GaN-based Robust Micro Pressure and Temperature Sensors for Extreme Planetary Environments

Kyung-ah Son

NSTC 2007

June 20, 2007
Acknowledgements

Funding from NASA PIDDP

Collaborators:
B.H. Yang, A. Liao, M. Gallegos
I. P. Steinke, Y. Liu, P.P. Ruden
J. Xie, X. Ni, N. Biyikli, H. Morkoç
R. E. Young, A. Colaprete

JPL
UMN
VCU
ARC
Temperature, Pressure, and Radiation in Reference Missions

Kyung-an Son (818)393-2335, kson@jpl.nasa.gov
Extreme Environments in Five Space Science Reference Missions

All five missions have to survive in extreme environments.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Venus Surface Exploration & sample return</td>
<td></td>
<td>460 C</td>
<td></td>
<td>90 bar</td>
</tr>
<tr>
<td>Giant Planets Deep Probes</td>
<td>-140 C</td>
<td>380 C</td>
<td></td>
<td>100 bar</td>
</tr>
<tr>
<td>Comets Nucleus Sample Return</td>
<td>-140 C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titan In Situ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europa Surface & Subsurface</td>
<td>-160 C</td>
<td></td>
<td>5 MRad</td>
<td></td>
</tr>
</tbody>
</table>

Chris Moore, "Technology Development for Extreme Environments Systems"

Kyung-ah Son (818)393-2335, kson@jpl.nasa.gov
AlGaN/GaN Hetero Structure-based Micro Sensors

Merits:

- Superior materials properties; Ideal for extreme environments
 Mechanically strong, chemically & thermally inert, radiation hard
 Minimal in unwanted optical or thermal generation of charge carriers

- Small volume, low mass, and low power requirement

- Novel device concept and simple & reproducible fabrication

- Monolithic integration to GaN-based RF transceiver

Kyung-ah Son (818)393-2335, kson@jpl.nasa.gov
AlGaN/GaN Heterostructure Devices for Pressure Sensing

- Sheet charge layer (2-Dimensional Electron Gas) at the interface of GaN and AlGaN
- Applied stress/pressure

Modulation of the electron concentration & the conduction in the 2DEG.

Kyung-ah Son (818)393-2335, kson@jpl.nasa.gov
AlGaN/GaN based High Pressure Sensors

Schematic cross section of n-GaN/AlGaN/n-GaN (n-I-n) vertical transport diode sensor

Expected operational range:
0-10 kbar with 1 mbar accuracy
30 K - 870 K with 0.1 K accuracy

Expected volume: \(\sim 1 \, \text{cm}^3 \)
mass: < 5 g
power requirement: < 10 mW

Kyung-ah Son (818)393-2335, kson@jpl.nasa.gov
Conduction Band Diagram of GaN/Al$_{x}$Ga$_{1-x}$N/GaN sensor

Conduction band diagram of n-GaN/Al$_{0.13}$Ga$_{0.87}$N/n-GaN
- for 10 nm thick undoped Al$_{0.13}$Ga$_{0.87}$N and 2x1017 cm$^{-3}$ doping in both n-GaN regions
- estimated polarization charge at the Al$_{0.13}$Ga$_{0.87}$N/n-GaN: 7.24 x1012 ecm$^{-2}$
- calculated barrier height: 1.33 eV
- 12 meV decrease of barrier height expected from 1% reduction of polarization charge; 60% increase in thermionic emission current over the barrier.

Kyung-ah Son (818)393-2335, kson@jpl.nasa.gov
Theoretical Modeling of Pressure Effect on n-l-n Sensor

Normalized change of current densities, \(\frac{(J_0-J)}{J_0} \), calculated for GaN/Al\(_x\)Ga\(_{1-x}\)N/GaN heterojunction under 10kbar hydrostatic pressure

- Current decreases with increasing pressure.
- Decrease of the current is more significant with higher x and the thicker AlGaN layer.
GaN/Al\textsubscript{x}Ga\textsubscript{1-x}N/GaN (n-I-n) Sensor Structure

<table>
<thead>
<tr>
<th>Al\textsubscript{x}Ga\textsubscript{1-x}N thickness: (t)</th>
<th>10nm</th>
<th>20nm</th>
<th>30nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al\textsubscript{x}Ga\textsubscript{1-x}N %</td>
<td>12%</td>
<td>CVD1210</td>
<td></td>
</tr>
<tr>
<td>15%</td>
<td>CVD1209</td>
<td>CVD1208</td>
<td>CVD1211</td>
</tr>
<tr>
<td>30%</td>
<td></td>
<td>CVD1205</td>
<td></td>
</tr>
</tbody>
</table>
I-V Characteristics of n-l-n Sensors

Different Al compositions in $\text{Al}_x\text{Ga}_{1-x}\text{N}$

Different thicknesses of $\text{Al}_x\text{Ga}_{1-x}\text{N}$

Higher turn-on voltage with higher Al content and thicker $\text{Al}_x\text{Ga}_{1-x}\text{N}$

Kyung-ah Son (818)393-2335, kson@jpl.nasa.gov
Electrical Responses of n-l-n Sensor to Hydrostatic pressure

Pressure response measured for the n-GaN/Al$_{0.15}$Ga$_{0.85}$N /n-GaN

Current was measured under hydrostatic pressure at a fixed forward bias (+0.8 V) while the pressure was increased (solid dots) and decreased (open dots) as well.

