SIM PlanetQuest: The TOM-3 (Thermo-Optical-Mechanical) Siderostat Mirror Test

C. Phillips

August 11, 2006
Agenda

- SIM Spacecraft Overview
 - Collector Subsystem Description
 - Siderostat Mirror Description
- Collector Bay Environment
- TOM-3 Test Configuration
- Integrated Model Description
- Conclusion
Designed to Detect Earth-Like Planets (as Small as 4 Earth Radii) Around 250 Nearest Stars

Will Also Catalog Positions of 1300 Nearest Stars with Micro-Arc-Second Resolution.

3 Michelson Interferometers Operating in Visible Wavelength

10-meter Science Baseline

5 Year Primary Mission with 10 Year Goal

Earth Trailing Orbit (0.95 to 1.1 AU)

Complex Opto-Mechanical Systems

mK-Level Thermal Stability on Select Components
SIM Instrument

- **S/C MLI Not Shown**: Outer Layer is 2nd Surface Kapton, $\varepsilon = 0.78$, $\alpha = 0.45$
- **Solar Distance**: 0.95 to 1.1 AU (1515 W/m2 to 1130 W/m2)
SIM Collector Bays

Wide Angle Stability Requirements in Bold

SID Mirror, Aluminum Thermal Can, PID Kapton Film Heaters, MLI, 25 mK/hr

SID Outer Gimbal, PID Kapton Film Heaters, MLI, 25 mK/hr

Science Compressor Bench, Kapton Film PID Surface Heaters, MLI Blanketing, 100 mK/hr
SIM Collector Siderostat Mirrors

- One Mirror Located in Each Collector Bay
- Articulating Mirror (Coarse Stage Can Rotate Mirror +/- 3.5°)
- Used to Acquire Target Starlight and Direct it Toward Science Light Compressor
- 35-cm Flat Mirror
- 25 mK/hr Thermal Stability
- 22°C +/- 5°C Absolute Temperature Requirement
- Identified Early on in Technology Program as a High Risk Item
- Subject of TOM-3 Thermo-Optical-Mechanical Test

Latest Flight SID Incarnation

Brassboard SID
COL Bay Thermal Environment (1 of 2)

- Primary Boundary Temperature for COL Bay Components is NGST COL Bay Enclosure Inner MLI Temperature and Aperture to Space
- The COL Bay is Isolated from the Rest of the Instrument with MLI Blanketing
- Range for COL Bay Inner MLI Absolute Temperature is Driven By Solar Loading Vector, Solar Flux, and Materials Degradation
Case 1: Bore-Sight Sun
Min = 196K, Max = 235K

Case 5: -Z,-Y Solar Loading
Min = 212K, Max = 259K

Goal of Thermal Design is to Minimize Temps Inside COL Bay in Order to Minimize Radiative Heat Transfer
TOM-3: Replicating COL Bay Environment

Shroud heater plates (150K to 220K)

Shroud LN$_2$ plates (90K)

Chamber ambient environment (293K)

Brassboard SID assembly (mirror approx. 293K)

Note: Right and top shroud/heater plate panels not shown.
BB-SID Test Setup Photos

Typical panel with large heaters

SID on bottom heater plate
LN₂ shroud and chopping mirror in chamber
The SID mirror assembly is temperature controlled by the following four heater circuits.

- **Aft Thermal Can.** The Aft Can is isolated from the shroud environment by a 20-layer MLI blanket and has a low-e inner coating to attenuate temperature fluctuations. 7 individual patch heaters are installed in series on the Aft Can and are controlled by a PID heater control algorithm.

- **Forward Thermal Can.** The purpose of the forward heater can is to reduce lateral gradients across the mirror face. The forward can circuit has three individual patch heaters wired in series, and is PID controlled.

- **SID Support (Vertical).** The vertical portion of the SID support has five individual heater patches and is PID controlled.

- **SID support (Base).** The horizontal portion of the SID Support has one heater patch and is also PID controlled.
How Does Thermal Drive Changes in OPD?

$OPD = \frac{\alpha \Delta T}{4h} \left(r_o^2 + r_i^2 \right)$

$\alpha = \text{CTE (\text{+/- 5 Parts/Billion for ULE})}$

$\Delta T = \text{Axial Temperature Gradient}$

$h = \text{Mirror Thickness}$

$R_o = \text{Mirror Outer Radius}$

$R_i = \text{Mirror Inner Radius}$

Changes in OPD Over Time Degrade Optical Performance

Goal of TOM-3 is to Measure and Predict $\Delta OPD/dt$
Ideas TMG Thermal and Structural Models

Temperature Mapping

Thermal Model
21600 Elements
13600 Nodes

Structural Model
47000 Elements
168000 Nodes
SID Sample Steady State Temperature Map

Critical Temperature Gradient
SID Sample Transient Results/Test Data

TOM Tech Gate 8 - SID Mirror Temperature - Inboard Bay, Narrow Angle Test, 6/5/2005

Test Duration (hr) vs Temp (K)

TOM Tech Gate 8 - SID Mirror d-Delta-T/dt (SIDBCK3-SIDBCKR2) - Inboard Bay, Narrow Angle Test, 6/5/2005

Test Duration (hr) vs d-Delta-T/dt (mK/hr)
Conclusions and Lessons Learned

- Flight Thermal Environment was Successfully Replicated
- Measured Siderostat Optical Performance Met Optical Requirements by a Wide Margin.
- Despite a Good Thermal Model Correlation, Uncertainties in Material Properties Complicated Structural Correlation (assumed ULE CTE of +/-5 ppm, Recently Measured at +30ppm)
- ULE Bool Had Non-Homogeneous CTE (Homogeneous ULE Assumed in Model)
- MLI Blanket Seams Complicated Thermal Model Correlation (Used Average e* of 0.05 where e* was More Like 0.1 Near Seams)
- Thermal Model Probably did not Need to be so Detailed. Mesh Size was Selected Using a Grid Refinement Study and TMG Benchmarking Studies.