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Abstract 

We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities 
satisfy an incremental quadratic inequaiity. These observer results unifies earlier results in the literature; and 
extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state 
estimation error exponentially converges to zero. Observer design involves soIving linear matrix inequalities 
for the observer gain matrices. Results are illustrated by application to a simple model of an underwater 
vehicle. 

1 INTRODUCTION 

A fundamental problem in system analysis and control design is that of determining the state of a system from 
its measured output. Many solutions to this probiem use an asymptotic observer (or state estimator) producing 
an estimate of the system state which asymptotically approaches the system state. Typical observers for linear 
systems consist of a copy of the system dynamics along with a linear correction term based on the output error, 
that is, the difference between the measured output and its estimate based on the estimated state [15, 83. 

References [3], [6], and [5]  consider class of systems with globally Lipschitz nonlinearities, nonlinearities in 
unbounded sectors. [ lo]  extends these results to multivariable nonlinearities satisfying a rnonotonicity condition, 
as well as relaxing the observer feasibility conditions via a multiplier by exploiting the decoupled nature of the 
multivariable nonlinearity. They present asymptotic observers which involve a copy of the system dynamics and 
two correction terms based on the output error; one term is the usual linear correction term while the other term 
(called the nonlinear injection term) enters the copy on the nonlinear element in the observer. Some classical 
results on obsenrers for nonlinear systems can also be found in [13] and [17]. 

In this paper, we consider nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic 
inequality. This inequality is characterized by a set !%if of multiplier matrices. The nonlinearities considered in- 
clude many classes of nonlinearities including those considered in [j], [6], [5], and [IO].  consequently, it unifies 
the earlier results by a genera1 construction of a set of muitiplier matrices describing the nonlinearities via 
an incrementat inequality. Beyond the unification of the earlier observer results, we present two other general 
classes of nonlinearities with polytopic and conic parameterizations. These additional characterizations can aiso 
provide less conservative feasibility results for gIobally Lipschitz multivariable nonlinearities and multivariable 
nonlinearities in unbounded sectors by exploiting a further structure. Section 5 exhibits some of the nonlinear- 
ities under consideration along with their muitiplier matrices. For these systems, we present observers whose 
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structure is inspired by [6j. These observers are characterized by two gain matrices: the gain matrix L for the 
linear correction term and the gain matnx L, for the nonlinear injection term. Initially, we consider L, fixed (for 
example zero) and convert the problem of determining L into that of solving linear matrix inequalities. Such 
inequalities can be readily treated using the LMI toolbox in MATLAB 1111. 

We also consider the problem of simultaneously computing L and L,. By imposing a specific condition on 
the set !M of multiplier matrices describing the nonlinearities, we convert the problem of determining L and L, 
into that of solving linear matrix inequalities. All of our results are based on analysis on the state estimation 
error dynamics using quadratic Lyapunov functions. 

To illustrate our results, we apply the proposed observers to estimate the state of a simple model of an 
underwater vehicle from [14]. 

An observer based output feedback controller design is out of the scope of this paper, and it will be part 
of a separate paper [ I ] .  [6], [4], and [16] are some related recent results that address nonlinear observer based 
controller design. 

2 System Description 

We consider nonlinearltime-varying systems described by 

where x ( t )  E IR" is the state, u ( t )  E IRm is the control input, y ( t )  E IR' is the measured output and t E R is the 
time variable. AIL the nonlinearltime-varying elements in the system are lumped into the term p(t ,x, u )  E RIP. 

Wc suppose that 
p ( ~ , , x ~ u ) = \ ~ ~ ( f , z )  where z=Cqx+Dqu (2) 

and y is a piecewise continuous function o f t  and a continuous function of z. The matrices A ,  B,B,. C ,D,Dp and 
C,:D, are constant and of appropriate dimensions. 

Our characterization of y~ is based on a set 94 of symmetric matrices which we refer to as multiplier matrices. 
Specifically, for all M f M, the foIlowjng incremental quadratic inequality holds for ali t E R and zl ,zz E l R i q :  

where 
q(r.2) = z+D,yr(t,z). 

