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Summary 

Survey of Product-Line Verification and Validation Techniques 

This report presents the results from the first task of the SARP Center Initiative, "Product Line 
Verification of Safety-Critical Software." Task J is a literature survey of available teclmiques 
for product line verification and va/idation. 

• Section J of the report provides an introduction to product lines and motivates the survey 
of verification techniques. It describes what is reused in product-line engineering and 
explains the goal of verifiable conformance of the developed system to its product-line 
specifications. 

• Section 2 of the report describes six lifecycle steps in product-line verification and 
validation. This description is based on, and refers to, the best practices extracted from 
the readings. It ends with a list of verification challenges for NASA product lines (2. 7) 
and verification enablersfor NASA product lines (2.8) derivedfrom the survey. 

• Section 3 provides resource lists of related conferences, workshops, industrial and 
defense industry experiences and case studies of product lines, and academic/industrial 
consortiums. 

• Section 4 is a bibliography of papers and tutorials with annotated entries for relevant 
papers not previously discussed in sections 2 or 3. 

2 



Section 1. Introduction 

Statement oftbe problem. Product-line engineering of NASA systems offers the opportunity for 
significant cost savings and increased quality control. Reuse of domain-engineered product-line 
assets can reduce the cost and time to market of the new system, and can improve the quality of 
the developed products. 

However, with this opportunity come new verification challenges. Specifically, we seek to 
answer the questions: 

• "How should we verify that delivered software conforms to the product-line requirements and 
architecture levied on it and how do we document that conformance?" 

• "How should we verify that safety-critical software built using product-line assets is safe?" 
Solutions exist and have been applied successfully in industry, but need to be customized for 
NASA's unique needs. 

Need for verifiable conformance. NASA is, with the rest of industry, turning to product-line 
engineering to reduce costs and improve quality by effectively managing reuse. In product-line 
engineering, assets such as a common architecture and shared requirements are reused to build 
each new system in that product line. Experience in industry has shown that it is the verifiable 
conformance of each system to the product- line specifications that makes or breaks the product­
line practice. Verification that the software for each project satisfies its intended product-line 
constraints is thus essential. This report surveys product-line techniques that exist in industry as a 
first step toward that goal. 

Software product line. A software product line is defmed to be "a set of software-intensive 
systems sharing a common, managed set of features that satisfy the particular needs of a specific 
market segment or mission and that are developed from a common set of core assets in a 
prescribed way" [Clements and Northrop]. 

Domain Engineering. Product-line development is typically divided into two phases: Domain 
Engineering, in which the product line assets are specified and developed, and Application 
Engineering, in which the product line assets are reused to build each new system in the product 
line. The first phase, Domain Engineering, depends on the knowledge and skill of domain 
experts to produce a set of optimized product-line assets. These typically include a product-line 
architecture and a domain model that specifies both the software requirements common to all 
systems in the product line, and the variation points at which the systems will differ. Most of the 
work to date in academia and at NASA has been on effective Domain Engineering of product 
lines, both since it comes first and since correct scoping and specification of the product line is 
basic to its success. 

Application Engineering. In the second phase, Application Engineering, the product line assets, 
such as a common architecture and shared requirements, are reused to build each new system in 
that product line. It is this second phase that will make or break the product-line approach for 
NASA because it is the phase that depends on the conformance of each individual project to the 
product-line specifications previously levied on it. Verification that the software for each project 
satisfies its intended product-line constraints is essential. This report focuses on Application 
Engineering, specifically on verification and validation techniques needed for the Application 
Engineering of Exploration Software systems built using product line assets. 
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Goal of tbe literature survey. This survey is a step toward the goal of developing a baseline 
verification process to show that the software in each system in the product line is, in fact, 
product-line compliant. The verification process will check the consistency of the system 
software intended to be built with product-line assets against the product-line requirements 
themselves. In addition, it will help assemble a case that the software is compliant with product­
line constraints associated with it. That is, we want to answer the question: "How should we 
verify that the software of interest conforms to the product-line requirements and product-line 
architecture levied on it and how do we document that conformance?" 

