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Abstract - In the quest to maximize the scientific return of
future robotic missions, it is imperative that our rovers be
capable of determining the importance of the science they
collect so that they may prioritize the acquisition and re
lay of that data. As an important step in this process, we
present an automated technique to allow a rover to classify
the shape and other geologic characteristics of rocks from
two-dimensionalphotographic images and three-dimensional
stereographically produced data. Experiments were con
ducted in the Matlab environment using images returned by
JPL's Mars Pathfinder mission.

Our method begins by first segmenting the rocks from the
background using a combination of image intensity and
height data. Various metrics are then used to classify the re
gion's sphericity, roundness, and other geometric properties.
Preliminary experiments to determine the most useful metrics
were conducted by characterizing the two-dimensional rock
shape while the three-dimensional shape was later studied
with metrics derivedfrom these two-dimensional techniques.

Seven measures were developed and implemented. The per
formance of each measure was characterized by analyzing
imagesfrom the Pathfinder mission and ranking the rocks ac
cording to the measured properties. Combined, the measures
would provide a tool by which an automated rover could dis
cover a greater amount of information about the data it col
lects, leading to a more productive mission.

1. INTRODUCTION

Since it may be a long time before manned missions to other
planets or planetary bodies become a reality, it is necessary
to design the robotic explorers we do send to be astute and
meticulous observers with the ability to mimic the work of
human geologists and scientists as nearly as possible. Rovers
must be able to understand the purpose behind their explo
ration, to determine how best to accomplish that purpose, and,
most basic of all, to make judgements about the world they
view and to categorize that world in ways which will help
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them to achieve their goals. To this end, a rover must become
a 'robotic geologist,' not merely seeing rocks and surface fea
tures, but understanding, characterizing, and studying them.

One important and geologically useful feature ofrocks is their
inherent shape. The shape of a rock is a complex property
which is oftentimes difficult to describe precisely. However,
a great deal of geological work has been performed classify
ing and categorizing the general appearance of microscopic
particle grains with respect to various concrete properties [1],
[6], [13], {9] [18], and the same basic concepts remain appli
cable even when scaled to the macroscopic realm of Martian
rocks. In particular, the concepts of roundness and sphericity
provide indicative measures of a rock's shape which might
be used by a rover to obtain valuable information about the
specimen's geologic origins and history [15].

Roundness is a measure which indicates the sharpness of an
object's comers and the angularity of its edges. The accepted
quantifiable definition of this property, attributed to Wadell
(1932), involves finding the ratio of the average radius of cur
vature of the comers to the radius of the largest inscribed
circle. In the past, if this measure was desired there were
two possible methods of acquiring it. One method was to
have a person compare a particle to images of particles with
known roundness, and in this way determine on a relative
scale the specimen's roundness. The other method required
a two-dimensional photograph of a rock to be taken and then
enlarged to some standard size. Then the average radius of
curvature was painstakingly calculated by hand, or, due to the
difficulty of this calculation, the radius of curvature at merely
the most angular comer would be found. Next, special pre
measured circles would be manually fit to the rock grain un
til the maximum inscribed circle was found {IS]. Obviously
this process was time-consuming and laborious. However,
we present instead an automatic method of calculating an es
timate of the relative roundness of a rock which involves the
calculation of the average maximum peak angle of certain in
scribed triangles. Not only is this method automated, but it
can also conceivably obtain a precision which human estima
tion and categorization hitherto could not.
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Figure 1: A flow chart of the two-dimensional analysis of an image (a). The process begins with the segmentation of the rocks
from the image background (b) using the plane-filled range data (f). Outlines of the rocks are then found via edge detection
(c). These outlines are next used to calculate the two-dimensional angularity of the rocks through the modified comer-finding
algorithm described below. Ellipses are also fit to the outlines (d) by an analytic least-squares filting method. Finally, the
sphericity, eccentricity, and ellipse-Iltting error can be calculated from the Ilt ellipses. The entire process requires les than 2
minutes per image running inunoprimized Matlab code on a Sun Ultra 60.

It is this measure that we will hereafter refer to simply as
sphericity.

Sneed and Folk (1958) modified Wadell's definition, devel
oping what is known as the maximum projection sphericity
which we use here

It was our objective to conceive the methods by which an
automated rover could calculate both the roundness and the
sphericity of the rocks in an image using only the two
dimen ional image and stereographic range data. With the e
characteristics, it would be possible for the rover to estimate
important information, such as how far the rock had travelled

from its source, the direction of the fluid flow, and whether
the rock was of the same general age as those surrounding it.
We hoped by this process to grant the rover a better under-
tanding of the region it tudied and in that way increase the
cientific retum of the mission.

2. METHODS

Rock Segmentation

Our tirst task was to u e the three-dimensional stereographic
range data to segment the rocks in the image from the back
ground. We used the method the method described in [Ill
which we briefly overview here. The range data that we used
contained the x, y, and z coordinates of every pixel in the im
age based on an arbitrary camera-based coordinate sy tem.
In order to obtain the actual height of the rocks above the
ground, it was necessary to use a least squares plane-fitting
method such as the one described in [14]. The plane was ini
tially fit to every point in the image, and successive iteration
were then performed by rejecting tho e points who e di tance
from the plane wa greater than three standard deviations
from the mean. In this way, the plane was fit as closely as
possible to the points nearest to the mean height in the image,
which we assumed to be a good indication of ground height.
Having obtained this more or less topographical map of the
image, the top of rocks were next identified, being those re
gion who e neighbors were all lower than the prospective
lOp. Those regions whose neighbors were both above and be
low them were labelled as the sides of rocks, and, of course,

(1)

(2)

Sphericity refers to larger scale shape characteristics than
roundness. Sphericity identifies how well a particle or rock
approaches a truly spherical shape. It was again Wadell who
defined a mea ure for phericity. Wadell's phericitiy in
volved the assumption that the rock wa a regular triaxial el
lip oid and the calculation of the three perpendicular axe of
that ellipsoid, dL, dI, and dS, being the longest, intermediate,
and shortest dimensions, respectively. The WadeII sphericity
was tJlen defined as:



minimums were labelled as bottoms. The rocks were in this
way reconstructed from the three-dimensional stereographic
data with the tops being combined with sides until a bottom
region was encountered. For more information on this seg
mentation technique, please see [11].