Basically, the constant matrix D,, and Yd provide a characterization of y in a incremental sense. Section 5 
exhibits some of the nonlinearities under consideration along with their multiplier matrices. 

3 Observer 

We propose the following observers to provide an estimate 2 of the state x of a system described in the previous 
section: 

where 
p=v( t : i+L,@-y) )  and ? = C q i + D q u .  ( 6 )  



Here, L is the gain for the linear output error term and L, is the gain for the nonlinear injection term, which was 
also introduced in [6]. The nonlinear injection term results in additional flexibility in the design. As an example 
of the usefulness of this term, suppose z = y. Then, letting L, = I yields 2 + L,@ - y )  = z and fi  = v(t:zj; 

hence we have an exact copy of the nonlinearity in the observer. 
In the observer description above, we have 

When LnDp # 0, this is an implicit equation for a. So, we assume that there is a continuous function @ such that 
for all t and q, the equation 

a = W @ !  + L a p $ )  (8) 

is uniquely solved by $ = @(t!r() .  Then, p is uniquely given by 

The next section provides some sufficient conditions which guarantee the existence of 4. Note that 

where e := P -x is the state estimation error. The error dynamics are described by 

where 
Sp( t :e )  = @ ( f , z ( t )  + ( C g + L , C ) e - L n D p ~ ( i , z ( f ) ) )  - - ~ ( t , z ( t ) )  

It follows from (10) that 6 p  satisfies 

Let 
6q(t> e)  = (Cq+LnC)e + ( D ~ P  + L n D p ) & ~ ( f r e )  

Then, using (3) with ZI  = z and za = z + (C + L,C,)e + LnDpSp we obtain that for all t and e, 

64(t7 e) 'q(" '1 2 o for a11 M E M .  ( 6p( t : r )  ) T ~ (  6pP.e)  

The following result yields conditions for observer gains which result in exponentially decaying estimation 
errors. 

Theorem 1 Consider a system described by (1)-(2) and satisfiing (3) with a set !jVf of matrices. Suppose that 
fhem exist matrices P = P' > 0, L, L, and M E 5Vf satishing matrix inequality (I3) for some a > 0. 

PA + A ~ P  + PLC + C ~ L ~ P  + 2aP PB, + PLD, ) T ,  ( c, Dqp + L a p  
B;P+ D ~ L ~ P  o I I 

(13) 
Also suppose that there is a continuous function I$ such that @ = $( t : r ] )  uniquely solves equation (8). Then, 
given any input u(.) and initial condition x(to) = xo such that system (I )  has a solution for all t > to, the state 
estimation ermr e :-- 2 x corresponding to observer (5) decays mponentially to zero with rate a. 



Proof: The error dynamics given in (1 1) can be described by 

where 

and 6 p  satisfies inequality (12) for all t ,  e, and iM E M. Inequality (13) now simplifies to 

Pre- and post-multiplying both sides of the above inequality by [eT SpT]  and its transpose and using condition 
(1 2) we obtain 

e T p ( ~ , e  + ~ , ~ ~ ( t . e ) )  5 -ueTpe for all t ,  e. 

This shows that the error dynamics are quadratically stable about zero with rate a; (see [9, 21 andlor 171 for a 
definition of quadratic stability). This implies that the error decays exponentially to zero with rate a. w 

The following coroliary yields an observer design procedure for a given L, 

Corollary 1 Consider a system described by (1)-(2) and satisfiing (3) with a set of matrices. For a given 
L,, suppose that there exist matrices P = P* > 0, R and iM E M such that thefoIlowing matrix inequality  hold^: 

where C, and D, are given in (1 4) and let 
L = P ' R .  

Also suppose that there is a continuousfuncrion 4 such that fi  = @(t .q )  solves equation (Bj. Then, given any 
input I * ( . )  and initial condition x(to)  = xo such that system (1) has a solution for all t 2 to, the state estimation 
error for the observer (5) decays exponentially to zero with a rate U. 

Remark 1 Note that, for a fixed a and L,, inequality (1 5) is an LMX (linear matrix inequality) in the variables 
P, R, and M. 

