of the software development cycle. The size, complexity, and
cost constraints o f today's flight applications call for more developers to collaborate and work on different
components of the software and hardware simultaneously. Finding a way to test and integrate these components in a
simulation environment becomes essential in order to increase the availability of early testing tools, thus reducing
the risks of rework, unanticipated interactions between software and hardware, and faulty software causing damage
to critical hardware. Distributed simulations' can be used to meet the computational needs of modern flight and
instrument software development. Non-real-time simulation testbeds are used to ensure algorithm validity and
correct data flow prior to integration with real-time simulation testbeds, which are typically used to provide timing
and software validation. The desire to fly what you test, and test what you fly is enabled by a supporting simulation
infrastructure that requires little or no changes to flight code when switching between different testbed types.

A+ Goal of VERSE
The V t RSE environment is designed to ease the transition between early software development environments

(software-only and hardware in-the-loop) for flight software (FSW) and sirnulation & support equipment (SSE). It
does so by providing flight missions with an API-identical environment between workstation testbeds and real-time
testbeds. By eliminating the need to re-code or conditionally compile for the different environments, VERSE reduces
crrors and increases the effectiveness of early testing. In addition, Iater high-fidelity simulations are often not ported
back io the early software developnient environments due to cost and time-constraints. This often forces late testing

* Staff Engincer, Jet Propulsion Laboratory, 4800 Oak Grove Drive, M S 198-235, Pasadena, CA, A I A A Membcr
' f'rogram Element Managcr, Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 198-235, Pasadena, CA, AIAA Membcr

Associate Engineer, Jet Propulsion Laboratory, 4800 Oak Grovc Drive, MS 198-235, Pasadena, CA, A I A A Member

1
American Institute of Aeronautics and Astronautics

and problem solving on these platforms, and significantly reduces their effectiveness. By eliminating the need to
port between the different environments, VERSE increases the useful lifetime of software-only test environments
throughout the life of the flight program. In addition, these “workstation testbeds” have much lower cost and much
higher availability, thus reducing the traditional bottlenecks associated with hardware-deprived development
environments. Even more ambitiously, by writing emulation layers as kernel-level drivers with identical APIs to the
real drivers, the VERSE and associated emulatorsisirnulators* eIiminate even the need for recompiIation of the SSE
software, allowing a single binary release to run in the simulated hardware and hardware in-the-loop environments.

B. Virtual Time Simulation Paradigm
In fixed time-step

simulation models, time advances in fixed increments and the system state is updated at the end of each time
increment. In some cases (typically monolithic or single-CPU simulations and systems), time may be scaled by a
constant factor, so that simulated time runs faster or slower than real time, but stilI at a constant rate4. This model
may be inefficient when time steps are small and few or no state changes OCCUK at each time increment. These
implementations normally run much slower than the real-time system due to the overhead involved in measuring
and managing the flow of time. Even in quiescent periods, the simulation will consume computational resources
since the flow of time must be maintained. In discreteevent simulation’ models, time does not flow at a constant
rate, but jumps from one even to the next. In these systems an event is normally defined as the exchange of state
infoi-niation between different models, as these are the significant points that must be maintained in order to preserve
the integrity of the simulation or testbed. In discrete-event simulations the system state changes instantaneously
upon the occurrence of an event, at discrete points in simulated time that are usually not evenly spaced. This paper
refers to the progression of the simulated discrete time points in the discrete-event simulator as virtual time’.

I n VERSE, virtual time advances by jumping from one scheduled task time to the next as soon as execution of the
preceding task is complete. When multiple events are scheduled to occur at the same time’, the simulated virtual
time remains unchanged until all the events scheduled for that time are executed7. Also, as opposed to execution in
real time where time advances at a constant rate, virtual-time simulation skips over unused periods between
consecutit*cly scheduled tasks. This makes it possible for the simulation to progress much faster than in real time
when large time gaps exist between events or when event executions require minimal cornputation**. The actual
speed gain (or loss) depends largely on model complexity, task-switching times, and level of parallelism in the
original system. Since there are no hard time deadlines, a virtual-time simulator can be paused after the execution of
any particular task, stepped to allow execution of the next scheduled task, or run continuously so all subsequent
iasks are cxecuted. These features provide the user with enormous control over the simulation.