Two-Dimensional Shape Characterization

We began by first characterizing the two-dimensional shapes
of the rocks and later modified or revised our methods for
three-dimensions as appropriate. The general procedure we
developed for two-dimensional analysis (Figure I) was to first
obtain an outline of each segmented rock from the output of
the rock segmentation module described above using simple
edge-finding techniques. Next, the least-squares best-fitting
ellipse was calculated for the data points on the outline of the
rock, and the ellipse-fitting error as well as the eccentricity
of the fit ellipse was reported. Finally, we applied a modi
fied corner-finding algorithm to determine the angularity or
roundness of the rock. The results were then recorded for
comparison and spot-checked for accuracy by expert geolo
gists.

and the minimization problem becomes to minimize:

£- =11 Da 11 2

subject to the above constraint, where D is the n x 6 design

matrix [Xl X2 ... XN ]T. Through the use of a La
grangian variable Aand differentiation a simultaneous system
of equations can then be obtained

(5)

where S = D T D. Thus, an eigensystem has been obtained
which can be eaily solved. The final step is to note that the
eigensystem actually yields 6 eigenvalue-eigenvector pairs,
but as Fitzgibbon, Pilu, and Fisher prove, only one of these
pairs will have a positive A and therefore yield a true lo
cal minimum. For a more detailed discussion of the ellipse
specific fitting problem, please see [7] or [8].

F(a,x) =a· x =ax2+ bxy+cy2 +dx +ey+ f =0 (3)

To begin with, a general conic section in two-dimensions can
be represented as:

Ellipse Fitting - The ellipse fitting was performed by Matlab
code originally produced by Fitzgibbon, Pilu, and Fisher [8]
and adapted to our specific requirements. The algorithm for
the fit is analytic, rather than iterative like the majority of its
predecessors, and so is computationally inexpensive.

where a [a bed e f] T and x =

[x2 xy y2 X Y 1 f. F (a, Xi) then represents
the algebraic distance of the point (x,y) to the conic defined
by F(a, x) = O. Minimizing the surn of the squares of these
distances for all N data points, Xi, yields the equation:

Having obtained the fitted ellipses, we then calculate their
geometric eccentricity which can be defined as the ratio of
the semi-minor axis of the ellipse to the semi-major axis.
This measure is in fact a two-dimensional cousin of the three
dimensional sphericity previously discussed, providing infor
mation on how well the rock approximates a circle.

The other metric which we obtained by fitting ellipses to the
rock was the error of fit. This was calculated by summing the
squared distance from each rock boundary point to the closest
point on the ellipse. Due to the fact that finding the perpen
dicular ellipse-point distance required solving a higher order
polynomial and as such was computationally expensive, we
developed a slightly different distance measure. The distance
between a data point and the ellipse was taken to be the dis
tance between the data point and a point on the ellipse which
rested on the ray originating from the ellipse center and pass
ing through the data point (Figure 2). This method of cal
culating the ellipse-point distance allowed us to use a purely
analytic method of distance calculation and not have to revert
to iterative method's such as the Gauss-Newton process.

Roundness Calculation - The roundness of each rock was
next obtained, again using only the boundary points obtained
through segmentation and the simple edge-finding technique.
The general concept of our roundness measure is based upon
the algorithm developed by [5] to detect comers of high
angularity in images.

(4)

N

D(a) = L F(Xif
i=l

Now, in order to specifically fit an ellipse to the data instead
of a general conic section, a constraint must be applied to
the minimization problem. While numerous constraints have
been proposed in the past [4] [10] [21], Fitzgibbon, Pilu, and
Fisher set 4ac - b2 = 1, thus forcing the discriminant to
be negative and creating an ellipse specific minimization. In
matrix form this constraint takes the form aTCa = 1 where

0 0 2 0 0 0
0 -1 0 0 0 0
2 0 0 0 0 0

c= 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Assuming the boundary points are labelled in the clockwise
direction starting from some arbitrary point, we wish to esti
mate the curvature at a particular point Pi. To do this, nurner
ous triangles are fit with the apex of each triangle resting at
Pi' The two remaining vertices of the triangle are positioned
one to either side of Pi and are moved to various distances.
Thus, we have points Ph and Pj , where for two predefined
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Figure 2: The distance between a data point and a fit ellipse
is shown calculated along a ray emanating from the ellipse's
center and passing through the data point.

integer constants a and fJ

h<i-a j>i+a
h>i-fJ j<i+fJ

After some early experimentation, it was found that if a was
set to 2 and fJ was set to 9, the most useful results could be
obtained.

For all possible combinations of h and j within these con
straints, the angle Lhij was then calculated using the Law of
Cosines:

.. a2 + b2 - c2

LhtJ = arccos 2ab (6)

with a =11 Ph - Pi II, b =11 Pj - Pi II, and c =11 Ph 
Pj II. Point Pi'S estimated curvature was then taken to be the
maximum possible Lhij for all possible hand j (Figure 3).

Having found an estimated curvature, Pi, at every point on the
boundary, we next examined the distribution of these values.
We defined the final roundness of each rock as the standard
deviation of the estimated curvature at each point. Thus for a
rock with N boundary points:

Figure 3: The calculation of the estimated curvature at point
Pi is shown. Triangles are inscribed using Pi as one of the
vertices and points between Pi ± a and ~ ± fJ as the other
two. The maximum possible vertex angle is taken to be the
estimated curvature at Pi'

points in three dimensions. An analytic solution to this prob
lem was not feasible, so we implemented an iterative mini
mization solution to the least squares fitting problem. After
the ellipsoid was fit and the sphericity and other measures
were acquired from it, the data was next approximated with a
b-spline surface. This surface provided the continuity neces
sary for the calculation of the second derivatives of the data,
providing us with a novel metric for the three-dimensional
relative angularity of the rock.

