Optical Techniques for Low-Noise Microwave Frequency Sources

Lute Maleki
Quantum Sciences and Technology Group
Jet Propulsion Laboratory
California Institute of Technology
Lute.Maleki@jpl.nasa.gov

Outline

- Why Optical Techniques
 - What does a high performance oscillator require
 - Shortcomings of conventional techniques
 - Advantages of optical techniques
- Wavemixing: Advantages and Disadvantages
- Wavemixing with Feedback: The OEO
- Feedback in both loops: COEO
- Sate of the Art and Future Prospects
Oscillator Theory (Leeson Model)

A: noiseless amplifier
b: resonator with $Q = \frac{v_o}{AV}$

Frequency shift due to a phase deviation $\Delta \phi$:

$$\frac{\Delta f}{f_o} = \frac{\Delta \phi}{2Q}$$

Loop phase noise spectrum $S_\phi(f)$

Within the resonator bandwidth, the oscillator phase noise spectrum

$$S_\phi^w(f) = \frac{1}{f^2} \left(\frac{v_o}{2Q} \right)^2 S_\phi(f)$$

Outside the resonator bandwidth:

$$S_\phi^o(f) = S_\phi(f)$$

Leeson model

$$S_\phi^w(f) = \left[1 + \frac{1}{f^2} \left(\frac{v_o}{2Q} \right)^2 \right] S_\phi(f)$$

Leeson frequency $f_L = \frac{v_o}{2Q}$

Conventional Approaches for High performance Microwave Oscillators

- Start with a good quartz oscillator at ~ 100 MHz and multiply up
 - Noise also multiplies at 20 logN with N the multiplication factor
 - Usually complex chains, requiring low noise amplifiers, mixers, etc.
- Use a high-Q microwave cavity
 - Q degrades with frequency (QF~ a constant)
 - High Q cavities sensitive to environmental perturbations
- Highest spectral purity at $f > 10$ GHz obtained only sapphire or air-gap cavities: large power consumption, and large size (shoe-box and larger)
- Susceptible to EMI
- Can't meet high end applications' requirements for temperature stability, acceleration sensitivity, etc. without adding to mass/size
Why Optical Techniques

- Microwave signal is generated by photomixing of two or more optical frequencies, or sidebands
 - Not limited by RF components (except amplifiers)
 - Can be made at any microwave frequency
 - Approaches available for tuning with high performance optical filters
- Loss for these sidebands is about the same regardless of the sideband frequency, thus Q does not degrade
- Optical guides, cavities and filters have intrinsically lower loss than microwave counterparts
- Because of the small optical wavelengths, optical devices are intrinsically small

Basic Photonic RF links

Directly modulated Link
RF signal directly drives the laser

Externally modulated link
RF signal drives an E/O modulator external to the laser

Lower dynamic range
most CATV systems

High dynamic range
High performance systems
Commonly used lasers for RF systems

- Distributed Bragg Reflector (DBR) Laser
 - Bragg gratings are narrow band reflectors
 - Optical feedback through grating reflection
 - Single/multimode operation

- Diode-pumped solid-state laser
 - Solid-state gain medium pumped by diode lasers
 - Narrow spectral width
 - Lowest noise
 - Most reliable
 - Less reliable

- Fabry-Perot laser (F-P laser)
 - Optical feedback provided by the end mirrors
 - Multi-longitudinal modes
 - Higher noise due to mode competition

- Distributed feedback laser (DFB laser)
 - Optical feedback provided by the grating on top of the gain medium
 - Single-longitudinal mode
 - Lower noise

Commonly used Photodetectors

- InGaAs PIN photodiodes (0.8 - 1.7 um)
 - High responsivity: up to 0.95 A/W commercially available
 - High saturation power: up to 15 mW commercially available
 - High speed: up to 25 GHz commercially available
 - Lowest dark current: >0.1 nA (intrinsic noise)

- InGaAs Schottky photodiodes (0.95 - 1.65 um)
 - Lower responsivity: ~0.4 A/W
 - Highest speed: 60 GHz commercially available
 - Low saturation power: ~2 mW

- Ge PIN photodiodes (0.8 - 1.8 um)
 - High responsivity: ~0.9 A/W
 - Higher dark current: ~1 nA
Common Modulators

<table>
<thead>
<tr>
<th>Modulator Type</th>
<th>Optical Inputs</th>
<th>Optical Outputs</th>
<th>RF Input</th>
<th>Bandwidth</th>
<th>Linearity</th>
<th>Chirp</th>
<th>Drive Voltage</th>
<th>Insertion Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electro-absorption modulator</td>
<td>Optical in</td>
<td>Optical outs</td>
<td>RF in</td>
<td>Wide Bandwidth: up to 100 GHz</td>
<td>Good linearity</td>
<td>No chirp (good)</td>
<td>High drive voltage</td>
<td>High RF insertion loss</td>
</tr>
<tr>
<td>Mach-Zehnder modulator</td>
<td>Optical in</td>
<td>Optical outs</td>
<td>RF in</td>
<td>* Potential large Bandwidth</td>
<td>* Not well developed</td>
<td>* Not as good linearity</td>
<td>* Modulation chirp</td>
<td>* High drive voltage</td>
</tr>
<tr>
<td>Directional coupler modulator</td>
<td>Optical in</td>
<td>Optical outs</td>
<td>RF in</td>
<td>* Potential large Bandwidth</td>
<td>* Not well developed</td>
<td>* Not as good linearity</td>
<td>* Modulation chirp</td>
<td>* High drive voltage</td>
</tr>
<tr>
<td>Laser optical coupler modulator</td>
<td>Laser</td>
<td>Optical out</td>
<td>RF in</td>
<td>* Wideband width: > 60 GHz</td>
<td>* Easy integration with diode lasers</td>
<td>* Extremely compact</td>
<td>* Low drive voltage</td>
<td>Modulation chirp (not good)</td>
</tr>
</tbody>
</table>