Our real-time testbed simulators necessarily operate as fuced time-step simulations3.

C. RTAI
VIXSE is a11 extension of the Real-Time Application Interface’ (RTAI) scheduler. To understand how VERSE

\vork:j, a brief review of what RTAI is and what it does is in order.
RTAI is an open source project designed to supply features of an industrial-grade real-time operating systcrn on

top of the powerful GNUiLinux environment. The code is constantly being improved and is extensively tested by B

world-wide community. The project also uses the Debian development modeltt for releases to ensure users have
stable code. The name “Application Interface” seems to imply RTAI is just an APT, but the code actually
implements a real-time Liiiux kernel extension that runs real-time tasks seamlessly along side of the host Linux
system. RTM has its own scheduler and provides a full set of real-time inter-process communication (IPC)
mechanisms. Altogether, RTAI provides deterministic timing - “hard” real-time scheduling with nominal jitter on
the order of microsecorids on typical systems.

_- ~

I This problem is somewhat unique to distributed simulations. In a non-distributed system, two events cannot occur
at the same physical time because one of them will have higher priority, thus excluding simultaneity. So, for
instance, if two different models need to execute at time T, only one of them actually will, and the other will begin
execution immediately following. In a scaled-time simulation computational resources are constantly expended to
track these overlaps. In a distributed simulation, many tasks can and normally do occur simultaneously.

l’his is normally the case. Real-time systems musr leave gaps between high priority tasks to insure that variations
in coniputation times do not cause violation of deadlines. Therefore, all tasks are planned around worst-case time
constraints. ’’ There are three recognized development stages in the Debian model, each with its own release branch:
~/c~~elo,n?rncw 1 , testing, arid stable.

* *

2
American Institute of Aeronautics and Astronautics

RTRl‘s enabling technology is ADEOS - Adaptive Domain
Environment for Operating Systems’. ADEOS is an open-source
project whose premise is to use a nano-kernel inserted between the
operating system and the hardware to eliminate direct hardware-
dependent code in the kernel. The sole purpose of the nano-kernel is to
dispatch hardware interrupts to the operating system in priority order.
Hosted operating systems, or domains, must register with the nano-
kernel to receive interrupts. Official Linux kernels releases are
unaware of ADEOS, and therefore must be patched to interface with
ADEIOS. When this is done in concert with RTAI, the patching
process ensures that Linux registers with the nano-kernel dispatcher at
a lower priority than that of the RTAI scheduler. Thus, the RTAI
scheduler obtains hardware control before Linux, and RTAI tasks run
before 1.inux tasks, ensuring deterministic timing. See Figure 1 for a
diagram of the relationship between RTAI, Linux, and ADEOS.

Real-time software developers have considerable design flexibility
because RTAI tasks can be run from either kernel- or user-space.
Kernel-space tasks offer the highest performance and are suitable for
high pcrfommance. low-latency, embedded applications. A task is

b
E
-u

IPC Configurations

kernel space 2.6 -I-/- I 0.26 +/- 0.1 p

Receiver Context
k
W
SZ
n
+

01 userspace 1 40+1-4 L1s I NIA I

Receiver Context

E/ u:serspace 1 13+/- I ps 1 N/A 1
5 kernel space 2.4 +/- 0.8 ps 0.21 +I- 0.5 11s
v3

Figure 2. RTAI IPC timing measurements.

started from a
kernel module
by specifying a
function that
will be run as
real-time task,
much like

I Hardware IRQ I
Figure 1. Relationship between RTAI,

Linux, and ADEOS.