Unique cbaUenges of product lines. Verification of product lines differs from verification of 
single systems in the greater opportunities for reuse of the product-line framework and product­
line assets, including requirements specifications, models, and test cases, with potential attendant 
cost-savings and improved quality. Verification of product lines also differs from verification of 
single systems in the added complexity of developing and supporting multiple variants, multiple 
configurations for different customers, and multiple component versions across differing product 
lifecycles within the product line. 

Unique cbaUenges of NASA product lines. Verification of NASA product lines will differ 
from verification of other product lines. We list here some of the key differences: 

• Many product lines will be safety or missio,n critical. These product lines will thus also 
be built to satisfy NASA GB-8719.l3, the Software Safety Guidebook. This is unlike 
many existing consumer product lines, which do not involve safety issues. There are, 
however, a growing number of safety-critical product lines, such as cockpit displays 
[Lutz et aI., 98], medical imaging systems [Schwanke and Lutz], pacemakers [Liu et 
al.], and satellites [Dehlinger and Lutz, 2006]. 

• Many NASA product lines will be built by contractors rather than in-house, whereas 
many (but not all) product-line engineering techniques assume that the domain engineers 
and the application engineers work together. 

• Extended and remote missions require additional autonomy. To date, most product lines 
have not dealt with autonomy. Satellite product lines are a notable exception. 

Section 2. Literature Survey 

This literature survey is concerned with the Application Engineering phase, i.e., the reuse of the 
product-line engineering assets to build a set of new systems. The product-line engineering assets 
passed to the Application Engineering phase are the reusable artifacts that were previously 
defined, developed, and tested in the Domain Engineering phase. 

Product-line assets. Typically, the artifacts stored in the product-line repository include [Gomaa. 
Pohl et aI., Weiss and Lai]: 

• common and variable requirements specifications (typically the result of the product-line 
level Commonality and Variability analysis) 

• reference architecture 
• protocols 
• component design specifications 
• component code 
• test suites 
• interface specifications and code 
• configuration options 
• infrastructure (feature models, tool support, etc.) for constructing new systems from the 

domain-engineered product-line assets. 
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• dependability case input (e.g., test results, development-process profiling, metrics for 
domain-engineered assets) 

Reuse of product-line assets. These assets, or artifacts, are reused to build a sequence of 
applications. The different applications are each customized, or tailored, to the needs of the 
specific customers or stakeholders by selecting different combinations of features from among 
those defmed in the domain-engineering of the product line. Each of these applications, built 
using the product-line assets (what Gomaa calls the product-line repository), is a member of the 
product line [Gomaa]. This report focuses on the specific problem in the Application Engineering 
phase of how to verify the conformance of a new system to the product-line assets. McGregor 
presents a framework for developing product line test assets in his tutorial [McGregor]. 

Applicability to Constellation Program. Because our report is to be cleared for public release, 
we merely note that the qualification and certification process of off-the-shelf software, including 
reuse and legacy software, as described in the NASA Constellation Program Software 
Verification and Validation Plan, CXP 70086 Baseline (Draft), is consistent with the process 
described here. In that plan, as here, there is an emphasis on traceability and on assuring that the 
documentation needed to verify and validate the software is provided. 

2.1 Requirements verification 

Verifying whether the requirements for the new system conform to the product-line requirements 
can only be accomplished if adequate documentation exists. Ardis and Weiss, in a tutorial at the 
1997 International Conference on Software Engineering described how to identify and document 
the requirements for the product line. An essential output from the Domain Engineering of the 
product line is a documented Commonality and Variability Analysis (CV A) [Weiss and Lai]. 
The CV A documents the common and variable (optional and alternative) requirements on all 
members of the product line. 

Product-Line assessment. In many cases, the product-line assets do not satisfy all the 
requirements for the new system. Early assessment of the delta enables an evaluation of whether 
it is feasible to add the missing features on top of the product-line assets. 

