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Abstract

We consider the problem of state estimation for ponlinear time-varying systems whose nonlinearities
satisfy an incremental quadratic inequality. These observer results unifies eartier resuits in the literature, and
extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state
estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities
for the observer gain matrices. Results are illustrated by application to a simple model of an underwater

vehicle.

1 INTRODUCTION

A fundamental problem in system analysis and control design is that of determining the state of a system from
its measured output. Many solutions to this problem use an asymptotic observer (or state estimator) producing
an estimate of the system state which asymptotically approaches the system state. Typical observers for linear
systems consist of a copy of the system dynamics along with a linear correction term based on the output error,
that is, the difference between the measured output and ils estimate based on the estimated state [15, 8].

References [3], [6], and [5] consider class of systems with globally Lipschitz nonlinearities, nonlinearities in
unbounded sectors. [10] extends these results to multivariable nonlinearities satisfying a monotonicity condition,
as well as relaxing the observer feasibility conditions via a multiplier by exploiting the decoupled nature of the
multivariable nonlincarity. They present asymptotic observers which involve a copy of the system dynamics and
two correction terms based on the output error; one term is the usual linear correction term while the other term
(called the nonlinear injection term) enters the copy on the nonlinear ¢lement in the observer. Some classical
results on observers for nonlinear systems can also be found in [13] and [17].

In this paper, we consider nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic
inequality. This inequality is characterized by a set M of multiplier matrices. The nonlinearities considered in-
clede many classes of nonlinearities including those considered in [3}, [6], [3], and [10]. Consequently, it unifies
the earlier results by a general construction of a set of multiplier matrices M describing the nonlinearities via
an incremental inequality. Beyond the unification of the earlier observer results, we present two other general
classes of nonlinearities with polytopic and conic parameterizations. These additional characterizations can also
provide less conservative feasibility results for globally Lipschitz multivaniable nonlinearities and multivariable
nonlinearities in unbounded sectors by exploiting a further structure. Section 5 exhibits some of the nonlinear-
ities under consideration along with their multiplier matrices. For these systems, we present observers whose
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structure is inspired by [6]. These observers are characterized by two gain matrices: the gain matrix L for the
linear cotrection term and the gain matrix L, for the nonlinear injection term. Initially, we consider L, fixed (for
example zero) and convert the problem of determining L into that of solving linear matrix inequalities. Such
inequalities can be readily treated using the LMI toolbox in MATLAB [11].

We also consider the problem of simultanecusly computing Z and L,,. By imposing a specific condition on
the set A of multiplier matrices describing the nonlinearities, we convert the problem of determining Z and L,
into that of solving linear matrix inequalities. All of our results are based on analysis on the state estimation

error dynamics using quadratic Lyapunov functions.
To illustrate our resuits, we apply the proposed observers to estimate the state of a simple model of an

underwater vehicle from [14].
An observer based output feedback controller design is out of the scope of this paper, and it will be part
of a separate paper [1]. [6], [4], and [16] are some related recent results that address nonlinear observer based

controller design.

2 System Description
We consider nonlinear/time-varying systems described by

¥ = A Gltuy) + Bypltrn)
y = Cx+Du+Dyplt,x,u) (1

where x(¢) € IR” is the state, u(r) € IR™ is the control input, y(t) € IR/ is the measured output and # € IR is the
time variable. All the nonlinear/time-varying elements in the system are lumped into the term p(7,x,u) € R%.

We suppose that
plexu) =yt z) where 7= Cyx+Dgu 2)
and y is a piecewise continuous function of 7 and a continuous function of z. The matrices 4,8,5,,C,D,D, and

Cy. D, are constant and of appropriate dimensions.
Our characterization of v is based on a set 3 of symmetric matrices which we refer to as multiplier matrices.

Specifically, for all M € M, the following incremental quadratic inequality holds for allz € R and z),z; € Ris:
T
q{t,z2) — q{t,21) ) ( q(t,22) —q(t,21) )
M >0 3
(vt wit,z) i) ) = ®

where
Q(I:Z)ZZ+DqPW(IaZ)' (4)

Basically, the constant matrix Dy, and M provide a characterization of ¥ in a incremental sense. Section 5
exhibits some of the nonlinearities under consideration along with their multiplier matrices.

