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The Problem JPL

« How do you simulate the evolution of a quantum system, and

extract useful predictions, efficiently?
~Problem appears to be impossible classically for all but the simplest systems

¢« All phases of the quantum simulation must be efficient
— Preparing the initial state
— Evolving the state
— Extracting an answer

* In 1982 Feynman speculated quantum computers might

simulate quantum systems efficiently
—Bosons (yes) / fermions (77?)
—Lloyd showed this is true for bosons and fermions
—... and we now know its true for anyons too
—Lloyd/Abrams then constructed an explicit quantum algorithm for computing
properties of a quantum system
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The Solution SPL

« |dea: use the evolution of one quantum system to emulate the
evolution of another
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Quantum Simulation in Small Increments JPL

* Schrédinger equation with time independent, local, Hamiltonian

2~ iy

L
- ie,H= Zhﬂ and only involves few-body interactions

~ Solution |y(2)) = &y (0)) = U]y (0))

s If you can find an efficient quantum circuit for U, then you’re done
— But, in general, this is hard and/or costly to do exactly L
— Moreover, if 34,¢":[H,,H,]# 0 then exp(—iH1/h) = exp(—i ) H,t/h)+ Hexp(—zH t/H)

£=1 £=1
+ How then do you build a circuit for U?
— Break evolution up into small increments
Il//(t)) — g HNIR i H AR ".e—iHAr/hlyl(O»

M factors

= (H U(A;))W(O)) where U(Af)= e ¥4/ » He-iH,A:/h +O((AY)

£=1

— If each H,is local, there is an efficient quantum circuit for exp(—iH,At/ k)
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Higher-Order Approximations JPL

* Trotter formula (e.g., H = H,+H,)
—Basis of approximation rests on a limit
lim (e—iH‘t/n —iH,t/n )n - e—-i(H1+H2)t

n—>o0

e

* Simplest Trotter approximation
e-l'HAt — e—iHlAte—inAt + O((At)z)

* Higher-order Trotter approximations
e—iHAt — e‘in%e—inAte‘iHrAz“ + 0((At)3)

= ¢ N L O((AYY)
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Decompose Unitary Increments JpL
__into Quantum Circuits

» Quantum circuit is a decomposition of desired unitary matrix
into sequence of single and pairwise quantum logic gates

* Only requires
— y-rotations, z-rotations, phase-shifts, and controlled-NOT gates (CNOT)
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Walsh-Hadamard Gates JPL

+ Some gates are especially useful, e.g., Walsh-Hadamard gates
_ (o1
W= 7—5(1 = 1) =

+ ¥ gates create a superposition of exponentially many (i.e., 2")
terms in polynomiaily many (i.e., n) operations

(w|0) @ w|0) @ (7]0)) =53/—qu00)+|001)+|o1o)+|011)+|1oo)+|101)+|1 10)+[111))

n operations

|0)—— w |—0)+[1)
|0)——{w |—0)+[1)

2" components

ﬁqooo)+]001)+|01o)+|01 1)+[100) +[101) +|110) +]111))
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Extracting Answers from Quantum Simulations JPL

* You cannot “read” the answer, i.e., the full solution lt//(t))
—It is stored in a quantum state
—If you try to read it, you collapse the state

» What can you do with it?
—You can sample from it
-You can repeat the simulation and perform state tomography to estimate |x//(t))
—... but this is likely to be inefficient
—You can use it as an input to another quantum algorithm {the key!!)

~ [f we feed Iw(t)) into another quantum algorithm, we can ...
—Obtain mean values of operators efficiently
—Calculate correlation functions
—Measure (some) spectral properties
—Estimate a ground state eigenvalue / eigenvector
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Ancilla-Assisted Measurements JPL

+ Suppose we computed ]z//(t)> because we would like to estimate
oW ry@)=U)

~Where U, ¥ are unitary

* With 20, =0, +io, the following circuit is found to measure <U +V>

Measure expectation value of 20,

o) = w r——?——- A | (20.) = {yOIU 7|y ®)

lw ()

+ Only a single output qubit is monitored
—Estimating the state of a single qubit can be done efficiently
—Then, if the Controlled-0-U and Controlled-1-V can be implemented efficiently ...
—... the (polynomial cost) quantum simulation (needed to create the input to this
circuit) need only be repeated polynomially many times
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Tomography c.f. Spectroscopy JPL

« Circuits for measuring Re[Tr(pU)] and Im{Tr(ol)] for any
unitary operator U/
~Find (o) = Re[Tr(pU)] and (o,) =~ Im[Tr(pU)]