Ellipsoid Fitting - Unable to suitably generalize to three
dimensions the ellipse-specific fitting method utilized for the
two-dimensional shape characterizations, we turned instead
to an iterative solution. After researching the merits and lim
itations of several different techniques [16] [22] [23], we fi
nally settled on a form of Powell minimization [19], which
appeared to be the least computationally time-consuming
technique and the most aptly suited to the data we had avail
able.

with p equal to the average of the curvature at the N points.

This measure provided a relative angularity scale. For in
stance, a perfectly round, circular object would rate a zero on
this roundness scale, while any deviations, points, or jagged
edges would serve to increase the rock's roundness. Thus, the
greater a rock's roundness in terms of our measure, the more
angular and rough its edges could be said to be.

Three Dimensional Shape Characterization

After completing the two-dimensional analyses, our next step
was to implement similar methods for the more complex three
dimensional case (Figure 6). Once again our procedure began
by segmenting the rocks from the background image. Then
using the topographical-like data obtained through the plane
fitting method described above, an ellipsoid was fit to the

N

'R2d = 2 N ~ 1 2)Pi - pF
i=1

(7)

The backbone ofPowell's method for multidimensional func
tion minimization is actually the one-dimensional minimiza
tion procedure known as Brent's method or inverse parabolic
interpolation. To utilize Brent's method, an initial coarse
bracketing of the minimum is first accomplished through a
naive downhill searching algorithm (Figure 4). This simple
search ensures that a minimum is located between the three
abscissa points, a, b, and c, which are its output. The key as
sumption ofBrent's method is that given a sufficiently smooth
and continuous function, it will most likely behave much like
a parabola near the minimum. As such, if three points are
fit to a parabola, in this case those points initially being the
j(a), j(b), and j(c) calculated above, the minimum of that
parabola should be extremely close to the minimum of the
function. Using this concept, as well as a more naive but
robust simple golden section search [19], Brent's method is
able to narrow in on the function minimum up to an arbitrary
precision.

As such, all that is required of Powell's method is to choose
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Figure 4: The figure depicts the initial coarse bracketing of
a function minimum. Points a and b are first randomly cho
sen, and increasing c values are then guessed in a downhill
direction until the function stops decreasing and begins to in
crease.

Figure 5: The Hausdorffdistance between two sets, H (A, B).
This distance is often used in image processing tasks, and was
here considered as a distance metric for the ellipsoid fitting.

The second distance implemented was the bidirectional Haus
dorff set difference. This metric is much used in image pro
cessing tasks [12J [17] and is considered a powerful tool for
finding the distance between two sets of points. The Haus
dorff distance from set A to set B is defined as

In our particular case of ellipsoid fitting, two different dis
tance metrics to minimize were implemented. The first of
these, known as TJs was simply the sum of the squared dis-
tances from the rock data points Xl, X2, XN to the closest
point on the prospective ellipsoid el, e2, eN:

As in the two-dimensional case, the point ei was estimated by
finding the intersection of the ellipsoid and the ray originating
from the center of the ellipsoid and passing through the data
point Xi. This, again, was done in order to increase computa
tional efficiency and to utilize an analytic distance rather than
one which would require iteration.

the directions of minimization in a way which requires the
smallest possible number of iterations. This is accomplished
through the use of conjugate directions which Powell first un
derstood and implemented [19]. Powell's method then simply
iterates, calling Brent's method to minimize the function in
these conjugate directions until a multidimensional function
minimization is accomplished.

(II)[
X] [acos(u)COS(V)] [D]
y = R1 R2 R3 bsin(~) cos(v) + E
z csm(v) F

Thus, an ellipsoid was fit to the data points by applying Pow
ell's method to minimize ilie sum of ilie squared distance be
tween the rock data points and the ellipsoid. Nine parameters
were used to define the ellipsoid as per the parametric equa
tion:

Since we had at most semi-spherical data, being that sur
face of the rock which was facing the camera, the Haussdorff
distance would attempt to fit an ellipsoid enclosing this sur
face. The data points would be somewhere near the center
of the ellipsoid. This would enable us to fit an entire ellip
soid to the data and obtain reasonably good estimations of
its three-dimensional axes. The sum of the squares distance
on the other hand would fit one face of the ellipsoid to the
rock and then interpolate where the rock might have been, fit
ting an ellipsoid much larger than the area of the actual data
points. However, the part of the ellipsoid which was actu
ally nearest to the data points would be fit directly to them
and would achieve an effect much more like that used in the
two-dimensional characterizations. For this reason, for its
faster computation time, and due to ilie fact iliat the sum of
the squares distance provided a better idea of the data's true
shape, ilie metric first described was chosen.

(9)

(8)
N

TJs =L II Xi - ei W
i=l

h(A, B) = max(min II a - b II)
aEA bEB

This is the unidirectional Hausdorff distance. The bidirec
tional version which tells the distance between two point sets
(Figure 5) is simply defined as:

TJH =max(h(A, B), h(B, A)); (10)

Both distance metrics held particular advantages to our task.

where-7f:::; u:::; 7f, -7f/2:::; v:::; 7f/2. The parameters a,
b, and c define the semi-major, semi-intermediate, and semi
minor ellipsoid axes respectively while (D, E, F) represents
the center point of the ellipsoid. The matrices R h R2 , and
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Figure 6: A flow chart of the three-dimen ional analysi of an image (a) is depicted. The process begins with the segmentation
of the rocks from the image background (b) with the help of the plane-fitted range data (f). Outlines of the rocks are then found
via edge detection (c). B-splines are next fit to the range data (g), and from these, angularity is calculated. Ellipsoids are also
fit to the range data using a Powell minimization technique (d). Finally, the sphericity and ellipsoid fitting error are calculated
using the fitted ellip aid. The entire process requires less than five minutes per image running in unoptimized Matlab code.