3.1 On the Existence of a Solution to Equation (8). 

As mentioned in the previous section, ifL,Dp # 0, we need to be able to solve equation (8) for j to implement 
the observer. This equation defines an implicit relation for j? in terms o f t  and 11. Here q = 2+Ln(Ci+Du-y). 
The following lemma provides a sufficient condition which guarantees that, for each t and q equation (8) has a 
solution J? = @(t .q ) ,  where @ is continuous. ' 
Lemma 1 Suppose that y~ satisfies (3)for all 1 z l :  z2 and M E M. Given L,, suppose rhere are matrices M E  34 
and Q and a scalar p > 0 such that 

Then, there is a continuous function $ such that$ = $(t , q )  solves equation (8). 

Remark 2 When LnD, # 0, Lemma 1 suggests that we can design an observer for a given L, by simultaneousiy 
solving the LMI's (15) and (1 7) for P, M, R, Q and p. Then L = PP'R. Consequently we obtain a well defined 
observer to estimate the states, because equation (8) has a continuous solution. 

Since the proof of ths lemma is rather long, it is not presented here. See [ I ]  for the proof. 



4 A Condition for Simultaneous Design of L and L, via LMIs 

The previous section contains an observer design procedure where the observer gain L is designed for a fixed 
L,. However, the simultaneous design of L and L, is not addressed. The following condition, which is satisfied 
by many common nonlinearities, allows for the simultaneous design of L and L,. 

Condition X There exist a nonsin~wlar matrix T and a set of matrixpairs ( X ,  Y )  with Y E l R r n p X r n p  such that 
X ,  Y are symmetric, positive semi-dejnite and the matrix 

is in -M. In addition, Tz2 + TZl Dqp is nonsingular where 

and E2 E IRm" X m ~  

4.1 A Transformation 

Suppose Condition 1 holds and note that 

where r12 T12 + z1Dgp,  r22 '- T22 + T2iDqp, and = z +Dqpp. Now introduce the transformed nonlinear 
term defined by 

p := ~ ~ ] z + I - ~ ~ P .  (20) 

Since by assumption, is nonsingular, we have 

hcncc TI lz + r I 2 p  = 2 5 Dqpp where 

We now show that that C is invertible. Note that 

Since the two matrices on the righthandside of the second equality are invertible, the matrix on the lefthandside 
of the first equality is invertible. Since is assumed to be invertible, by using the matrix inversion lemma 
[12, 181, the first matrix above is invertible if and only if the following Schur complement of the matrix is 
invertible 

T] - rlzr;; qi = C. 

This implies that C is invertible. Consequently, z = C ~ I Z  and 

Letting 
4 ( t , ~ )  = z + D , , ~ ( ~ , z )  



we obtain that 
9(t;z?)  q( t ,z l )  
v ( f , z2 )  - v ( f : z l )  

Hence satisfaction of inequality (3) by y implies that the transformed nonlinear function satisfies 

( x 0 ) ( q2( f322) -q ,  (1.Zl) 

0 -Y ql(f,?2) - q ( t > T , )  

Now, using the transformed term Q, system (1) is described by 

where q satisfies (24) and 

4.2 Observer for the Transformed System 

Inspired by the previous section, we propose the following observers for the transformed system (25): 

In the observer description we have, 

So, when ~ , , d ~  # 0, we assume that there is a continuous function 9 such that for all i and q, the equation 

is uniquely solved by j? = $(f, q).  Then, 

Now, we can present the main result of this section, which is a corollary to Theorem 1. 

Corollary 2 Consider a system described by (1)-(2) and satisfiing (3) with a set 94 of matrices which satish 
Condition 1. Suppose that there exist matrices P = pT > 0, R I ,  R2 and (X :  Y )  E !?( which satislji. (30) and let 

AIso suppose that there is a contznuous function 4 such that j? = $(t ,  q) solves equation (28). Then, given any 
input u( . )  and initial condition x(t0) = xo such that system (1) has a well defined solution for all t _> to, the state 
estimation error; e := 2 - x, decays exponentially to zero wrfh a rate of a. 