VxWorks’ taskspawn() specifies a function to be run as a
task. RTAI’s LXRT is a user-space interface that provides a
symmetric APItt that may be used by both real-time RTAI
tasks and Linux processes. A user-space process makes
special calls at the beginning and end of code sections that
need to operate in real time. When such sections are entered
from a non-real-time context, the entire process is elevated to
real-time status, and is scheduled as a real-time task until the
section is exited. User-space tasks are useful for prototyping
kernel tasks and when performance is less important than
debugging capability. Under RTAI versions 3.0.x and up, the
performance hit associated with LXRT has been significantly
reduced, so much so that the decision between kernel-space
and LXRT now depends primarily on other factors.

The set of RTAT IPCs is extensive and complete -RTAI
supports semaphores, messages, condition variables and
many of other mechanisms. Furthermore, they are usable
between kernel-, LXRT, and in some cases even user-space
processes. A registry with character-string names facilitates
the IPC object lookup on either side. Real-time data can also
be queued on FTFOs for processing by a non-real-time
process. Figure 2 shows some measurements ofthe exchange
of several IPC types between kernel-space and user-space
tasks. The tests were run on a machine with dual AMD
Athlon 1800+ processors running Redhat Linux version 9.0
with an ADEOS-patched kernel.

One o f RTAI’s advantages is that i t co-exists well with

t-
i + Thc R‘lAI LXRT and kernel-space API’s are symmetric, appearing identical to the user. A glue layer exists
below the LXK1’ API that maps i t into kernel-space caIls.

3
American Institute of Aeronautics and Astronautics

Linux. IIard-real-time tasks can be running while users on the same machine run applications as normal, including
intensive graphical tasks. If the real-time duty cycle is too demanding, the non real-time processes will be less
responsive. However, outside those cases this mode is useful because it turns regular PCs into real-time
development stations and testbeds.

11. VERSE Design and Architecture
V E J ~ S I I uses the existing RTAI scheduler design as the basis for accomplishing our virtual time goals. The most

efficient and effective design for VERSE involves modifying the RTAI scheduler to seamlessly handle virtual-time
tasks and real-time tasks alike. In this implementation, virtual-time tasks use the same API calls as real-time tasks,
so that application code does remains unchanged when switching between virtual-time and real-time operation,
Basing the virtual-time scheduler on RTAI's scheduler has an additional advantage: common implementations of
task-control and scheduling architectures using POSIX threads and semaphores for process control and task
switching. Compared to the context switch times of POSIX threads and semaphores that typically run at the kernel
granularity in the worst case (10 milliseconds), RTAI's context switch times are several orders of magnitude faster.
Even though Vt;RSE is a non-real-time sirnulation environment, utilizing such timing advantages will provide
significantly faster simulation performance by reducing task-switching overhead. This is especially important in
environments where the base rate of the underlying models is very high, as is the case in the SIM PlanetQuest
Instrument simulation. We also wanted VERSE to be able to single-step tasks, enabling much more extensive
debugging capabilities for the end user. Since the virtual-time scheduIer maintains inter-task deadlines and is not
synchronized to wall-clock time, users can effectively control simulation time at any granularity. Ultimately, this
means thc user can suspend and restart task-scheduling at the individual event level. Tasks can then be time-wise
single-stepped and task simulation states can be reviewed before and after each task's execution cycle. VE,RSE is
designed with all the above goals in mind.

Ideally. real-time and virtual-time tasks should coexist in VERSE, requiring VERSE to maintain both real time and
virtu;il time simultaneously. (This is useful for setting real-time watchdog timers for preventing simulation
mnaway, or interfacing faster than real time virtual-time simulations with external real-time systems.) By
controlling task mode (virtual- or real-time) via the existing RTAT task control structures, and adding a single new
API i o switch tasks in and out of virtual time, we can control how tasks are scheduled and which clock (virtual or
real) is reported. The one problem experienced has been the extent to which RTAI provides highly optimized
operation through extensive use of pre-compiler macros, Each of these macros needs to be found and modified to
take The new simultaneous virtual- and real-time approach into account. This has had a destabilizing effect on the
KTAI scheduler. Currently, VERSE only accommodates non-real-time simulations. Since our current simulations
have clean-cut goals in the real-time versus non-real-time environment this is not a limit.