R3 are three-dimen ional rotation matrices:

COS«()l)
- Sill«()l)

o
cos(()z)

o
- sill«()z}
1 0
o COS(()3)

o Sill«()3)

Sill«()l) 0
cos«()J) 0

o 1
o sill(Bz)
1 0
o co (8z)

o
- Sill(83)
COS({;I3)

the formula given in equation 2, where dL, d[, and ds have
been replaced by the ellip aid parameters a, b, and c, respec
tively. A sphericity of 1 in this case would indicate that the
ellipsoid which was fit to this rock was perfectly spherical,
and thus that the rock's surface itself was an exact approxi
mation of a spherical section. As the sphericity falls farther
from 1, the rock then takes on a more elongated shape in one
or another direction. Thi information, a tated before, can
then be used to determine how far the rock might have trav
elled in a flowing fluid [15].

where (Jj, (h, and (J3 are the final three ellipsoid parameters
pecifying the angle of rotation of the ellipsoid about the

Z, y, and x-axes, respectively. It should be noted that the
rotation of the ellipsoid occurs in that order.

Two metrics were derived from the ellipsoid fit. The first of
these was the ellipsoid fitting error, being the averaged urn
of the squared distance from each point on the rock to the
ellipsoid, again using the estimated method for the calculation
of the closest point on the ellipsoid. This metric provided a
coar e e timate of the angularity of the rock. If the ellip 'oid
error wa' 0, the rock would then be a smooth faced eHip aid
or ection thereof. However, as the rock's surface become
more textured, as there are more bump and indentations, the
smooth ellipsoid sUlface would tend to fit Ie s perfectly. As
such high ellipsoid fining errors can serve a. an indication of
rough or angular rocks.

The 'econd piece of information measured using the ellip aid
fit was the rock's phericity. Thi value wa calculated using

Spline Filting - The next step of our three-dimensional shape
characterization wa to calculate a more robu t e timate of the
roundness or angularity of the rock. Our approach for deter
mining roundness involved obtaining the derviatives and sec
ond dervivatives in various directions of the data represent
ing the rock surface. Unfortunately, the calculation of such
derivatives for our noi y range data using typical direction
step methods soon proved unreliable. Values were too often
rendered useless by noise, and inaccuracies proved common.
However, the fitting of b-splines to the data points via tech
nique derived in [20] smoothed the surfaces sufficiently that
derivatives could then be calculated in an accurate and ana
lytic method.

B-spline surfaces (Figure 7) are the two-dimensional cousins
of b-spline curves which, along with bezier curves, have be
come extremely important in computer graphics and design
applications. In general the equation for drawing a b-spline



To calculate the b-spline surfaces for a rock, we first had
to discern the polygon net which would have produced a b
spline passing through our actual data points. Assuming we
have an T x s rectangular grid of three-dimensional data points
and we wish to find the best-fitting mXn rectangular polygon
net which could have produced those data points, we must in
vert a certain matrix form of the b-spline equation, namely:

In this equation D corresponds to Q in Equation 12 and is
an T * S x 3 matrix of the three-dimensional coordinates of
the actual rock data points. B is now an m * n x 3 matrix
containing the coordinates of the polygon net vertices. C is
an T *S x n *m matrix containing the products of the b-spline
basis functions, N and M. With some longwinded manipula
tion it could be shown that Equation 12 and Equation 13 are
indeed equivalent [20].

(13)D=CB

,
." i

1
'III I
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I I I.1
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Figure 7: An example of a very simple B-spline surface. The
spline is being fit to the stemmed data points using the method
described below.

surface is:
So, if C is a square matrix, the inversion process is simple
and B can be found by:

n+1 m+1

Q(u,w) = L L Bi,jNi,k(U)Mj,I(W)
i=1 j=1

(12) (14)

This metric provides one number which represents the rough
ness of the rock's surface. A score of zero would indicate that

Once the polygon net vertices have been calculated, a b-spline
which approximates the shape of the rock surface can then be
drawn using Equation 12.

(15)

(17)

(16)

1 N (Quu + QWW)n - ""' 2 23d - N L.. 2
i=1

QUU(u,w) = l:~~11l:;~1 Bi,jNi,klf(U)Mj,I(W)
QWW(u,w) = l:~~11l:;~1 Bi,jNi,k(U)Mj,llf(W)

However, in the more general case where C is not square, a
solution for B can only be obtained in some estimated sense.
The standard inversion process in this case is:

Our angularity or roundness measure was based upon these
derivatives. We took the average of the two derivatives at
each point and found the mean of that for all points on the
rock. Thus for N data points:

The purpose of fitting the splines was not to obtain the sur
faces themselves, but rather their derivatives. There exists a
relatively simple method of calculating the derivatives of the
fitted surface in the two parametric directions once the poly
gon net matrix B has been obtained. In fact the derivatives
can be found by simple partial differentiation. Thus, the sec
ond derivatives with which we are concerned would be:

where x in this case is a knot vector and corresponds in no
way to the data points. The development of the knot vectors
will be discussed below. Calculation of the basis functions in
the W direction proceeds via the equation above modulo the
proper obvious substitions.