• In such a case, the new feature(s) may be incorporated as additional product-line assets. 
This sort of systematic evolution of the product line maintains the product line by 
updating the hazard analysis, requirement specifications, design models, code repository, 
and test suites on an as-needed basis. 

• Alternatively, the new feature(s) may not be incorporated into the product line but 
developed independently for the new system. Often in practice, the new features are 
subsequently added to the product line, since other systems subsequently also require 
those new features. 

• Finally, if the features required for the new application differ too much from the product­
line features, then the application is not a viable member of the product line. In that case 
the assessment may find that it is better to develop the new system separately [Gomaa]. 

Verifying consistency of requirements. The existence of a product-line feature model [Kang, et 
al.] supports the selection of requirements for the new system. It is important to verify the 
consistency of the requirements. In many cases, the selection of one feature will preclude or 
otherwise affect the selection of another feature. This topic, called feature interaction, has been 
extensively studied but outside of product lines and within product lines. Verification that the set 
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of variants selected for a new system is consistent is best done with tool support. Prototype tool 
support for consistency checking has been developed by [Padmanabhan and Lutz]. 

Model-driven development. Gomaa describes how static and dynamic UML models created for 
the product line (part of the domain-engineered product-line repository) can be selected and 
tailored according to the features selected for the application. Model-driven development of 
product lines supports an incremental approach to the development of the new application since 
the common (or kernel) features can be included first, followed by the optional features already 
modeled in the product line, followed by any components that need to be added in response to the 
requirements for this new system. 

2.2 Safety Requirements verification 

Verification that the software requirements satisfy the safety requirements for the system can 
likewise use results from the preliminary hazard analysis, as well as software fault tree analysis 
and software failure mode, effects and criticality analysis performed on the product line. 
Leveson and Weiss have described how software reuse can be managed in safety-critical systems 
[Leveson and Weiss]. Dehlinger and Lutz have shown how software fault tree analyses can be 
performed at the product-line level and reused, via tool-supported pruning to exclude fault paths 
not relevant to the new system's choice of features [Dehlinger and Lutz, 2006]. 

2.3 Architectural verification 

Verification that the software architecture for the new system conforms to the product-line 
reference architecture traces the architectural elements in the new system back to their abstract 
elements in the product-line architecture. 

There has been substantial work done on evaluating alternative architectures. AT AM 
(Architectural Tradeoff Analysis Method) [Kazman et al.] is perhaps the best known of these 
techniques. AT AM has also been used to evaluate alternative architectures for product-lines. 

Verifying architectural changes. If changes have been made to the reference architecture for the 
new system, perhaps in response to new requirements, they must be carefully verified. Some 
changes are local while others have cross-cutting effects (i.e., to several components) on the 
architecture. Some changes may involve replacement of one component by another without 
changing the connectors, while others may affect the structure of the connectors or of the 
dataflow among components. The greater the changes, the more evaluation will be required (e.g., 
using A TAM) and the less verification effort will be saved by reuse of the reference architecture. 

2.4 Design verification 

Verification that the detailed design for the new system conforms to the product-line components' 
detailed design is enabled by traceability from the product-line requirements to the product-line 
component design. There is little work specific to product-line engineering in this area, perhaps 
because the issues are so similar to those in reuse. In general, if the product-line scoping has been 
done effectively (i.e., if the crystal ball has accurately envisioned future needs), then the range of 
options already available in the product-line assets should suffice. In that case, there should be 
few tweaks to the product-line assets, and the rationale and effect of those tweaks should be 
clearly documents. If application-specific needs cause changes to the product-line components, 
then the verification effort is increased. In that case, verification that the software design satisfies 
the software requirements for the system will be needed. 
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Model-based design analysis. The verification that the design satisfies the requirements may be 
assisted by modeling of the new system. Goal-oriented requirements engineering, described by 
van Lamseerde and Letier and Mylopoulos [Mylopoulos, et al.], supports the analysis of design 
satisfaction or satisficing of requirements. Liu, Dehlinger, and Lutz have shown how safety­
related scenarios derived from the hazard analysis can be used to exercise state-based models of 
product-line components in order to verify that the as-designed behavior is safe [Liu et al.].The 
process of design verification for a new application again depends on accurate documentation of 
non-confonnance to the product-line assets. 