3 Observer

We propose the following observers to provide an estimate £ of the state x of a system described in the previous
section:

AR+ Gy, u)+ Bpp -+ L~ y) (5}
Ci+Du+D,p

-
\

\t: ¥
\

where
p=vw(t, 2+L,(F—y)) and Z=CE+Dgu. (6)



Here, L is the gain for the linear output error term and £, is the gain for the nonlinear injection term, which was
also introduced in [6]. The nonlinear injection term results in additional flexibility in the design. As an example
of the usefulness of this term, suppose z = y. Then, letting L, = —/ yields 2 +L,{(J —y) = z and p = y(z,z);
hence we have an exact copy of the nonlinearity in the observer.

In the observer description above, we have

p=wy(t, 2L, (Ci+Du—y)+ L,Dpp) . {7)

When L, [}, # 0, this is an implicit equation for §. So, we assume that there is a continuous function ¢ such that

for all ¢ and 1, the equation
p=w{t,n+LDpp) (8)

is uniquely solved by p = ¢(z,n). Then, § is uniquely given by
P =00, 2+L,(CR+Du—y}). 9
The next section provides some sufficient conditions which guarantee the existence of ¢. Note that

p o= Wtz H{Cp+LiCle+LyDp(p—p))
= 0,2+ (Cy+ LCle— LaDypp) (10)

where e := £ — x is the state estimation error. The error dynamics are described by
é={A+LC)e+ (B, +1LD,)0pit,e) (1)

where
dp(t,e) = ¢ (r,2(t) + (Cy+ LuCe — LaDpy(t, 2(1))) —w(t,2(1)) -

It follows from (10) that dp satisfies
dp =w(t,z+ (CH+LaChle+LnDpdp) — Wit z}.
Let
dq(t,e) = (Co+LaCle+ (Dyp+ LoDy )0p(t,e) .
Then, using (3} with z; = z and z; = z+ (C + L.Cy)e + LD ,0p we obtain that for all # and e,

8q(r,e) \' ., Bqlte)
(Sp(t,e) ) M( Spit.e) ) >0 forall Me M. (12)

The following result yiclds conditions for observer gains which result in exponentially decaying estimation

CITOTS.

Theorem 1 Consider a system described by (1)-(2) and satisfying (3) with a set M of matrices. Suppose that
theve exist matrices P=PT >0, L, L, and M & M satisfying matrix inequality (13) for some @ > 0.

( PA+ATP+PLC+CTLTP 4 20P PB,+PLD, ) N ( Co+LnC Dgp+1LaD, )TM( Co+LaC Dgp+LaD, ) <0
BIP+DILTP 0 0 ! 0 1 =

(13)

Also suppose that there is a continuous function b such that p = 0{t,n) uniquely solves equation (8). Then,

given any input u{-) and initial condition x(ty) = xg such that system (1} has a solution for all t > fy, the state

estimation error € .= £ — x corresponding to observer (3) decays exponentially to zero with rate .



Proof: The error dynamics given in (11) can be described by

é = A.e+B.dplte)
dg = C.et+D.dpite),

where
A=A+ 1C, Be =B, +LD,, (14)
Coi= Gy L, De=Dgpt+Lalp,

and 8p satisfies inequality (12) for all ¢, e, and M € M. Inequality (13) now simplifies to

ATP+PA. +20P PB, C. DN\ ..[C D
( BIP o)*(o 1>M01 =0

Pre- and post-multiplying both sides of the above inequality by [ 8p] and its transpose and using condition
{12) we obtain

eTP(d.e+B.Bp(t.e)) < —ue Pe forallt,e.
This shows that the error dynamics are quadratically stable about zero with rate o; (see [9, 2] and/or [7] for a
definition of quadratic stability). This implies that the error decays exponentially to zero with rate c. m