Here u and ware normalized paramtric directions. Q(u, w) is
the height of the surface at the particular parametric points. B
is the m x n matrix containing the polygon net vertices, and
Ni,k(U) and Mj,I(W) are the b-spline basis functions in the
respective parametric directions. The CoxdeBoor recursive
formula [20] defines these basis functions:

The general principle behind the construction ofb-spline sur
faces involves the definition of a net of polygon vertices.
These vertices are evenly spaced in the two parametric di
rections, in our case simply the x and y axes in the image.
The height at each net vertex determines the shape of the sur
face in and around that region. A surface is fit to this polygon
net via interpolation. Bezier and b-spline surfaces differ only
in the set of basis functions which are used to make this in
terpolation, and indeed, the bezier basis functions, known as
the Bernstein basis functions, are actually a degenerate set of
the more general and versatile b-spline basis functions. The
constants k and l define the order of the polynomial that is
to be fit to the surface in the u and W parametric directions,
respectively [20].
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Figure 8: (a) A hand-drawn image. It was designed to demonstrate the full-spectra of angularity and proceeds from greate·t
angularity (shape 1) to least (shape 4). (b) An image depicting the eHip es that were Ilt to the four hape. The re ult
surrounding the images, (c), (d), (e), and (f), are of tests conducted on image (a) using the four two-dimensional metrics
developed in this paper.

the object is perfectly smooth and spherical, for the second
derivative, which represents the change in the curvature of
the surface, would be O. As bumps, or rough edge' appear on
the rock, there will be greater and greater changes in curva
ture on average, and thus the rock's angularity will increase
according to this measure.

3. RESULTS

2-D TeST Images

A fated, our method were fir t applied in two-dimensions
to a number of test images specifically hand-designed to

demonstrate the principles of our metrics. Various images
were created emphasizing either the two roundnes measure ,
namely the angularity and the ellip e filting error, or the two
"sphericity" measures, being the eccentricity of the fit ellipses
and the aspect ratio that we dubbed ''2-D sphericity."

ROlIl/dness Test - A hand-designed image, along with the re
sults of its analysis, is depicted in Figure 8. The shapes in
the image were designed to proceed visually from highly an
gular to nearly round. Figure 8(c) shows that this trend is
reflected in the angularity measure. The high incidence of
sharp corners in the first shape combined with the existence
of long flat regions makes for a very wide 'pread di ·tribution
of in cribable angle values. Thus, the angularity measure was
driven up to 58.7734. Shape 1 on the other hand consists of
much smoother curves, most of which have similar degrees
of curvature, granting it a very narrow distribution of inscrib
able angle values and thus a relatively low angluarity core of
15.7935. The measure not only provides a relative ranking,

but also gives an idea of the similarities between shapes. As
wa to be expected by visual inspection, shapes 3 and 4 were
perceived as being much more similar in angularity than, for
in tance, hape 1 and 2.

The ellipse fitting error measure concurred with the angu
larity measure, displaying the obvious trend (Figure 8 (d)).
An ellipse fit to a rounded shape should clearly not create
a great an error a one fit to an extremely angular hape re
plete with jagged edges and corners. Thus, shape 4's ellipse
was fit with a total error of only 1.1258 while the ellipse fit
to shape I exhibited a much greater error of 64.3312. This
mea 'ure al '0 provide information about the similarity be
tween hapes. Once again supporting the angularity measure,
shapes 3 and 4 showed errors more similar to one another
than did hape 1 and 2.

Sphericity Te t - An image pecifically created to demon
strate the accuracy of the two phericity measure i depicted
in Figure 9 along with its analysis. The image was crafted to
proceed from a highly oblong shape to a nearly circular one.

Thi trend wa accurately perceived by the 2-D sphericity
mea 'ure (Figure 9 (f)). This measure, which once again is
ba ieally a mea ure of the shape's aspect ratio, was a mere
0.19332 for the thin and narrow shape I, but reached 0.95204
for shape 4. This latter number being so near to one indicated
that shape 4 was almost perf ctly circular. The measure deter
mined not only a relative ranking of the shape's 2-D spheric
ities, but also a concrete measure of their similarities to one
another. The fir t two hape are much more alike to each
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Figure 9: (a) A hand-drawn image. It was de igned to demonstrate the fUll-spectra of two-dimensional sphericity and proceed
from least sphericity (shape 1) to greatest (shape 4). (b) This image depict· the ellipses that were fit to the four shapes. The
re ult ulTounding the images, (c), (d), (e), and (f), are of te ts conducted on the image (a) u ing the four two-dimen ional
metrics developed in this paper.

other than they are to the final two, and this is indicated by the
fact that hape I and shape 2 are eparated from each other
by only 2.4 percent of the measure's range, while hape 2 is
eparated from hape 3 by over 50 percent of the mea ure'

range.

The eccentricity of the fit ellipses also gave an indication of
the desired trend (Figure 9(e)). Shape I exhibited a low 0.1 21
while the circular shape 4 exhibited a much greater 0.89432.
As with the other measures, similarity between shape can be
determined using the eccentricity of the ellipses. Shape I and
shape 2 are separated from each other by only 2.7 percent of
the measure' range while shape 2 and shape 3 are separated
by almost 39 percent of the range.

Consistency AclVss Views

After demonstrating the measures on synthetic images, we
applied them measures to real world images. In this experi
ment, we wished to determine the behavior of the measure
for image of the arne et of rock taken from different view
points.

For this task, we used a series of images (Figure 10) contain
ing three rocks found in JPL s Mars Yard taken from different
viewing angles. Steroe pairs of images were taken, and there
fore range data was available upon which three-dimensional
techniques could also be applied. W present here only the
results of the three roundness-type measures.

2-D Angularity I
~ ROCK I I ROCK 2 I ROCK 3

VIEW 1 23.0534 13.3979 10.39
VlEW2 14.7065 13.9349 11.7136
VIEW3 17.4215 16.6785 12.7794
VIEW 4 15.6481 10.3421 9.5956

Table I: The two-dimen ional angularity re ult mea ured on
the four images shown in Figure 10.

2-D Ellipse Fitting Errol'
- ROCK 1 ROCK 2 ROCK 3

VIEW I 34.1598 13.7104 5.9839
VIEW2 13.3644 10.6528 3.595
VI W3 17.3099 15.9838 3.717
VIEW 4 10.3388 5.6494 1.8918

Table 2: The two-dimensional ellipse fitting elTor results
measured on the four images shown in Figure 10.