Measure

expectation value
of o,
0X0] 4 w «Tw w — (o)
P U [

» N.B. polarization measurement reveals a property that depends
on both p and U

—~Hence can use this circuit to extract information about p is U is known (tomography)
—Or to extract information about U if p is known (spectroscopy)
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From DFT to QFT

JPL

Discrete Fourier Transform (DFT)

N-1
(Kgs Kypeens Xy ) —23(Vo Vis s Vi)t Vi =—— x @I
0 Xy s X1 \/—]\7; J

Quantum Fourier Transform (DFT)

— Same except “vector” is now stored in amplitudes of a superposition state

N-1 N-l 1 ¥
17y g &) ; 4 2t ki) )
Sel) = Sl 1) 7 2

_ Defining |J)=|jidresda)s J= 2T B2 4042
— Defining 0.7,/5.q.+ Jn = /24 fp [ A4t 127
— Can factor mapping of basis state into following product state

D =liideeedi) > o l(0) + e 1)) (0) + 20| 1)) 0} 4 270
2n 2

)

-~ Hence QFT maps basis states into product states and therefore has an efficient

quantum circuit factorization
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Quantum Circuit for QFT 4PL

* Need Walsh-Hadamard and controlied 1-qubit gates

'0) +eznnj,,.4;|l)

|0) + ez:rm jz.../;ll)

IO) + ez:no.j,,,,i,, I l)

1) — Jop -1
Quantum Circuit for Quantum Fourier Transform

¢ DFT (actually FFT) of length N vector takes O(N log N) steps

¢ QFT of length N vector takes O( (logN)?) steps
— Exponential speedup
— But cannot see the result, can only compute with it or sample from it

s QFT maps eigenstates into phase factors
— QFT-" maps phase factors into eigenstates
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Elgenvalue Estimation JPL

Problem: Given a Hamiltonian, A, and a state, |y}, which
approximates a true eigenstate, |¢)

Goal: Determine the corresponding eigenvalue, ¢*"%:0<g<1

Some observations:
—First notice an eigenvector of H is also an eigenvector of U =e
—If His “local”, U (and powers of U) can be implemented efficiently

—iHtlh

Let a/2" =0.4a,...a, (in binary) is the best m-bit estimate of ¢
~Then the following circuit computes a,, a,, ..., a,, with probability 0.405
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How Does Eigenvalue Estimation Work? -JPL

* Hamiltonian, I, and a state, |y), which approximates a true eigenstate, |¢,)
» Goal: Determine the corresponding eigenvalue, g,

Algorithm AbramsLloydEigenvalue:
Step 1: Initialize state to [0)y) = IO)Zd |4,) where |¢ )are elgenvectors of U

Step 2: Apply Walsh-Hadamard’s to the b ancillae to create 7z Z|J>Zd |¢ )
Step 3: Apply powers of U, conditioned on ancillae -—LZI j)U ! Zd |¢ )
Step 4: Since U unitary its eigenvalues can be written as ¢** “where 4, € R

Step 5: Re-write last state using elgenvalues and change order of summation

+2 Zduez”"“ 14

Step 6: Perform an inverse QFT in the ancillae Zd [Zg(au’.])l.])] |¢ )

e
. 2"a, =
where g(q,, )= 2" sin(x(a, - j27°)) -7
1

Za,=J
Step 7: Measure the ancillae qubits to obtain outcome j with probability

2 "
p;=2 14 .» )| and project second register into state ZMJ—)M)

g
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Fermionic Simulations JEL

* (In 15t quantization) fermionic simulations pose a special

challenge in terms of creating the antisymmetric initial state
—Input state needs to be a superposition of Slater determinants
L N,
—ie.,lw)=> g.|4.) where l¢a)=HCIIWC)
o=1 5=

In 2nd quantization must convert creation/annihilation operator
algebra to that of spin-1/2 systems

- E.g.,in a Hamiltonian & = ZVonm”,¢ + D 4CCs
i=1 <i,f>o
— Map creation/annihilation operators to spin operations using Jordan-Wigner
ol tio!
—_x

transformation, i.e., with o/ =

j-1
.y ar
cj——>(1;[ cr,_Ja_
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Conclusions

s .

JPL

Quantum computers can simulate quantum systems
exponentially faster than classical computers

But this does not imply you can obtain information about ai/
properties of the system exponentially faster
-E.g., if you want the complete eigenspectrum there is no advantage

Obtaining certain properties exponentially faster is possible
—Often using some ancilla-assisted readout scheme
~Expectation values of operators
—Correlation functions
—~Gross spectral features (e.g., spectral regularity, density of states)
~Ground state eigenvalues /eigenvectors

Aside: Quantum simulation of a fault tolerant quantum

computer confers fault tolerance to the simulation
~Is this exploitable to make an error free computation?
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