2.5 Implementation verification 

Verification that the implementation of the new system confonns to the product-line consists 
must check that the product-line assets (component code files, interfaces and parameters, 
configurations, libraries, and databases) that are used are consistent with the current configuration 
of those product-line assets and are integrated correctly. This helps provide assurance that the 
configuration management of the new system is consistent with the configuration management of 
the product line. 

Problem reports. Analysis of problem reports for a product-line system is especially important 
because the problem reports generated during development of the new system may identify latent 
and unforeseen differences from the product-line components. Since both the product-line 
components themselves and all the possible compositions and configurations of those product­
line assets have already been tested, the expectation would be that the number of problem reports 
would be reduced. This makes problem reports important for two reasons: 

• Problem reports may indicate previously hidden problems that can affect other 
operational or to-be-built systems in the product line. Making other projects aware of 
the anomaly thus precludes similar anomalies on other systems. 

• The problem reports may be the best locator of undocumented non-confonnances 
between the new system and the product line. Adequate documentation of these deltas 
is, as we have seen, the baseline for scoping the verification effort on the new system. 

2. 6 Testing verification and validation 

Test infrastructure. Based on the previous verification steps, testing of the new system validates 
both that it meets its own requirements and that it confonns to the product-line requirements 
(since its requirements have been previously verified as consistent with the product-line 
requirements). Testing of product lines has been widely studied. For example, workshops have 
been held specifically on Software Product Line Testing (SPLIT) in 2004, 2005, and 2006. 

Product-line tests. A key piece of the domain engineering of product lines is the development of 
reusable test suites. The goal is to save time and money during application engineering by 
providing product-line test assets. Each new system in the product line can then use this set of 
unit, interface, integration, and perhaps some system tests. Some product-line tests will be 
reusable in whole, because they test commonalities. Other product-line tests will need to be 
configured according to the new system's specific selection of product-line features and options. 
Similarly, the more similar the new system's domain is to the envisioned product-line domain the 
more reuse of domain-specific, product-line test suites may be useful. 

Identifying and constructing test cases. Clement and Northrop describe how to structure the 
testing software for reuse, e.g., by providing traceability to product-line architecture and by 
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grouping the test code for a software component for traceability from test code to source code, by 
associating test cases with use cases or scenarios. The mapping associates the test cases, together 
with the test drivers and test data sets, with the commonalities. The goal is to product assets to 
test assets in order to facilitate reuse. 

For example, since "the majority of each product's specification will be defmed in a document 
generic to the document line" they suggest that we should "defme a complete set of functional 
tests for that specification" [Clements and Northrop]. They also propose definition of a set of 
interaction tests to ensure that product-specific functionality will not interact to cause failure, but 
do not discuss how this is to be done. 

Clements and Northrop distinguish between testing of the core asset software, of the product­
specific software, and of the interactions between them. They recommend weighting testing 
toward points of variability in the product line architecture since most changes (and probably the 
most errors) will occur there. 

Product-line test plans. They also recommend organlZmg test plans and test reports 
hierarchically (including sampling strategies and coverage criteria) to parallel the relationships 
among the products in the product line. This helps ensure that common features will be tested the 
same way in every product. 

The test plan for the new system identifies the scope and rationale for the reuse of the product­
line test suite and identifies new or changed features for which new tests to be developed. The test 
plan also identifies new or changed domain environments which may affect reuse of domain­
engineered test suites. 

Independent V & V. Knauber and Hettrick distinguish between development testing and 
validation in product lines. The latter they assign to an independent quality organization. They 
divide the testing of a new application into testing at the component level, the feature level (with 
the features being the integration test units) and the product level (system testing). "During 
application engineering, assets from this test infrastructure should be reused to speed up testing 
and thus overall product development." "The expectation here is that test assets are customized 
by using the same resolutions in the same decision model that are used for customization of the 
other product line assets" [Knauber and Hettrick]. 