What <.:an be ob'erved from tables 1,2, and 3 is that these
measure determine trends in angularity among real world
image. All measures indicate that rock 1 was the most
angular of the three, followed by rock 2 and then rock 3.
Both of the two-dimensional measures, as well as the three
dimensional angularity measure, exhibited this trend which is
evident from visual inspection.

Furthermore, what can be seen in the tables is that the mea
ures were able to identify this trend regardless of the angle



Angle I Angle 2 Angle 3 Angle 4

Figure 10: These four images were taken using two stereo-mounted digital cameras in the JPL Mars yard. All four images
depict the same three rocks, each image diH·ering only in camera angle. Tests were conducted on these four images to test the
consistency of the developed metrics. Visually, the rocks proceed in angularity from greatest (rock I) to least (rock 3).

Image i12469255101- The image in Figure II (a) is of a por
tion of the Martian Rock Garden near the Pathfinder landing
site and features the noted rocks Flat Top, labelled 3, Little
Flat Top, labelled 4, and Stimpy, labelled 5. Flat Top and
Little Flat Top are both relatively smooth and box-like in ap
pearance while Stimpy is much rougher and more angular in
texture, though nearly circular in two-dimensional shape in
this particular image.

Close Analysis ofTwo Sojoumer Images

In our final experiment, we examined a number of Martian
images returned by the Sojourner rover to determine how well
our measures could perform on them. The analysis of two
such images is described in detail here. A summary of the
results for seven images is provided in the next section.

The two-dimensional sphericity measures (Figures 11 (e) and
11 (g)) al a concurred in their findings in regard to the three
rocks. Stimpy most resembles a circle as is shown by its
greater score in both the eccentricity measure and the spheric
ity measure. Little Flat Top on the other hand was found at the
bottom of the rankings due to its short, oblong appearance.
Flat Top was so nearly square that its aspect ratio and the ec-

First examining the two-dimensional analysis of these three
particular rocks, it is seen that the two-dimensional round
ne s measures, the angularity and the ellipse fitting error, per
formed reasonably well. As can be seen from the segmenta
tion image in Figure II (b), Stimpy (rock 5) has by far the
smoothest outline according to the two-dimensional image,
and so its angularity measure is a mere 12.1069. (Figure
II (e» Flat Top (rock 3) and Little Flat Top (rock 4), 011 the
other hand, have very jagged outlines and so their scores are
more than double that of Stimpy. The ellipse fitting error re
sults (Figure 11 (f)) display the same relative ranking. The
figures are extremely compelling in fact, with Stimpy mea
suring only 2.87 and Little Flat Top topping the list with a
much greater 9.8382. This re ult indicates the squarish out
lines of the two Flat Tops which created large errors when
these 'square pegs' were fit with 'round holes.' It is interest
ing to note that these results are in line with the characteriza
tion' provided in [21.

3-D Angularity I
~ ROCK 1 I ROCK 2 I ROCK 3

VIEW 1 61.9156 24.9738 2.1585
VIEW 3 11.0621 6.0789 1.3419
VIEW 4 0.9509 0.3168 0.2364

from which the image was taken and in what position or order
the rocks were situated. Rock 1 is clearly much more angu
lar than the other two in every view and with regard to every
measure while rock 3 is always the lea t angular.

Table 3: The three-dimensional angularity results measured
on three of the four images shown in Figure 10.

One of the most disadvantage of the mea 'ures which can
be seen in table 3 is the variability between image viewed
from different angles. While the techniques can rank vari
ous rocks and shapes within a single image according to their
relative angularity, there is a great deal of variation in the ab
solute values of these mea ures between images taken from
different angles. However, it is interesting to note that in thi .
example the mea ure often remain table relatively from im
age to image. That is, for instance, in Table 1 it can b cal
culated that from angle 2 rock 2 is 94.75 percent as angular
as rock 1 while rock 3 is 79.65 percent as angular as rock 1.
From angle 3, it can be shown that rock 2 i 95.74 percent
as angular as rock 1 and rock 3 is 73.35 percent as angular
a rock 1. The close correlation of these results may indicate
that in some cases each rock is identified with similar rel
ative angularity acro image, but that merely the absolute
values of the measures are fluctuating. Due to this fact, it is
possible that the variability is being caused by some system
atic variability among the images themselves. For instance,
deeper shadows in some images may make rocks appear to be
more angular and recessed than they would from other light
ing angles. Rock that are not symmetric would be expected
to have different responses to shape measures when viewed
from different angles, and this may account for the variability
noted here. Despite this disadvantage, the measures provides
a method by which the relative roundne. s of the rocks within
an image can be catalogued.
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Figure 11: The first image hown here (a) is taken from the Martian Rock Garden and features the rocks Flat Top, Little Flat
Top, and Stimpy, rock 3,4, and 5, re pectively. The econd image (b) is the adapted result of the rock segmentation procedure,
and the third image (c) shows the ellipses fit to the rocks. From the results surrounding the image, (d) - U), it can be een that
the metrics were able to properly rank the three named rocks according to the seven different properties measured.

centricity of the ellipse that wa fit to it were much closer to
mimicking the round Stimpy than the oblong Little Flat Top.

In three dimensions, the measures also gave satifying result .
The three-dimensional roundne mea ure, a wa tated, at
tempts to measure fine scale features and roughnesses in the
texture of the rock. As such, the relatively smooth Flat Tops
exhibited lower three-dimensional angularity scores than the
much rougher Stimpy whose peak i cracked and broken (Fig
ures II (h) and II U)). Finally, the sphericity score again
reflects the round, ball ish nature of Stimpy and the squar
ish box-like nature of the Flat Tops. Stimpy has the highest
phericity score of the three (Figure II (i)).