R'TA1 provides various schedulers based on the capabilities of the platform and the needs of the user, These
include two multi-processor (MP) kernel schedulers, a uni-processor (UP) kernel scheduler, and an LXRT combined
user- and kernel-space scheduler, VERSE is designed as an extension of the LXRT scheduler since LXRT already
handles multi-processor machines and provides easy access from both kernel- and user-space applications.
Multiprocessor systems provide extra processing power for todays demanding and complex software applications,
and grant simulations more flexibility in distributing the workload. For example, one processor can be completely
dedicated to running computation-intensive work while the other processor can handle graphical user interface and
Icss esscntial peripheral tasks$$.

Writing applications in user-space using LXRT instead of in kernel-space has many benefits as well.
Dcvelopiiig in user-space offers a layer o f protection against crashing the OS when errors occur, since user-space
tasks Idon't have direct access to kernel services. Users also have access to a variety o f debugging and development
tools not available in kernel-space. The testbed can also run securely since developers need no special permissions
i o cxecute their software (which they do need when loading kernel modules). Of course, user-space applications
will suffer some performance loss compared to kernel-space, but in exchange for all the benefits, a few
miuroscconds of' extra latency is acceptable for a non-real-time application like VERSE.

Since Vmsr. is designed for simulations originally hosted in distributed environments, it is import to address
how tasks are run that are nonnally executed in parallel on multiple CPUs. Tn RTAI, LXRT tasks can be executed
simultaneous[y on the available CPUs. In VERSE, executing virtual-time tasks in parallel on separate CPUs would
lead tcr synchronization errors due to the inability to know precisely when a CPU executes its task relative to another

b e In fax, the.firsl thing a user typically notices when first transttioning to a multiprocessor system is that the OS
rarely loses responsiveness.

4
American Institute of Aeronautics and Astronautics

CPU. Here, the most straightforward alternative has been chosen: all tasks are scheduled on a single CPU. If two
tasks arc scheduled to run at the same virtual time, the task that is first in the task queue will be executed first
(FIFO). Thus, tasks that would normally run in parallel are run sequentially, but the virtual time remains the same
until all tasks scheduled to run at that particular time are finished. With these design parameters defined, it is
possible to identify areas of the RTAI LXRT scheduler that require modification in order to implement VERSE.

111. VERSE Implementation
The R T A I scheduler is a complex and sparsely documented code base to work with. It is necessarily complex

because the rigors and optimization required for low-latency real-time operation lead to difficult-to-read code,
especially with RI’AI’s extensive use of pre-compiler macros. It is sparsely documented (unlike the rest of RTAI)
because the intemals of the scheduler are not an area the normal user of RTAI would venture into. After some
examination, we found that the RTAI scheduler maintains three lists of task pointers:

Complete list: a list containing pointers to all the real-time tasks created in RTAI.
Tinicd list: a chrono~ogically ordered list that points to all tasks scheduled to run in the future.
Ready list: a priority based list containing pointers to tasks that are ready to be executed immediately***.

Each o f these task pointer lists is implemented as a circular list with the first - and also the last ~~ element pointing to
the L inux kcrncl task. (Recall that in the ADEOSiRTAT paradigm the Linux kernel itself runs as the lowest-priority
real-lime task.) The Linux task pointer is used to pass control to the Linux operating system so non-RTAI tasks can
run. At each time tick, the scheduler determines which timed task(s) are ready to run based on the scheduled
execution time of the tasks. Those that are ready are transferred into the rendy list, and then all the tasks on the
ready list are executed singly based on their priority. The Linux task has the chance to run only if no real-time ready
tasks are ready in this interval, thus ensuring RTAI’s priority over Linux. Periodic tasks are automatically
rescheduled back onto the timed list after execution; a-periodic tasks reschedule themselves using a variety of
mcthods. For multi-CPU machines, the scheduler assigns a Linux task pointer to each of thc CPUs and uses the
pointer to access each CPU’s unique set of timed list and ready
list.