The following corollary vields an observer design procedure for a given L.
Corollary 1 Consider a system described by (1)-(2) and satisfving (3) with a set M of matrices. For a given
L, suppose that there exist matrices P = PY > 0 R and M < M such that the following matrix inequality holds:

PA+ATP+RC+CTRT +20P PB,+RD,
BIP+DIRT 0

T
Ce De C D,
+(0 I)M(O [)go, (13)
where C. and D, are given in (14) and let
L=P'R. (16)
Also suppose that there is a continuous function ¢ such that p = 0(¢, 1) solves equation (8). Then, given any

input u(-) and initial condition x(tg) == xo such that system (1) has a solution for all t > to, the state estimation
error for the observer (3) decays exponentially to zero with a rate 0.

Remark 1 Note that, for a fixed o and L, inequality (15) is an LMI (linear matrix inequality) in the variables
P, R, and M.

3.1 On the Existence of a Solution to Equation (8).

As mentioned in the previous section, if L,D, # 0, we need to be able to solve cquation (8) for $ to implement
the observer. This equation defines an implicit relation for 5 in terms of z and 0. Here 1 = Z+L,(C24-Du-y).
The following lemma provides a sufficient condition which guarantees that, for each ¢ and 1 equation (8) has a
solution p = ¢(#,1), where ¢ is continuous. !

Lemma 1 Suppose that y satisfies (3) for all t, z\, zo and M € M. Given Ly, suppose there are matrices M € M
and Q and a scalar B > 0 such that

T
(g ) o

Then, there is a continuous function § such that p = ${t, M) solves equatiorn (8).

Remark 2 When D, 7 0, Lemma 1 suggests that we can design an observer for a given L, by simultaneously
solving the LMI’s (15} and (17) for P, M, R, ¢ and B. Then L = P~IR. Consequently we obtain a well defined
observer to estimate the states, because equation (8) has a continnous solution.

ISince the proof of this lemma is rather long, it is not presented here. See [1] for the proof.



4 A Condition for Simultaneous Design of L and L, via LMIs

The previous section contains an observer design procedure where the observer gain L js designed for a fixed
L,. However, the simultaneous design of Z and L, is not addressed. The following condition, which is satisfied
by many common nonlinearities, allows for the simultaneous design of L and L.

Condition 1 There exist a nonsingular matrix T and a set N of matrix pairs (X,Y) with ¥ < R™ ™™ such that
X, Y are symmetric, positive semi-definite and the matrix

ol x 0
M_T<O _Y)r (18)

is in M. In addition, Tap + T3 Dyp is nonsingular where

T T
()

and Ty € R™™",

4.1 A Transformation

Suppose Conditien | holds and note that

T( q ) ~ ( Thz+Tzp )
r Tiz+1mp
where [z = T2 + T11Dgp, Ton = Toa + 101 Dygp, and g = 2+ Dyg,pp. Now introduce the transformed nonlinear

term f defined by
pi= B]Z-i—rzzp. (20)

Since by assumption, T2z is nonsingular, we have
p=—Ty Tz +155; @n

hence T z+Tpp=z2+ quﬁ where

F=%z, E=Ty-Tulil, Dyp=Tnlsy. (22)
We now show that that X is invertible. Note that

( it T ) _ ( Ty T+ ThDyp ) _ T( 1 Dgp )
1 I Ty Tn+TnbDyy VY |

Since the two matrices on the righthandside of the second equality are invertible, the matrix on the lefthandside

of the first equality is invertible. Since I'z; is assumed to be invertible, by using the matrix inversion lemma
[12, 18], the first matrix above is invertible if and only if the following Schur complement of the matrix is

invertible
Ty —Tply By =X

This implies that T is invertible. Consequently, z = £~ 'Z and

Blt,x,u) = §(t,5) = T T '2 + Toay(1,27'3). (23

Letting
q"(faf) =z +quﬁl([,2)



we obtain that 22— gltom) PR
q(t,za) —qli,z; _ g(t,%;) =4, 2,
T( Wit z2) —wit.zi) ) ( Wi, 22) — (2,51 ) '

Hengce satisfaction of inequality (3) by W implies that the transformed nonlinear function  satisfies