It should be remarked here that the two-dimensional mea
sures and the three dimensional measures often do not draw
the same conclusions. Thi is not unexpected as the two
techniques are working with different data and using dif
ferent criteria. The two-dimensional angularity core rate
the roughness of the outline of the rock segmented frOm the
background image while the three-dimensional score rate the
roughness of the surface of the rock glean d from tel' 0

graphically created range data. Two-dimensional sphericity

is purely a mea ure of how circular the outline is opposed
to three-dimensional sphericity which takes into aCCOUnL the
spherical nature of the rock 'urface for which data is avail
able.

IlIIage il246924795l- The imag in Figure 12(a) was also
taken in the Martian Rock Garden and features the rocks
Bamm-Bamm, labelled rock 5 here, and Flute Top, labelled
rock 6. Flute Top is a broad, low rock nearly rectangular in
shape with a pocked, fluted U1face. Bamm-Bamm on the
other hand is a taller, more spherical rock with a highly pitted
surface. The other rock that we will include in our discus
sion, we believe is unnamed. Rock 4 appears to be of a more
oblong shape with a realtively smooth urface.

Beginning with the two-dimensional analysis, it can be seen
that the roundness measures performed accurately. The out
line of Flute Top with its almost 90 degree comer, its two
flat sides (due to image edge effects unf0l1unately), and its
one rounded arc scored much higher on both the angularity
measure (Figure 12(d)) and the ellipse titling error measure
(Figur 12(f). Bamm Bumm' outline contain a number of
protrusions which gave it the second highest rankings of the
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Figure 12: The fir t image hown here (a) is taken from the Martian Rock Garden and features the rocks Bamm-Bamm and
Flute Top, 1'0 k 5 and 6, re pectively. The second image (b) is the adapted re ult of the rock segmentation procedure, and the
third image (c) shows the ellipses fit to the rock. The re ults surrounding the image, (d) - (j), show that the metrics can be
used rank the rocks in the image according to the de ired properties.

three rocks. Rock 4's outline has no real corners and is rela
tively smooth, and so it wa.. correctly ranked lower than the
other two rocks in both angularity and ellipse fitting error.
The phericity mea ure in two dimen ions (Figures l2(e)
and 12 (g)) further howed that whi h was expe ted. with
the outline of Flute Top being rated mo t oblong of the three
rock.

In three-dimensions, the textures of the three rock' arc
categorized well by the angularity measure (Figure 12 (i)).
Bamm-Barnm, as was said before, has very deep scars upon
its surface and 0 wa given the highest angularity score,
0.6977. Flute Top was a clo c 'ccond, it name ake flute
giving it a con iderable core of 0.59789. Rock 4, of cour e,
is generally mooth, and so it angularity wa rated at a much
lower 0.16873.

a spheroid. Since the broad, low Flute Top is not a spheroid,
it received error not only from the small surface deviations
that we wished to mea ure, but from the fact that we were
allempting to tit an ellipsoidal surface to a box-like one. In
this respect, the eHip oid fllting error may at times also be an
indicalOrofsphericity. Aside from this anomaly, the ellipsoid
filting error did manage to rank Rock 4 below Bamm-Bamm
which was indeed a success, Bamm-Bamm being the rougher
of the two.

Finally, upon examll1l11g the sphericity measure in three
dimen ion (Figure 12U)), it is een that Bamm-Bamm re
ceived the highe t core. Since it i the mo t pherical rock
present, this was to be expected. Rock 4 on the other hand
i noticably oblong, or football- haped, and a uch cored a
much lower 0.32505 for thi . measure.

The Ellipsoid filling errors (Figure 12 (h)) for this image bear
a moment' he itation. It will be noticed that Flute Top i
apparently ranked out of order by this measure. The rea. on
for thi is that the ellipsoid fitting error can best be used as a
mea ure of angularity if it i assumed that a rock i in general

Larger Scale Experilllell1Cllioll

Having shown that the technique perform well on the real
world Mars images, the next ta k was to determine how the
measures performed across a number of images. Figure 13
depicts seven of the Sojoumer images that were experimented
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Figure 13: The seven Sojourner image that we chose to analyze are depicted. The rocks used were randomly chosen and
numbered for convenience. The images are of well-known area in the Rock Garden near to Pathfinder's landing site.

upon and Tables 4 and 5 pre ent the umrnarized re ult of
trials conducted on the seven selected images. A number of
comments are worth making with regards to these results.

First, the results of these trials appear logical when examined
visually. For in tance, Bamm Bamm (rock 18) appears much
rougher than rock 20. This can also be een in the results by
comparing Bamm-Bamm's 0.609397 three-dimen ional an
gularity score to rock 20's much lower 0.386075, a ranking
also indicated by the two rocks' ellipsoid fitting error results,
two-dimensional angularity results, and ellip e fitting error
re ults. Other roundnes compari on could also be made,
such as between rock 10 and rock 15 or between rock 25
and rock 3, which would also show the validity of these mea
sures. Sphericity comparisons too, such a between rock 20
and rock 34 or between rock 25 and rock 27, show that thi
measure is capable of providing an accurate e timate of the
property it was designed to measure.

Al 0, even though, as was previously discussed, there may
ometimes be variation in the ab olute magnitude of the mea
ure from image to image due to uncontrolled conditions,

many other time the measures are able to tran late between
two images. For in tance, Bamm-Bamm appear in two dif
ferent images as both rock 13 and rock 18. ven though the
ame exact portion of the rock does not appear in both image

and as such the texture of the rock is not exactly the same, the
three-dimensional angularity measures are very imiliar (see

ranking in table 5). Table 5 provides another example of this
when we look at the two entries for Flat Top. Flat Top ap
pears in two images as rock 28 and rock 33, and these two
rocks are found right beside each other when the rocks are
ranked in order of increasing 3-D angularity.