VERSE adds a new virtual task list to the RTAI scheduler that
contains pointers to the virtual-time tasks as seen in Fig. 3. These
tasks are identified through a new flag in the RTAI task structure,
and the new virtual task list is implemented in the same way as the
original RTAI lists; it is circular with the headtail of the list
pointing to the Linux task. The RTAI scheduler was modified so
that ,when the scheduler is called and no real-time tasks need to
run at the current time. the scheduler pulls the first task off the
virtual list and puts it onto the ready list. In order to have strict
control over thc execution of the virtual-time tasks and ensure that
tasks can be single-stepped, only one virtual-time task is placed on
the ready list a t a time (contrasting normal tasks in RTAI where
multiple real-time tasks can in reside on the ready list). Also, as
mentioned earlier, all virtual-time tasks are run on only one CPU
to ensure that they are executed in chronological order.

The inost straightforward and least error-prone way to handle
virtu;il-time tasks in RTAI is to modify the functions that add,
I-eniove, and wake up timed tasks. Thcse functions allow VERSE
lo replace real-time tasks with virtual-time tasks cleanly and
conveniently, without changing the RTAI APT. When adding a
task lo be scheduled in VERSE, the scheduler places the task in the
virtual list if the task’s virtual flag is set. In RTAI, waking up a
timed task involves transferring it from the timed list to the ready
list. This process is modified in VFRSE to transfer a virtual-time

-6 Original RTAI implementation

VERSE additionslchanges

Figure 3, VERSE scheduler design.

1 1 1

i n ! m r t l i ~ r t u ~ in this case actually indicates that the task desires to be executed at any time during the next basic
liTA[interval, which turns out to be a very small time interval.

5
American Institute of Aeronautics and Astronautics

task from the virtual list to the ready list only if there are no tasks in the timed list that can be transferred. By
changing these few functions, virtual-time tasks are seamlessly inserted into RTAI task processing. The handling of
ready tasks and their interactions with Linux do not need to be touched at all, thus fully utilizing the existing RTAI
code and design.

Several other aspects of RTAI, however, still had to be modified to accommodate full functionality for vn-tual-
time tasks in VEnSE. One such area is the handling of semaphores. In RTAI, three things happen when a task waits
on a semaphore: the task’s state flag is set to reflect that the task is pending on a semaphore, the task is removed
from the ready list, and the task registers with the blocked task-list in the semaphore data-structure. The task
remains in the timed list. When a semaphore is signaled, the corresponding inverse functions occur: the task is
unregistered from the semaphore block, the task is moved from the timed list to the ready list, and thc task’s
semaphore flag is cleared.

In VE:KSI-,, however, a task cannot be moved immediately to the ready list when it receives a semaphore since
virtual-time tasks must be run in FIFO order, and there must only be one virtual-time task on the ready list at a time.
There might be virtual-time tasks that should run prior to the just-signaled task. Therefore, the VFKSE scheduler
resets the signaled task to run at the current time and reinserts it into the virtual list. This places the new task at the
end of the list of tasks to be run at the current time.

Similar principles apply to the task suspend and resume features of VERSE. RTAI simply removes a task from
the ready list and places it on the timed list when it is suspended and sets the task’s suspend flag. When the task is
resumed, the RTAI scheduler cIears the suspend flag and transfers the task from the timed list to the ready list. In
V ~ i < s e . however, when a task is suspended, it is not only removed from the ready list but also the virtual list. If the
task is not removed from the virtual list, it could accidentally run before it is actually resumed. However, the task is
not lost since the task-resume call provides the task pointer as a parameter. The scheduler can then put it back into
the virtual list with its execution time set to the current virtual time.