- Linear decrease of current with increasing pressure
- Reversible response

Kyung-ah Son (818)393-2335, kson@jpl.nasa.gov
Theoretical Modeling of Temperature Responses of n-I-n Sensor

Current density vs. voltage plots for GaN/Al$_{0.15}$Ga$_{0.85}$N/GaN sensor at zero pressure

Calculated with doping density of $3 \times 10^{18} \text{ cm}^{-3}$ for top GaN layer and $3 \times 10^{17} \text{ cm}^{-3}$ for bottom GaN layer. 10 nm thick undoped AlGaN layer is assumed.

Current decreases strongly with decreasing temperature.

Kyung-ah Son (818)393-2335, kson@ipl.nasa.gov
Temperature response of n-l-n sensor

Temperature response of GaN/Al$_{0.15}$Ga$_{0.85}$N/GaN sensor

20 nm-thick Al$_{0.15}$Ga$_{0.85}$N layer. The current was measured with a forward bias of 1.5 V.

- Good linearity between current and temperature

Kyung-ah Son (818)393-2335, kson@jpl.nasa.gov
Modeling of Temperature Responses of n-l-n under High Pressure

Normalized change of current density under 10kbar for GaN/Al$_{0.15}$Ga$_{0.85}$N/GaN

Calculated with doping density of 3×10^{18} cm$^{-3}$ for top GaN layer and 3×10^{17} cm$^{-3}$ for bottom GaN layer. 10 nm thick undoped AlGaN layer is assumed.

- Current decreases with the applied pressure.
- The decrease gets more significant at lower temperatures.

Kyung-ah Son (818)393-2335, kson@jpl.nasa.gov
Pressure Responses of n-I-n Sensors

<table>
<thead>
<tr>
<th>Sample Parameters</th>
<th>Maximum PGF [GPa⁻¹]</th>
<th>Maximum SGF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(t_{AlGaN} [\text{nm}])</td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td>20</td>
<td>-0.492</td>
</tr>
<tr>
<td>0.15</td>
<td>20</td>
<td>-0.541</td>
</tr>
<tr>
<td>0.30</td>
<td>20</td>
<td>-1.02</td>
</tr>
<tr>
<td>0.15</td>
<td>10</td>
<td>-0.626</td>
</tr>
<tr>
<td>0.15</td>
<td>30</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

pressure gauge factor (PGF): normalized current change per unit pressure

Higher gauge factor measured for nIn sensors with higher Al content in Al\(_x\)Ga\(_{1-x}\)N

Kyung-ah Son (818)393-2335, kson@jpl.nasa.gov
Pressure Responses of $\text{Al}_{0.3}\text{Ga}_{0.7}\text{N}/\text{GaN}$ HEMT Sensor

Relative change of saturation current with pressure

- Linear decrease of current with increasing pressure
- Reversible response
Pressure and Temperature Responses of $\text{Al}_{0.3}\text{Ga}_{0.7}\text{N}/\text{GaN}$ HEMT Sensor

I_d measured during pumping (from 1 bar to 0 bar)
GaN HEMT Ni L12W25

I_d measured during heating from 25C to ~270C
GaN HEMT Ni L12W25

Kyung-ah Son (818)393-2335, kson@jpl.nasa.gov
Summary

- Investigated n-GaN/Al\textsubscript{x}Ga\textsubscript{1-x}N/n-GaN (n-l-n) devices for pressure sensors in extreme environments.

- Theoretical modeling indicates decrease of electrical currents with increasing pressure due to the increase of polarization charge.

- The modeling predicts more significant decrease of current with higher AlN compositions in the Al\textsubscript{x}Ga\textsubscript{1-x}N layer and for the thicker Al\textsubscript{x}Ga\textsubscript{1-x}N layer.

- The vertical transport current measured with n-GaN/Al\textsubscript{x}Ga\textsubscript{1-x}N/n-GaN (X=0.12, 0.15 & 0.2) sensors is consistent with the modeling studies.

- Linearity and reversibility in pressure response; n-GaN/Al\textsubscript{x}Ga\textsubscript{1-x}N/n-GaN is promising for high-pressure sensing in extreme environments.

Kyung-ah Son (818)393-2335, kson@jpl.nasa.gov