Use-case-based testing. Gomaa recommends basing integration test cases product lines on the 
use cases of the components to be integrated. The white-box integration testing tests the 
interfaces between the components that participate in each use case. The black-box functional 
testing cases are built for each use case. 

Variant absence tests. Pohl et al. suggest designing and running specific tests to ensure that 
features that are options in the product line but that should have been left out of this new system 
are, in fact, left out. These tests, called "Variant Absence Tests", would check such things as 
compile-time configuration mechanisms (such as IFDEF statements), or run-time configuration 
mechanisms (such as registry), as well as calling a function provided by the (supposedly absent) 
variant and observing the result [Pohl et al.]. 

Identifying relevant test cases from the product-line test suites. This depends on good 
traceability from requirements to component design and test cases in the product line. It also 
depends on good documentation of any deviations of this system (e.g., new features, changed 
code) from the product-line baseline. Reuse of test cases is limited by the number and degree of 
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such deviations. In such cases the product-line test suites will have be adjusted or enhanced to 
accommodate the changes. 

Effect of variability bind time on testing. Pohl et a1. point out that adequate documentation 
regarding when the binding time of a variability occurs (e.g., whether an alternative is selected at 
design time or at implementation time) affects when the variability can be detected. If it is bound 
at runtime then tests will need to be run on all possible configurations (e.g., operational modes) 
that can involve it. 

Generating acceptance tests. Geppert et a1. report success in using the decision model, 
traditionally used to generate code, to generate acceptance test cases. In an application to parts of 
a legacy acceptance test suite of a product line with about 600 commonalities, 100 variabilities, 
and 200 modules, they analyzed 30 test cases encompassing 174 description items and 98 result 
items. They found that by using seven parameters to generalize the test cases, they could reduce 
the number of description items from 174 to 23 and the number of expected result items from 98 
to 18, a reduction of duplication effort of around 85% [Geppert, et a1.]. 

Testing acquired product lines. The SEI has produced an on-line volume, "Software Product 
Line Acquisition: A Companion to A Framework for Software Product Line Practice, Version 
3.0," targeted to Department of Defense acquisition. It is available at 
http://www.sei.cmu.edulproductlines/companion.html. The Testing section of this document 
notes: 

"For acquisitions, planned tests are performed on evolving products, not simply the end 
product. These tests not only provide feedback for the developers of the software, but 
they also provide measurable evidence of progress toward delivery. 

Results of the tests are analyzed and compared to the agreement requirements to establish 
an objective basis to support the decision to accept the product or to take further action" 
[Bergey04] . 

The document emphasizes the importance of spelling out in the supplier agreements the content 
of the product-line verification process (including early testing, conformance with product-line 
specifications, and delivery of product-line testing assets). The recommendations provide useful 
insights into some of the ways in which acquiring and verifying product line software from 
providers may differ from in-house development. 

2.7 Verification challenges for NASA product lines 

Organizational considerations. A major consideration for verification of NASA product lines is 
how the development organization will be structured. Weiss and Lai make the point that for large, 
complex product lines, decomposition into subdomains may be the answer. They give the 
example of an organization that might have a device subdomain, a display subdomain, a database 
subdomain, and so on. Each member of the product line is then built by building a member from 
each subdomain and then integrating the members. Each subdomain thus forms a product line, 
and the systems built form a product line of product lines. The organization responsible for 
integrating the domain members is distinct from the organization for each domain. Weiss and Lai 
note that, "Particularly well-disciplined organizations may fmd that they can create and maintain 
subdomains that are used in a variety of product lines, thereby gaining additional leverage from 
each subdomain." 
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Many-customers, many-product-families. Weiss and Lai distinguish between three situations: 
the single-customer, single-product-family situation, the many-customers, single-product-family 
situation, and the many-customers, many-product-families situation. NASA will face the latter. 
The advantage is that investment in each domain is amortized over many products. Weiss and 
Lai note that this situation "may also require a change in organizational structure to make domain 
ownership clear and to ensure feedback to the domain owner (who employs the domain 
engineering) from the domain users (who employ the application engineers)" In other words, 
communication, documentation and traceability are essential. 