To give the user access to virtual-task information and easy control over the virtual-time simulation, VERSE
extended the RTAI proc interface to include the current virtual time and made some entries witable. The proc file
system is a pseudo-file system which is used as an interface to kernel data structures, and is typically mounted at
iproc. Some entries are read-only for viewing kernel information, but others can be written to, for post-load
modification of associated kernel parameters. The RTAI scheduler registers proc entries for members of each task
list and task information such as period, state, process id? and resume time. VERSE registers the new virtual task list
as we11 as the current virtual time. While the original RTAI proc interface purely displays read-only information to
the user. the VI:RSE proc interface extension was improved so the user can write information to the scheduler for
control purposus. By writing simple ASClI commands such as PAUSE, STEP, and RUN to thc VERSE proc
interface, users can control execution of virtual-time tasks. VERSE also provides a debug option through the proc
interf’ace so users can view extremely detailed information on scheduler operations. f i s option can be turned on
and off at will so users will not be overwhelmed with the flood of infomation. This interface is easily expanded to
provide the user with more detailed information and finer control over the scheduler.

TV. VERSE Application
VERSE is currentIy incorporated in the instrument flight software development workstation for Jet Propulsion

Laboratory’s SIM PlarietQuest mission. SIM PlanetQuest is scheduled for launch in 2011 and will determine the
positions and distances of stars several hundred times more accurately than any previous program. This accuracy
will allow SIM to determine the distances to stars throughout the galaxy and to probe nearby stars for Earth-sized
p1anei.s. The real-time control (RTC) element of SIM is creating multiple testbeds with varying levels of hardware
fidelity and numerical fidelity to deveiop and test flight software throughout the development lifecycle (shown on
Fig. 4). The KI’C Workstation Testbed (WSTB) provides a non-real-time workstation-only environment that
support features such as symbolic debugging, unlimited data dumping, and fast turnaround time. It will be used
heavily in the early stages of flight software development to explore designs, determine feasibility, and validate data
flow. The Real-time Development Testbed (RDTB) is a mixed workstation and reaI-time environment that
incorporates a flight-like processor and other hardware components such as 1553 and reflective memory cards. The
RDTB allows the flight software to run on its own processor in a single board computer (SBC) and provides data
dumping capabilities as well as simulation of other subsystems. A component diagram of RDTB is provided in Fig.
5. Finally, the Software Integration Testbed (SITB), another mixed workstation and real-time environment, offers
the most hardware intensive environment with multiple flight-like processors and cages for FSW deveIopment and
validation. FSW will be executing on all three testbeds throughout its development cycle, so it is advantageous to

6
American Institute of Aeronautics and Astronautics

hardware fidelity

4 riumerical fidelity

WSTB RDTB

FSW & SIM
f FSW I

/--+
SIM

SIT6

I
FSW 1 I f I

Figure 4. SIM FSW testbeds.

eliminate the need to modify code when moving between testbeds. By bridging the gap between real-time and non-
real-rime environments, VERSE is the tool that makes this a reality.

Whcn integrated with our VxWorks and reflective memory emulators, VERSE completely encapsulates flight
software applications ~ originally written to run in a VxWorks environment on a SBC - so that it may execute on a
Linux workstation. The VxWorks emulator is an OS glue layer that implements a subset of VxWorks calls using
R7'AI functions. I t consists of a set of header files and shared object libraries that replaces those provided by
VxU'orks. The reflective memory emulator simulates behavior of the reflective memory board, including memory
mapping and the sending and receiving of interrupts. Both of these emulators depend heavily on the VERSE
environment which, when combined with these tools, enables flight software to run on a Linux workstation after a
direct re-compilation (no modification of source code is required). Since only one single board computer is
currently available in our testbeds, VERSE provides FSW developers with additional platforms to build their
software.