Proof: Substitute (3 1) into inequality (30) and apply a Schur complement result (171) to obtain 

where cc := cq i- L,C and D, := D, + LnDp. The result now follows by applying Theorem 1 to the transformed 
system. 

Remark 3 Note that, for a fixed a , inequality ( 3 0 )  is an LMI (linear matrix inequality) in the variables 
P,R1,RZ,Xand Y. 

When ~ , d ~  # 0, the following corollary of Lemma 1 presents an LMI which guarantees a continuous 
solution to equation (28) f o r j .  

Corollary 3 Suppose that satisfies (24) for all t !zl .z2 and ( X ,  Y )  E N. Given L,, suppose that fhere are 
matrices (X; Y )  E RZ, Q and and a sclalar p > 0 such that, 

- Q - Q ' + ~ I  Q D;R; 
5 0 and R2 =XL,.  !32) 

~~b~ xbqp -X 

Then there is a continuous function @ such that j? = $it ,  q) satisfies (28). 

Remark 4 When L,ijp # 0, Corollary 3 tells that we can design the observer gains L and L, by simultaneously 
solving LMT's (30) and (32) for P,R I ,  R2.X, Y ;  Q and P. Then L = P-'R I and L ,  = X - ~ R ~ .  

5 Some Classes of Nonlinearities Satisfying (3) 

In this section, we discuss some typical nonlinearities satisfying (3 ) .  We also present additional conditions 
under which these nonlinearities satisfy Condition I .  First two classes and thcir characterizations cover globally 
Lipschitz type of nonlinearities, and nonlinearities in unbounded sectors, which are also studied in [6], [4], and 
[ 5 ] .  Then, wc bring more structure to a general class of nonlinearities via polytopic and conic parameterizations 
in the last two subsections. 

5.1 Incrementally Sector Bounded Nonlinearities 

Here we consider nonlincarities which, for all t, and 2 1 :  22 ,  satisfy 

where 
6 y : = y ( t , z 2 ) ( z ) ,  6q:= 6z+DD,6y: 6z :=za -zi, 

X is a set of symmetric positive semi-definite matrices and K I ,  K2 are fixed matrices. Here, without toss of 
generality, we assume that the set X is invariant under multiplication by a positive number. It readily follows 
fiom (33) that a set !?d of multiplier matrices for the nonlinearities under consideration is given by 



To satisfy Condition 1, suppose that there exists a positive scalar o such that SI - 0 S 2  is nonsingular where 
Si : = K2D,, - I and S2 := I - K I D q p .  One can verify by substitution that the following equality holds 

where 

Here r2? = S1 - oS? is nonsingular. Therefore, Condition 1 is satisfied with the matrix T defined above and 

When q and p are scalars, one can always choose a positive scalar CI such that SI - aS2 is nonzero. To prove 
1 

this claim, note that if Sl - CIS? is zero for all G > 0 then, SI = S2 = 0. In this case, KI = KZ = - and 6~ = KSq 
4, 

where K  : = K,  = K2. Using 6q = 62 + Dq,6v and 6~ = K6q, we have Sz = (1  - D,,K)Gq = 0. However, 62 
should be arbitrary; hence we cannot have SI = S2 = 0. Consequently, Condition 1 is always satisfied by in 
the scalar case. 

As a specific example of a nonlinearity under consideration, consider a globally Lipschitz nonlinearity which 
satisfies jSv11 < yll6qI for some y > 0. In this case, inequality (33) holds withK1 = y I ,  K2 = yJ, and X = {hI : 
2. > 0). 