Ommering, at Philips, similarly notes that, "Our organization contains a set of domain 
engineering teams that produce subsystems. We also have application engineering teams that 
create products. Typical of our approach is that there is an "m" to "n" relationship between 
subsystems and products and also between subsystems mutually." 

Reluctance to invest for other projects. In their introduction to the special section on the 
Eighth International Conference on Software Reuse, Frakes and Kang state, "A key idea in 
software reuse is domain engineering (aka product line engineering)." They then distinguish 
between centralized organizational approach and a distributed, collaborative approach in which a 
reuse program is implemented by projects in the same product line. They note that "There is a 
danger that projects may be willing to use other's products, but will be reluctant to make 
investments for others." This is another way in which an organization can impede product-line 
development and verification. 

Contracted product line development. Ommering briefly discusses in-house versus third-party 
software development in Philips consumer electronics product lines. He states that shifting 
software development to the supplier of the hardware and to independent software vendors helped 
manage the problems they encountered when scale of the project grew beyond a few hundred 
developers for a specific project. The outsourcing of software mapped nicely to their software 
architecture except that they see a middleware layer forming between the platform and 
application layers. This middleware layer is where they expect the vendors to provide the 
software [Ommering]. 

Controlling the delta. Inevitably, the needs of specific applications will need additional or 
alternative features not initially provided in the product-line assets. Such adaptations may occur 
at the requirements, design, or implementation level. For example, at the requirements level, a 
new feature may be required. At the design level, an alternative design mechanism may be 
selected. At the implementation level, new coding standards may drive change. Each of these 
changes has the potential to change the product-line. Some changes may also drive up the cost of 
the new system. 

The decision as to whether to incorporate the changes into the product-line assets and how 
broadly to disseminate the changes (e.g., whether to update other products similarly) will be 
difficult and important. The project's Change Control Board for the specific system considering 
such adaptations will probably be the first line of defense in maintaining the product-line assets 
and in judging which proposed changes merit moving away from the product-line standard set of 
verified components. 

Bergey points out some of the threats to verification that evolution can entail [Bergey]. Not 
folding evolutionary changes made to meet the requirements of a new system back into the other 
systems in the product line keeps the cost of evolution down, but can over time lead to 
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degradation of the product line and the erosion of commonality. On the other hand, propagating 
each change to the product line can make the re-verification costs unmanageable. 

2.8 Verification enablers for NASA product lines 

Several process features that enable high-quality product-line verification are identified in the 
literature. We briefly describe several that appear to be most relevant to future NASA missions: 

• Rigorous traceability is a key to being able to perform verification on product lines 
[Bergey]. Similarly, traceability is the first keystone for structured reuse, according to 
Pohl et al. 

• Capturing the requirements delta information in the application requirements 
specification is the second keystone noted by Pohl et al. [Pohl]. This allows scoping of 
features and code that will have to be developed beyond the product-line assets. 

• Sufficient documentation is essential. Verification that the new system conforms to the 
product-line requirements, uses the reference architecture, and passes the product-line test 
suite requires good documentation of the new system and its development phases. 

• Access to source code for the product-line components is needed for thorough testing. 
Pohl et al. point out that, since any executable evaluation copy contains bound variants, 
additional artifacts such as source code and compilation and linking instructions need to 
be available in order to adequately verify the code. 

• Start small. Weiss and Lai recommend first applying product-line engineering to a legacy 
system "in which there is frequent change occurring at relatively high cost. Such a 
domain is often an isolatable section of the system where the changes can be 
encapsulated and where a single group of software developers is responsible for making 
the changes" [Weiss and Lai]. 