T -
21, 5) q;(:j@) (X 9)(92(‘”2) Q(f))>
- P S s 0. 24
(\Mn@)—wUJﬂ o v )\ etz -vin) )7 @
Now, using the transformed term W, system (1) is described by
x = AxtBu+B,(1,3)
y = Cx+Du+Dyp(,3)
3 = Cpx+Dyu (25)
where  satisfies (24) and
A=4-B,TC,, B=B-B,P\Dy, B,=8,T3
C:C D 50Cy, D=D-D,T1Dy, Dp=DpT3, (26)
G, =3C,, D, =xD,

4.2 Observer for the Transformed System

Inspired by the previous section, we propose the following observers for the transformed system (25):

i = Af+Bu+B,p+LP-y) (27)
¢ Ci+Du+Dyp

p Wz, 2+ La(y—p})

¢ = Cpp+Dgu

In the observer description we have,
=t 2+ Lp{Ci+Du—y) + LpDpp) .
So, when LD, # 0, we assume that there is a continuous function ¢ such that for all / and 7, the equation
=", n+LaDpp) (28)
is uniquely solved by g = ¢{(¢,1). Then,
p=o{t 241, (Ci+Du—y)). (29)
Now, we can present the main result of this section, which is a corollary to Theorem 1.

Corollary 2 Consider a system described by (1)-(2) and satisfying (3) with a set M of matrices which satisfy
Condition . Suppose that there exist matrices P = PT > 0, R|, Ry and (X, ¥) & N which satisfy (30) and let

ATP+PA+RIC+CTRT +20P PB,+RD, CIX+CTR]

BIP+DIRT ~Y Dpr+D§R§ <0. (30)
XC +R2C XDy, + R, -X
L=P 'R, L,=X'R;. ‘ €3

Also suppose that there is a continuous function & such that p = 0(1,m) solves equation (28). Then, given any
input u(-) and initial condition x{ty) = xq such that system (1) has a well defined solution for all t > t, the state
gstimation error, e = % — x, decays exponentially to zero with a rate of 0.



Proof: Substitute (31) into inequality (30) and apply a Schur complement result ([7]) to obtain

5Tp o /3TrT
Blp+DILTP 0 J
= - T ~ -
¢ D, X 0 ¢ D
(57855 T) =0
where C, ;= Cq +L,Cand D, := Dy, + L,D,. The result now follows by applying Theorem 1 to the transformed
system. ' .

( PA+ATP+PLC+CTLTP+20P PBy+PLDp \
L .

Remark 3 Note that, for a fixed o, inequality (30} is an LMI (linear matrix inequality) in the variables
PR ,R; Xand Y. '

When LnDp # 0, the following corollary of Lemma 1 presents an EMI which guarantees a continucus

solution to equation {28) for p.

Corollary 3 Suppose that y satisfies (24) for all t,z,z2 and (X,Y) € N. Given Ly, suppose that there are
matrices (X, Y) € N, Ry, O and and a sclalar B > O such that,

—0-0"+B 0 DR}
o ~Y D], <0 and Ry=XL,. (32)

RiD, XD, —X
Then there is a continuous function O such that p = &(t, M) satisfies (28).

Remark 4 When L,D, # 0, Corollary 3 tells that we can design the observer gains L and L, by simultaneousty
solving LMT’s (30) and (32) for P,R1,R2, X, Y,Q and . Then L = P 'R and L, = X 'Rs.

5 Some Classes of Nonlinearities Satistying (3)

In this section, we discuss some typical nonlincarities satisfying (3). We also present additional conditions
under which these nonlinearities satisfy Condition 1. First two classes and their characterizations cover globally
Lipschitz type of nonlinearities, and nonlinearities in unbounded scctors, which are also studied in [6], [4]. and
[5]. Then, we hring more structure to a general class of nonlinearities via polytopic and conic parameterizations
in the last two subsections.