4. CONCLUSIONS

In attempting to develop a technique by which an autOmated
rover could quantifiably classify the shape of a rock, seven
different metric were designed and implemented. In two di
mensions, a novel angularity mea ure was developed which
was augmented by a second measure, the ellipse fitting error.
These two combined were able to rank the relative round
ne of the rocks in an image each with a single quantifiable
value. Two metric were al a developed for two-dimensional
"sphericity" which both provided quantifiable information
about a rock's shape. In three dimensions, b-splines were
fit to tereographic range data, and the second derivatives
of these surface were calculated in order to obtain a single
value which characterized the roughness of a rock's surface.
This measure, too, was augmented by a measure of the er
ror incurred when fitling an ellipsoid to the range data which
yielded another method by which rock shape could be catego
rized. Finally, the approximate three-dimensional sphericity
of the rock wa' calculated by using the axes of the ellipsoid
which mo t clo ely approximated the data, giving one final
piece of information about the rock's morphology.



Rock ~ Eccentricity I Ellipse Error I 2-D Spher. I 2-D Angularity ~ Ellipsoid Error I 3-D Spher. I 3-D Angularity ~

1 0.7709 4.7732 0.9406 25.3614 2.247766 0.347240 0.422399
2 0.6093 10.8250 0.8210 23.3794 1.890625 0.683756 0.657316
3 0.7611 7.6759 0.8373 19.2507 2.400303 0.386774 0.821892
4 0.5962 1.7105 0.6875 17.5310 1.418393 0.475602 0.312241
5 0.5958 1.4084 0.8590 18.6152 2.083303 0.343053 0.109363
6 0.5934 2.6532 0.7547 22.7178 1.344599 0.385005 0.044230
7 0.4984 0.3033 0.5367 32.2256 1.217647 0.276988 0.029067

8-Geordi 0.7001 1.8496 0.7923 19.2399 0.886947 0.435276· 0.202186
9 0.3946 7.9468 0.6438 39.5486 3.016972 0.325360 0.136003
10 0.6912 3.9231 0.9235 18.5329 2.856531 0.340219 0.416247
11 0.5234 0.7188 0.6768 29.0932 1.525041 0.305956 0.097772
12 0.8680 1.4406 0.8692 16.0831 1.304538 0.325050 0.168728

13-Bamrn-Bamrn 0.9936 4.1663 0.9998 16.8530 1.787024 0.353856 0.697698
14-Flute Top 0.6810 11.6644 0.8554 25.6276 2.207544 0.331342 0.597888

15 0.7133 1.2959 0.7949 20.7757 1.408974 0.304719 0.146380
16 0.6635 18.0499 0.7044 25.4090 2.545179 0.402388 0.315480
17 0.5399 13.4197 0.7563 22.1386 6.222978 0.560251 2.627941

18-Bamrn-Bamrn 0.7596 13.5418 0.9229 29.2128 1.920781 0.410309 0.609397
19 0.7033 1.0721 0.7579 16.6921 3.748869 0.373221 0.216664
20 0.6264 7.4476 0.6141 19.9091 1.800542 0.300339 0.386075
21 0.4944 0.3937 0.5840 23.6669 2.072568 0.425216 0.472652
22 0.5231 1.3825 0.7004 17.5917 3.441577 0.402018 0.190660
23 0.5932 1.9163 0.7201 18.3508 3.399964 0.387495 0.184152

24-Garrak 0.5097 7.7493 0.6507 11.1990 4.208261 0.342912 1.928998
25 0.8229 8.6078 0.9345 24.3577 1.983339 0.246502 0.449888
26 0.5954 2.0791 0.8771 19.7870 2.051381 0.404842 0.134221
27 0.5774 2.6633 0.5730 21.0202 2.377902 0.531265 0.443395

28-FlatTop 0.7709 9.6565 0.8055 25.3910 5.223523 0.419107 1.675122
29-Lil Flat Top 0.4878 9.8382 0.2535 28.1545 4.904570 0.450554 0.645142

30-Stimpy 0.8396 2.8700 0.8418 12.1069 5.262979 0.454490 2.733804
31 0.8439 2.3033 0.7825 25.1289 0.888724 0.469771 0.080381
32 0.8303 2.8999 0.9616 19.7731 0.985993 0.351717 0.144336

33-Flat Top 0.9718 12.9351 0.9669 28.2990 2.739044 0.506139 1.321446
34 0.4630 4.1486 0.4595 25.7884 2.536417 0.456645 0.340638
35 0.4768 2.8733 0.4767 18.7559 5.180646 0.448013 0.451869
36 0.6960 3.8376 0.5172 31.6127 1.590757 0.275935 0.083214

37-Grommit 0.9677 3.9685 0.9954 10.2858 2.729352 0.334685 2.976763
38-Mohawk 0.7524 4.6296 0.7677 23.2842 2.990787 0.380610 0.769326

Table 4: This table shows the results of experiments conducted on the seven selected Martian Rock Garden images. A total of
38 rocks were chosen, and all seven metrics developed in this paper were applied to each rock.



U Rock I 3-D Angularity U

7 0.029067
6 0.044230

31 0.080381
36 0.083214
11 0.097772
5 0.109363
26 0.134221
9 0.136003

32 0.144336
15 0.146380
12 0.168728
23 0.184152
22 0.190660
8 0.202186
19 0.216664
4 0.312241
16 0.315480
34 0.340638
20 0.386075
10 0.416247
1 0.422399

27 0.443395
25 0.449888
35 0.451869
21 0.472652
14 0.597888
18 0.609397
29 0.645142
2 0.657316
13 0.697698
38 0.769326
3 0.821892

33 1.321446
28 1.675122
24 1.928998
17 2.627941
30 2.733804
37 2.976763

Table 5: The 38 Martian Rock Garden rocks from the seven
selected images are here ranked in order of increasing 3-D
angularity.

When utilized together, the techniques developed may pro
vide a powerful tool to help future automated rovers to not
only see the surface of a planet, but to understand it. This
in turn could aid in the prioritization of data collection and
downlinking which would serve to increase mission produc
tivity and scientific return.
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