5.2 Incrementally Positive Real Nonlinearities 

This class of nonlinearities is described by a set X of symmetric positive semi-definite matices X such that for 
all t andzl ,  zz, 

tigTx6~ > 0 for all X E X ,  (3 5) 

where 6q and 6~ are as defined in (34). It is clear from (35) that, without loss of generality, we can assume that 
the set X of matrices is invariant under multiplication by a positive scalar. Note that nondecreasing nonlinearities 
satisfy (35) with X = {hI : h > 0 ) .  It readily follows from (35) that a set 5bf of multiplier matrices for the 
nonlinearities under consideration is given by 

To satisfy Condition 1 choose any scalar o > 0 such that D, - 01 is nonsingular. Then, we can readily show 
that - 

Consequently, if we let 

then Tz2 = DqP - GI is nonsingular and Condition 1 holds 



5.3 Nonlinearities with Polytopic Parameterizations 

These nonlinearities are assumed to satisfy 
Syr = R jsj6q 

where 61.y and 69 are defined in (34), s : = ( t  , zl , zz)  and 

that is, for any s, Q(s) = El,1 hkRk, where hk 2 0. k = 1: . . . , v  , and Cl=, h k  = I 
Since 6yr = R(s)Gq, a symmetric matrix M satisfies (3) if and only if 

Let 

where partitioning is in accordance with (hy: 6 ~ ) .  Then the above inequalities can be expressed as 

Consider now those matrices M which satisfy M22 5 0. When D,, = 0, we need only consider this case. With 
M22 5 0, the above inequalities are equivalent to: 

Thus, the set M of symmetric matrices M which satisfy 

is a set of multipliers matrices. 
The above set of multiplier matrices does not necessarily satisfy Condition 1 with a single transformation 

T. To obtain a set satisfying Condition 1, choose any nonsingular matrix T and consider multiplier matrices of 
the form given in (18) where X  and Y  are symmetric positive semi-definite matrices. A matrix M of the this 
structure satisfies inequalities (37) if and only if X and Y satisfy 

Then, provided q2 i- GIDqp is invertible, Condition 1 is satisfied with 

N = { ( x : Y ) : x ~ = x > o  and Y ~ = Y ) O  satisfy(39)) 

Once T is chosen, (39) is a set of linear matrix inequalities in X and Y .  However, the choice of T to yield a 
large subset of multipliers in some sense is not clear. Therefore, T is treated as a design parameter at this point. 
For example, the simple choice of T = I satisfies Condition I with defined by 

N \ I = { ( X , Y ) : X ~ = X ~ O  and Y * = Y > O  satisfy(40)) 

with 
X - Q ~ Y R ~  2 0 for k =  1, ..., v 



5.4 Nonlinearities with Conic Parameterizations 

These nonlinearities are assumed to satisfy 
6~ = n;~)s,- 

where 6~ and 6q ate defined in (34), s := ( t ,  zl ,z2) and 

that is, for any s, Q(s) = C;=l hkQk,  where hk 2 0, k = 1 , .  . . ,v. Since 6q is arbitrary, it immediately follows 
that a symmetric matrix M is a multiplier matrix if and only if it satisfies 

( A ) ~ M ( L ) > O  for a11 R E Cune{ni , .  . . , R ~ }  

This is equivalent to 

+ n T ~ L  + M,?Q +ClTM22a > o for all Q E Cone{nl,. . . ,Q,} 

where 

As in the previous section, we only consider multipliers with M2? < 0. ActuaIly this assumption does not 
bring any conservatism in the case Dqp = 0. However, when Dqp + 0, this will lead us to obtain a subset of 
multipliers. With M22 5 0, the inequalities above are equivalent to 

+ M I ~ Q  nTM22 ) for all fi E Cone{R1 :. . . , Qv)  
-M22 

Consider any matrix Qk. For any h ) 0, the matrix hRk is also in Cone{Ql ,. . . , Q,); hence 

Considering h = 0, we obtain that 

that is, 
M I 1  > 0 and M22 I 0 

Considering h > 0, we obtain 

Since 3L can be arbitrary large, we must have 

Clearly, satisfaction of conditions (43) and (44) for k = 1,.  . . ,v  imply (42). Thus, when Dqp = 0, we obtain a 
necessary and sufficient characterization of the set of multipliers. Otherwise, Dqp # 0, the inequalities (43) and 
(44) only define a subset of multipliers in M. 