5.1 Incrementally Sector Bounded Nonlinearities
Here we consider nonlinearities which, for all ¢, and z,, z;, satisfy
(By — K18g) X (K>8¢ — dyy > 0 forall X € X, (33)
where
Sy =wit,z2) —w(t,z1), Bg:=8+D,0v, bz:=zm—z, 34

X is a set of symmetric positive semi-definite matrices and K, K> are fixed matrices. Here, without loss of
generality, we assume that the set X is invariant under multiplication by a positive number. It readily follows
from (33) that a set M of muitiplier matrices for the nonlinearities under consideration is given by

B ~KTXK, - KIXKy (Ki+Ka)TX
M{( X(K +K:) ax )RR



To satisfy Condition 1, suppose that there exists a positive scalar ¢ such that §) — 65, is nonsingular where
S1:=KyDgp — 1 and 8y 1= I — Ky Dy, . One can verify by substitution that the following equality holds

o[ K XK= KJXK (K +K)" X \ _r (X0 \r
S R A T

where
1 1
( \/ﬁKg \/EKl \/—]+ \/6[) .

K +0kK) —I—ocl

Here 32 = §; — 651 is nonsingular. Therefore, Condition 1 is satisfied with the matrix T defined above and

N:{(X} ;X):Xex}.

When g and p are scalars, one can always choose a positive scalar o such that §) — 65, is nonzero. To prove
. : 1
this claim, note that if 5] — @Sz is zero for all ¢ > 0 then, ) = S; = 0. Inthis case, K; = Kz = D and dy = K &g
ap
where K := K| = Ka. Using 8q = 8z + D,,dy and 8y = K8q, we have 8z = (1 — D,,K)8g = 0. However, &z
should be arbitrary; hence we cannot have S = §; = 0. Consequently, Condition 1 is always satisfied by M in

the scalar case.
As a specific example of a nonlinearity under consideration, consider a globally Lipschitz nonlinearity which

satisfies ||8y|| < v||3¢]| for some v > 0. In this case, inequality (33) holds with K} = —y/, K3 =¥/, and X = {A/:
A >0}

5.2 Incrementally Positive Real Nonlinearities

This class of nonlinearities is described by a set X of symmetric positive semi-definite matices X such that for

all ¢ and z1, z2,
S¢ xSy >0  forallX € X, (35)

where 8¢ and Sy are as defined in (34). It is clear from (35) that, without toss of generality, we can assume that
the set X of matrices is invariant under multiplication by a positive scalar. Note that nondecreasing nonlinearities
satisfy (35) with X = (A : L > 0}. It readily follows from (35) that a set M of multiplier matrices for the

nonlinearities under consideration is given by

s {(8 1) xex).

To satisfy Condition 1 choose any scalar ¢ > 0 such that D,, — o/ is nonsingular. Then, we can readily show

that .
5 OX): %Iﬁl (X (1) %1\/61 _
X0 I —of 0 -3X I —of

Consequently, if we let

I —af

T:( v \/61), g(:{(x, éX):Xex},

then I'y» = D,, — o/ is nonsingular and Condition 1 holds.



5.3 Nonlinearities with Polytopic Parameterizations

These nonlinearities are assumed to satisfy
oy = 0({s}dg (36)

where Gy and 8g are defined in (34), 5= (¢,z,22) and
Q(s) €Co{Qy,...,Q.} foralls,

that is, for any s, Q(s) = ¥}, M, where A >0, k=1,...,v,and ], Ap = 1.
Since 8y = Q(s)8q, a symmetric matrix M satisfies (3) if and only if

(el )0 e

My M
M(Mf; M)

where partitioning is in accordance with (8¢, &w). Then the above inequalities can be expressed as

Let

M)+ MpQ(s) + QY (ML + QT ()M Q(s) > 0 forall s.