The flight software currently in development is an architectural framework built to control the SIM
interferometers while acquiring and measuring stars. The software components include a path length controller
(PLC), delay line managkr (DLM), internal &3rology manager
(IMM), dcvice driver (DDR), fringe camera manager (FCM),
high-speed interface (HIS), and instrument flight computer (IFC)
mode controller (IMC). The FSW scheduler spawns threads at
different rates to run these components as shown in Fig. 6. The
scheduler itself operates at a base rate, which is a fundamental
rate for the instrument. The task associated with each thread
enters a loop after being created, and after each iteration in the
loop the task suspends itself, to be resumed by the scheduler at a
later time. The scheduler maintains the different rates by
incrementing a n internal counter every time i t is called and
resumes tasks only when the counter is a multiple of the thread
task rate. In VxWorks, the schcdulcr is activated by a real-time
interrirpt (RTI) provided by the reflective memory card. In
V13R5;Et FSW rnakes the same calls to register this reflective
memory R T 1 but the reflective memory emulator repIaces the
underlying hardware mechanism. Since there are no real-time
constraints in WSTB, the reflective memory emulator can be
controlled so that the R'r1 is issued at the user's discretion. Not
only can the rate of RTIs be controlled, the entire WSTB
simulated operating system can also be paused and single-stepped
b y V I ; t w . The user can pause to check the contents of the Figure 5, RDTB components.

7
American Institute of Aeronautics and Astronautics

reflective memory, make sure tasks are executed in the expected
order, and trace through variable changes step by step.

When VWSE is set to run mode - running tasks one after
another as fast as the CPU allows - it can actually take over the
CPL so that no room is left for Linux to run. This is due to the
conflict betwecn the need to have Linux as the lowest priority
RTAI task and the fact that there is always another virtual-time
task 10 run. In real-time operation this is not an issue, because
there are always small gaps in the real-time execution during
which the Linux kernel can be executed. Due to a sudden
reduction in personnel, we have not yet implemented a
comprehensive solution to this problem. Instead, we have forced
Linux to run after each virtual-time task, resulting in a run mode
significantly slower than it should be.

The simulation side of these testbeds consists of an interface
simulator that ensures all data passing through the system is of the
correct size, format, content, and timing. The interface simulator
is implemented using a distributed system architecture called
HYDKA''. Each model is encapsulated in a client executable that

\
\

resume\

r

10 Hz
thread

@
@
@
@
@
@

suspend
s u s p e n c

threads -*'; T

Figure 6. FSW application diagram.

conunimicates with other clients through services established by a central server. Clients can run on the same
workstation or different workstations depending on the type of service connections available. Figure 7 details the
many interactions that takes place within the interface simulator, including the propagation of timing signals to
facilitate model execution order, inter-model communication via reflective and shared memory, data archiving using

Local
Storage

6
t

Global
Stoiag?

Guide #1 Simulator

CPUO Real-ti me

Data Interface

Archiving

FSW Guide #I

Drivers

Sofhvare

Rigid & Flex-body

Figure 7. Testbed software overview.

RTAI real-time FIFOs, and
data exchange between
simulation models and
FSW through the STM HSI.
Currently the interface
simulator runs on the
RDTB testbed, but Vmsr
permits it to also run on the
WSTB testbed. In the
future, the framework will
be carried onto the SITB.
Running the same core
software on all three
testbeds saves a tremendous
amount of work and
eliminates the possibility of
introducing new errors
during the software porting
process. Also, when
problems occur, it is very
useful to test the software
on different testbeds, which
provides the user with
different levels of
information about the
problem.

V. Future Work
One of the most challenging aspects of VERSE is maintaining two independent times: one for real-time processes,

and the other for virtual-time processes. All of the RTAI timer calls need to be modified to reflect the correct time
value based on the task type: virtual-time or real-time. While the scheduler is capable of handling both real-time

8
American Institute o f Aeronautics and Astronautics

and virtual-time tasks, running both types of tasks currently reduces system stability, as we have not set up
saleguards to this dual-mode execution. As addressed in the previous section, VERSE has not yet achieved ideal run
mode speed. ‘lhis issue must be addressed to fully realize VERSE’S potential. PossibIe solutions include running
Linux after a set number of virtual-time tasks are executed, or setting flags to ensure Linux is run periodically.
Significant speed gains could also be realized when simulating processes that originally ran in a distributed
environment by letting simultaneous processes run on different processors, although synchronization guarantees
requirc that a single scheduler manage this. There may be other features in RTAI not completely ported in VERSE
since applications currently running on it use only a subset of the RTAI features. Future work to complete the API
should be relatively straightforward, however, since VERSE has retained much of the origina1 RTAI architecture and
its footprint within RTAI is minimal.