• Use small configuration zmits. Rockwell Collin described the tradeoff in their recent 
experience building a large product line: "Having more items leads to a finer grained 
decomposition of functionality, which, in turn, leads to higher levels of reuse and systems 
that are easier to test and get through airworthiness qualifications. However, having more 
items also means there are more configuration items to keep track of and maintain, more 
complexity, and a steeper integration curve" [Clements and Bergey]. 

Section 3. Resource List 

3.1 Conferences 

• International Software Product Line Conference. The SPLC are the leading forum for 
product line research and practice. The 11 th SPLC will take place in Kyoto, Japan, Sept. 
10-14,2007. 

• International Conference on Software Reuse. The ICSR is the major conference for 
software reuse. The 9th ICSR was held in Turin, Italy, June 11-15,2006. 

3.2 Workshops 

For product-line testing, the most important workshop is the Software Product Lines Testing 
Workshop (SPLIT). The fourth SPLiT will be held in Kyoto, Japan, Sept. 10, 2007, in 
conjunction with SPLC. 

The SPLC has several other product-line workshops associated with it. This year, the others are: 
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• International Workshop on Dynamic Software Product Line (DSPL 07) 
• Managing Variability for Software Product Lines 
• Open Source and Product Lines 2007, Asia OSSPL07 Asia 
• Service Oriented Architectures and Product Lines 

- What is the Connection? (SOAPL - 07) 
• Value-Based Product Line Engineering (VBPL'07) 
• Workshop on Visualisation in Software Product Line Engineering (ViSPLE 2007) 

There have also been several ICSE workshops on software product lines, e.g., on software 
product lines: economics, architectures, and applications. 

3.3 Industrial Experience 

The International Software Product Line Conference hosts a "Product Line Hall of Fame" with a 
website describing the best-practice experience of the winners at 
http://www.sei.cmu.edulproductlineslplphof.html. For example, past winners include: 

• RAID controller firmware product line, LSI Logic - Engenio Storage Group (2006) 
• General Motors Powertrain (2004) 
• Ericsson AXE Family of Telecommunications Switches (2004) 
• Sal ion's Product Line of Revenue Acquisition Management Systems (2004) 
• Philips Product Line of Software for Television Sets (2004) 

The experiences of some of these developers with the product lines have been documented in 
case study reports of varying levels of detail, with links provided at the site. 

Gomaa's product-line book focuses on UML modeling of design. He presents three lengthy case 
studies of product lines (microwave oven, e-commerce, factory automation), but with little 
consideration of application engineering. Clements and Northrop's book includes three 
substantial case studies: engine software, ground software for satellite control, internet stock 
market analysis software. 

The FAST process (Family-Oriented Abstraction, Specification, and Translation) defmed in 
Weiss and Lai has been used at Lucent and Avaya to build product lines [Weiss and Lai]. Frakes 
and Kang in their review of various product line engineering approaches note that only FAST (of 
the ones they review) is a process model rather than a development technique [Frakes and Kang]. 

FAST defines the "Engineer Application Activity" as an iterative process for constructing 
application systems that are members of the product family to meet customer requirements. The 
activity contains two process sub-states--"Produce_Application" and 
"Delivery_And_Operation_support" and an operation, "Model_Application" [Weiss and Lai]. 

This process pays careful attention to the conformance of the fmal new system to its product-line 
specifications. For example, an item in the Analysis List for the Application Engineer role is: 
"Final_Product_ Validation_Analysis: Check whether all the decisions made in the application 
model exist in the fmal product." 

FAST assumes standard testing techniques for the system: "Test the integrated application"; "The 
application should be tested to ensure that it meets the customer's requirements"; "Verify the 
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integrated family member." An exit condition for development is that code and documentation 
have both been reviewed. 

Weiss and Lai assume the existence of an Application Modeling Language. The emphasis is on 
correct formal specification (in terms of meeting customer requirements) and valid specification 
(in terms of being a valid family member) and on a tool-supported application-engineering 
environment. With an application modeling language, they do auto-generation of code and 
documentation for as much of the new member as can be generated, manual development of any 
customized portions, and integration of the code . 