Consider now those matrices M which satisfy M, < 0. When D, = 0, we need only consider this case. With
Mys < 0, the above inequalities are equivalent to: '

My + My + QI ML+ QI M Q>0 fork=1,...,v. (37)

Thus, the set M of symmetric matrices M which satisfy

T
I i
rasy <
(Qk) M( Qk)z() for k=1,...,v, and My <0, (38)

is a set of multipliers matrices.
The above set of multiplier matrices does not necessarily satisfy Conditien | with a single transformation

7. To obtain a set satisfying Condition 1, choose any nonsingular matrix 7" and consider multiplier matrices of
the form given in (18) where X and ¥ are symmetric positive semi-definite matrices. A matrix M of the this
structure satisfies inequalities (37) if and only if X and ¥ satisfy

(o) (5 &)r(a)

TLXTi2 — TSV T

A%

0 for k=1,...,v

0. (39)

[

Then, provided To2 + 731Dy, is invertible, Condition 1 is satisfied with
N={X,Y): X" =X>0 and YT =Y >0 satisfy (39)} .

Ouce 7 is chosen, (39) is a set of linear matrix inequalities in X and ¥. However, the choice of T to yield a
large subset of multipliers in some sense is not clear. Therefore, T is treated as a design parameter at this point.
For example, the simple choice of T = 1 satisfies Condition 1 with A7 defined by

N={(X,¥):XT=X>0 and ¥T =Y >0 satisfy (40)}

with
X-Qlvau =0 for k=1,....v. (40}



5.4 Nonlinearities with Conic Parameterizations

These nonlinearities are assumed to satisfy
™

By = ()%

~—
d=
[
—

where 8y and 8q are defined in (34), 5:=(,z1,22) and
Q(s) € Cone {2 ,... . Oy} foralls,
that is, for any 5, Q(s) =X} A&, where A >0, k=1,...,v. Since &g 1s arbitrary, it immediately follows

that a symmetric matrix M is a multiplier matrix if and only if it satisfies

T
I I
(Q) M(Q)EO forall Q€ Cone{2y,... G }.

This is equivalent to

My QT ML+ MQ+Q MpQ >0 forall Q€ Cone{Q,...,Q
12

My M )
M= <.
( ﬁ/f{g Moo
As in the previous section, we only consider multipliers with A2 < 0. Actually this assumption does not

bring any conservatism in the case D,, = 0. However, when Dg, # 0, this will lead us to obtain a subset of
multipliers. With M < 0, the inequalities above are equivalent to

where

M 4+ QTML + MpQ QT My
> see .
( My Q2 a7 0 forall @ € Cone{€d;,...,Qy} (42)
Consider any mairix Q. For any A > 0, the matrix AL Is also in Cone{£2y,. .. , £, }; hence

M+ m,{M{Z +AM KQ}:MQQ -0
AM €Y — M -

Considering A = 0, we obtain that

M 0
( Q — Moo )20’

My >0  and My <0, (43)

that is,

Considering & >> 0, we obtain

>0.

AL+ Qz.ﬁ/[lrz + M2 Q}:Mzg
My —A My

Since A can be arbitrary large, we must have

QT ML, + M2Q  Qf Mo,
- = > =1,...,v.
( Ml 0 >0, k=1,..v (44)

Clearly, satisfaction of conditions (43) and (44) for k = 1,---,v imply (42). Thus, when Dy = 0, we obtain a
necessary and sufficient characterization of the set of multipliers. Otherwise, Dy, # 0, the inequalities (43) and
(44) only define a subset of multipliers in H.



Onece T is chosen, (43) and (44) define a set of linear matrix inequalities in X and ¥. However, the choite of
T to yield a large subset of muitipliers in some sense is not clear. Therefore, 7 is treated as a design parameter
at this point. For example, the simple choice of

(1)

implies that X = ¥ in Condition |, and yields to the satisfaction of Condition 1 with

N={(X.¥): ¥ =X=Y"=¥ >0 and OX+XQ>0, k=1.v}.