VI. Conclusion
!is acrospaze applications have become increasingly complicated, it becomes more important to create simulated

hard ware environments in addition to hardware in-the-loop testbeds. These hardware testbeds are typically
oversubscribed, and very expensive to create and maintain as the complexity and capability of spacecraft increases.
VERSE: i s a tool that helps fill that gap by creating inexpensive, easily replicated environments for software
development and testing. Although certain features of hardware testbeds are outside the reach of virtual-time
simulation, V t . i ~ i helps users integrate and extensively test software before moving onto the next phase of
development without extensive modification to the software. VERSE also facilitates the ability to perform full
source-level debugging when anomalies are observed in the hardware testbeds. This allows for more efficient use of
resources and reduces the possibility of inadvertent damage to critical hardware. Since VEKSE is based on
inexpensive COTS hardware, it is now feasible for developers to each have their own software testbed. With its
flexible simulation coiitrols and low setup costs, VERSE is an invaluable tool for future mission development.

Acknowledgments
The research dcscribed in this paper was performed at the Jet Propulsion Laboratory (JPL), California Institute of

Technology, under contract with the National Aeronautics and Space Administration. This development effort was
fully funded by the SIM PlanetQuest mission as a part of the Simulation and Support Equipment development effort
for the devclopment of Instrument Flight Software.

References

I l jul iiiioto, R M., f’urnllel and Distributed Sirnulalion Systems (Wiley Series on Paraliei and Distribuied Computing), John

’ .Martin, B. “f-IYDRA: Advances in thc f.ligh-Spced Simulation Frarncwork”, ,4IAA Mudding mild Simulation Techmlogie.7

’ fiubinstein, R . Y . , Modern Simulation undModelbig, Wiley & Sons, Inc., 1998.

Wciley & Sons. Inc., 2000, Chaps 1,2,7.

(70f!fiwuce, San Francisco, California, Aug. 15-1 8, 2005.

Gcrum. P., “The Xcnomai Project: Implementing a RTOS Emulation FramcwoTk on GNU/Linux,” uripublishrd whilepaper,

Misra. J., “Distributed Discrete-Event Simulation,” ACM Conrpuling Surveys, Vol. 18, No. 1, Mar. 1986, pp. 39-65.
U R L : http://www.nonFznii.or~/xenomai/doc/pa~ers/x~no~ai.~df [cited 5 August, ZOOS], section 4.3.4.

‘ Jcffcrson D. R., “Virtual Time,” ACM Tmnsaclions on Progruniming Lnnguages arid Systems, Vol. 7, No. 3, Jul. 1985, pp.

’ L-ce, E. A . , “Modeling Concurrent Rcal-timc processes using discrcte events,” Annai.r ofsoftware hgineering, Vol. 7, No.
404-4:!5

1-1, Mar. I !)W, pp. 25-45.

(DIAPM), Milano. Italy, 2005.

~vww.ope r svs . com/ f tp ipub /Adeos /adeos .~df [cited 5 August, 20051.

Al / lA hfudelifig arrd Sirnulalion Techttologies Chnference, Aug. 2003.

F!TAI, Rcal-‘I’Imc Application Intcrface, Ver. 3.0r4, Department of Aerospace Enginccring of Politccnico di Milano

’ Yaghmour, K., “Adaptive Domain Environment for Operating Systems,” unpublished whitepaper, UKL:

’* Martin, 6. and Sold G., “HYDRA: High-speed Simulation Architecture for Precision SpacccraR Formation Simulation,”

9
American Institute of Aeronautics and Astronautics