Once T is chosen, (43) and (44) define a set of linear matrix inequalities in X and Y. However, the choice of 
T to yield a large subset of multipliers in some sense is not clear. Therefore, T is treated as a design parameter 
at this point. For example, the simple choice of 

implies that X = Y in Condition 1, and yields to the satisfaction of Condition 1 with 

~ = { ( x : Y ) :  x ~ = x = Y ' = Y  )O and C ! ~ X + X Q ~ > O ,  k = 1 ;  . . . ,  v ) .  

5.5 MultivariabIe Nonlinearities with a Diagonal Characterization 

In this subsection, we consider multivariable nonlinearities that have different characterizations for each portion 
of the nonlinearity, i.e. 

p( l , x , . )=(p l ( t , - r ,u ) .  . . . >  p,(t,x,u) ) ;  
where pk(t ,x ,  uj = yr(t,zk) with zk = Cq.k.r t Dq.ku for k = 1:. . . , p, and there exists a set of multipliers Mk 
such that each component satisfies condition (3) for all Mk E Mk: k = I , .  . . :p. The results of t h s  section 
also contain the feasibility relaxations obtained for strictly positive real conditions for multivariable monotone 
nonlinearities presented in [ lo] .  If we define q = (q l ,  . . . ! q,u) ,  and y ( t , z )  = (vl ( t : z l ) ! .  . . , y ( t , z P ) ) ,  we can 
easily show that the nonlinearity p(t , x ,  u )  = y ( f , z )  where 

satisfies (3) with 94, where for each M E  94 we have 

M o . . .  0 

MI, = for i; 1 = 1,2 with = M k ,  k = l  . . . . , ,  u ,  

Now, suppose that Condition 1 is satisfied for set of multipliers 9& of each component pk of p with some i'i and 
sct of pairs (Xk:  &) E a, k = 1.. . . ,p. Then Condition 1 is also satisfied for !M with matrix pairs ( X ;  Y) 9( 
and transformation T where 

and 



6 An Example: Underwater Vehicle 

In this section we consider a simple model of an underwater vehicle with thruster dynamics. This example is 
taken from [I41 where a similar objective of designing observers is considered in a different framework. The 
simplified dynamics of the vehicle is given by 

where @ I  is propeller angle, @2 is vehicle position and u is the torque input to the propeller. It is assumed that 
we can only measure and $2; the angular velocity of propeller and the speed & of the vehicle will be 
estimated using an observer. In this model, 1 represents thc propeller thrust and 1 0 4 2  $ 2  1 represents the 
hydraulic drag on the vehicle. 

Introducing the state x = (91 : 4 1 ,  $2: b2), and the output y = (Q1 ; @2), and letting p = 161 ; $? I ) ,  we 
can write this system in state space form (1) with 

With z = (x2 ,  x4), the nonlinear term is described by (2) where 

Note that the nonlinear function given by f (v) = V \ V /  is a nondecreasing function. Considering Dgp = 0 ,  the 
nonlinear term here is an incrementally positive real nonlinearity satisfying (35) with X being the set of matrices 
X of the form 

where hl and hz are any positive scalars. 
Therefore, we can design an observer using the rcsults in Corollary 2. This is done by using the LMI toolbox 

in MATLAB [ I  11. The observer gains obtained for a = 4 are 

A two second simulation was carried out with initial state x(0) = (0 ,0 ,  0, 51, initial state estimate, f (0) = 

(0: 4,  0 ,  - 1 O), and control input 

In these simulations, dotted lines represent the statc cstimate which converged to the vehicle state in less 
than 0.5 seconds. 

7 Conclusions 

We considered the problem of state estimation for nonlinear time-varying systems whose nonlinearitics satisfy an 
incremental quadratic inequality. We also demonsrrate that many common nonlinearltime-varying terms satisfy 



Figure 1 : Estimating the state of an underwater vehicle 

such an inequality. We present observers which guarantee that the resulting state estimation error exponentially 
converges to zero. Observer design involves solving linear matrix inequalities (LMIs) for the observer gain 
matrices. These LMIs can be efficiently treated using commercially available software. Results are illustrated 
by application to a simple model of an underwater vehicle. 

The results of this paper will be useful in obtaining observer based output feedback controllers for systems 
with nonlinear/time-varying terms satisfying an incremental quadratic inequality. 
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