5.5 Multivariable Nonlinearities with a Diagonal Characterization

In this subsection, we consider multivariable nonlinearities that have different characterizations for each portion
of the nonlinearity, i.e.
p(t,x,u) = ( pl(fr-‘::u}: R p,u(t:xru) ) :

where pp(r,x,u) = y(t,zx) with zx = Cgpx + Dggu for k=1,..., u and there exists a set of multipliers M
such that each component satisfies condition (3) for ail M; € M, k=1,...,u The results of this section
also contain the feasibility relaxations obtained for strictly positive real conditions for multivariabie monotone
nonlinearities presented in [10]. If we define g = (g1,.--,9.}, and W(t,z) = {y1 (1,2),...,¥(t,2,)}, we can
easily show that the nonlinearity p(#,x,u} = W{¢,z) where

G 0 0 Dg 0 0
0 0 ... 0 D 0 .
z= ) Co2 _ x+ ) »? . u
: w0 : o 00 0
0 ... 0 Cyuu 0 ... 0 Dy,

satisfies (3) with M, where for each M € M we have

My 00 .0 0
0 My 0 . . My Mgz

M = E . : for i,j = 1,2 with (MIZIZ Mo ) =M, k=1,...,u.
0 0 ... My

Neow, suppose that Condition 1 is satisfied for set of multipliers M, of each component p; of p with some I and
set of pairs (X, ¥} € A, k=1,...,4 Then Condition 1 is also satisfied for M with matrix pairs (X,Y} € A

and transformation T where

X 0 P o0
x=1 0 0 v=1 o o |,
0 X, 0 ¥,
and
Ty 0 ... 0
T, = ? By . ? for i, j = 1,2 with (;};; %’;:Z)—Tk,kul,...,y.

0 0 ... T



6 An Example: Underwater Vehicle

In this section we consider a simple model of an underwater vehicle with thruster dynamics. This example 1s
taken from [14] where a similar objective of designing observers is considered in a different framework. The

simplified dynamics of the vehicle is given by

¢r = —301i¢|+u
¢ 1101 — 106202/,

where ¢, is propeller angle, ¢, is vehicle position and u is the torque input to the propeller It is assumed that
we can only measure ¢; and ¢z; the anguiar velocity ) of propeller and the speed #; of the vehicle will be
estimated using an observer. In this model, ¢]1| represents the propeller thrust and 10¢2|02| represents the

hydraulic drag on the vehicle. S
Introducing the state x = (01, 61, ¢2, 02), and the output y = (91, §2), and letting p = (¢:1]d [, B0}, we
can write this system in state space form (1) with
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With z = (xz, x4), the nonlinear term is described by (2) where

o { 2l {0100 {00

W(”‘)“(zﬂzﬂ )‘Cﬁ'*( 0 0 0 I )=Dq"( 00 )

Note that the nonlinear function given by f{v) = v|v| is a nondecreasing function. Considering Dy, = 0, the
nonlinear term here is an incrementally positive real nonlinearity satisfying (35) with X being the set of matrices

X of the form
At O
e ( 0 2 )
where A; and A, are any positive scalars.

Therefore, we can design an observer using the results in Corollary 2. This is done by using the LMI toolbox
in MATLARB [11]. The observer gains obtained for o = 4 are
-9.4678  -0.0134

I— —21.6510 0.3072 L — —4.4758 0.0189
o —0.0039 —19.0395 |*~"" |\ —0.3196 —13.0741

-0.2699 —211.0569

A two second simulation was carried out with initial state x(0) = (0, 0, 0, 5), initial state estimate, £(0) =
(0,4,0, -10;, and control input

B 5 for0<r<l
”(’)—{ 10 for1<t<?2

In these simulations, dotted lines represent the state estimate which converged to the vehicle state in Jess
than 0.5 seconds.

7 Conclusions

We considered the problem of state estimation for nonlinear time-varying systems whose nonlinearitics satisfy an
incremental quadratic inequality. We also demonstrate that many common nonlinear/time-varying terms satisfy
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Figure : Estimating the state of an underwater vehicle

such an inequality. We present observers which guarantee that the resulting state estimation error exponentially
converges to zero. Observer design involves solving linear matrix incqualities (LMIs) for the observer gain
matrices. These LMIs can be efficiently treated using commercially available software. Results are iliustrated

by application to a simple model of an underwater vehicle.
The results of this paper will be useful in obtaining observer based output feedback controliers for systems

with nonlinear/time-varying terms satisfying an incremental quadratic inequality.
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