. There is an emphasis on traceability among the application model, the design decision model, the 
application-modeling-language expressivity, the documentation, the defect reports, the validation 
tests, and the existence of tool support in the application-engineering environment for generation. 

3.4 Defense Industry Experience 

The eighth DoD Software Product Line Workshop was held in 2005 to share Department of 
Defense product line practices, experiences, and issues in DoD software product lines. 
Presenters were from Austin Information Systems, Raytheon, Naval Undersea Warfare Center, 
Northrop Grummann, Aerospace and SEI. While the focus in not on verification, the empirical 
and anecdotal descriptions of successes and obstacles provides useful insights into designing and 
transferring product-line practices [Bergey et al.]. 

The SEI has produced a lengthy on-line report to guide the acquisition of product lines and 
product-line components by the Department of Defense 
http://www.sei.cmu.edulproductlines/companion.html The testing section of this document is 
discussed above in 2.6. 

The U.S. Army's Common Architectural Avionics System is a recent example of a successful 
product line. The product line is of a set of helicopter mission and avionics software systems. It 
was developed by T APO and its prime contractor, Rockwell Collins, which has experience in 
product lines. The development of the product line is bringing cost savings in development, 
integration, flight testing, and maintenance costs. According to the authors, "CAAS systems 
benefit from strategic software reuse of around 80% or more" [Clements and Bergey]. Similarly, 
"Airworthiness qualifications happen in a much shorter time." While the focus in not on 
verification, the description of the development environment, communication channels needed 
between customers and developers, and influence of organizational cultures is quite applicable to 
NASA applications. 

3.5 Product Line Consortia: industry/academia 

The best-known site for information about product lines is that of the Software Engineering 
Institute at Carnegie Mellon University: http://www.sei.cmu.edulproductlines This site, divided 
into "Technologies", "Learning", and "Community" resources, provides, among other links: 

• a catalog of product lines 
• a detailed framework for product line development 
• links to other product line websites 
• a product line bibliography 
• teaching resource materials for product lines 
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The focus of the material is on software architecture. A description of the relevant parts of the 
SEI verification process is included above in the description of Paul Clements and Linda 
Northrop's book. 

The Fraunhofer Institute for Experimental Software Engineering (lESE), 
http://www.iese.fraunhofer.de/tbgliese/research/developmentiplalindex.jsp, similarly focuses on 
product-line architecture. Their work includes a searchable bibliography maintained through 
2004. lESE developed the KobrA method for component-based product-line engineering, 
documented in Atkinson's book [Atkinson]. 

The European Space Agency and the EU have invested heavily in product families. For example, 
the ESA has developed a small Geostationary Platform product line to "enable European players 
to compete effectively in the commercial telecom market for small platforms." 
http://telecom.esa.intitelecomlwww/objectiindex.cfm?fobjectid=28211 

Similarly, the ITEA (Information Technology for European Advancement) project, FAMILIES, 
is being undertaken by a consortium of European industries and universities. FAMILIES stands 
for FAct-based Maturity through Institutionalisation Lessons-learned and Involved Exploration of 
System-family engineering, http://www.esi.eslFamiliesl FAMILIES is a follow-on to the previous 
ESAPS and CAFE project to mature, standardize and disseminate product-line engineering 
technologies. To date the project has begun work toward standardization and has developed a 
collection of methods not yet supported by available software tools. 

There are, in addition, several university/industry collaborations centered on academic research 
labs. For example, the Aspect Oriented Model Driven Product Line Engineering group (led by 
Dr. Awais Rashid at the University of Lancaster and funded by the EU) focuses on improved 
modeling and analysis of variabilities to improve adaptability http://www.ample-project.neti. 
AMPLE correctly notes that architecture models are related to requirements models in an ad-hoc 
fashion and that implementation tends to rely on pre-processors which are inadequate substitute 
for proper programming language support for variability. AMPLE also describes the lack of a 
systematic traceability framework for relating variations across a SPL engineering lifecycle. The 
tools page is not yet populated. 
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