Other photonic devices

- Directional couplers (ratio: 1 - 50%, backreflection < -65 dB)
- Isolators (insertion loss: < 0.6 dB, isolation > 40 dB)
- Circulators (insertion loss: < 0.8 dB, isolation > 40 dB)
- Polarizers (insertion loss: < 0.4 dB, backreflection < -60 dB)
- Polarization controllers (no loss, no backreflection)
- Filters (insertion loss < 0.5 dB, BW: 0.8 nm and up)
- Faraday polarization rotator and mirror
- Connectors: Physical contact (PC) and angled physical contact (APC)
 - loss < 0.25 dB, backreflection: PC < -40 dB, APC < -65 dB
- Fiber optic amplifiers: doped fiber & semiconductor
Photodetector as a mixer

Power Law Photodetector \(\Leftrightarrow \) acts as a mixer

\[
\text{Photocurrent } I = I_0 I_0^* \\
(Asin2\pi f_1 + Bsin2\pi f_2)^2 \Leftrightarrow (f_1 + f_2) \text{ and } (f_1 - f_2)
\]

Features of Signals Generated by Photomixing of Lasers

- Simple approach requiring two lasers with narrow linewidth
- Can be used with lasers that are phase, frequency, or injection locked
- Highly tunable over a long range
- The microwave beat signal limited by laser linewidth, set by lasers or by lock oscillators
Example of a High Frequency Beat Note generator

- Spontaneous emission is a noise with white frequency character, and a linewidth "Schalow-Townes" that is:

\[\Delta \nu_{ST} = \left(\frac{\alpha h c^2}{4 \pi} \right) \frac{T^2 \nu}{L^2 P_{out}} \]

\[\Delta \nu = \pi S_f^2 \], so that we have: \[L(f) = \frac{S_f^2}{2 f^2} \]
Opto-Electronic Feedback

- Start with a Photonic link

[Diagram of a Photonic link with PD and HA]

- Close the loop with gain and in phase

[Diagram of an Integrated Laser/Modulator with E/A modulator, Optical out, Laser, Fiber, and OEO]

OEO

- OEO is a generic device: various configurations of lasers, modulators, optical delays can be implemented
- OEO lends itself to diverse architectures (dual loop, Coupled OEO, etc) to support diverse applications
- OEO’s performance will improve with improved components (amplifiers, lasers, modulators, detectors, optical delays)
- OEO is ideal for opto-electronic integration
- The OEO signal is available both electrically, and on an optical carrier
- The COEO version generates short (sub-picosecond) optical pulses with lowest jitter
- OEO cab be phase locked, frequency locked, self locked, and used as a VCO
- The microresonator based OEO has a small size, low power consumption and intrinsically low acceleration sensitivity
- Unique microresonator based optical filter enables widely tunable oscillator
OEO vs. van der Pol Oscillator

van der Pol Oscillator

Opto-electronic Oscillator

kHz

Optical Fiber

Electrical path

Electrical output

Electrical signal splitter

Electrical Amplifier

Photodetector

High Q & High Frequency

Low Q & Low Frequency

kHz to > 70 GHz

LM, MTT 2005

OEO Features

- High Q resulting from the low loss fiber \(\Rightarrow\) Low phase noise
- High frequency resulting from fast photonic devices
- Widely tunable
- Both electrical & optical outputs \(\Rightarrow\) No E/O & O/E conversion required
- Can be locked to a master reference either optically or electrically
- Meets the requirements of RF photonics systems

LM, MTT 2005
Important characteristics of the OEO

- **High spectral purity** due to long optical storage time provided by the fiber in a closed loop.
- The quality factor (RF $Q \sim 10^5-10^6$) is proportional to the oscillation frequency, leading to **noise level performance that is independent of frequency**.
- The mode spacing is related to the inverse of loop trip time: $\approx \frac{c}{n \cdot L}$

 where c is the speed of light, n is the fiber refractive index and L is the fiber length.

OEO

Some significant features

- **OEO** is a generic device: various configurations of lasers, modulators, optical delays can be implemented
- **OEO** lends itself to various architectures (dual loop, Coupled OEO, etc) to support diverse applications
- **OEO**'s performance will improve with improved components (lasers, modulators, detectors, optical delays)
- **OEO** is ideal for opto-electronic integration
- The OEO signal is available both electrically, and on an optical carrier
- The COEO version generates short (sub-picosecond) mode locked optical pulses with lowest jitter
\[\Delta f = \frac{1}{2\pi} \frac{\delta}{t^2} \]

\[Q = \frac{f_0}{\Delta f} = \frac{2\pi r^2}{\delta} \]

\[S_{rf}(f) = \frac{\delta}{(\delta/2\pi)^2 + (2\pi)^2 (f/\tau)^2} \]

\[\delta = \rho_{in} G / P_o \]

\(\tau \): Loop time delay

\(f \): Frequency offset

\(P_o \): Oscillation Power

\(\rho_{in} \) = Input noise power density

\(\rho_{in} = \) Thermal noise + Shot noise + Laser RIN noise

* Noise decays with \(f \): 20 dB/Decade

* Noise decays with \(\tau \): 20 dB/Decade

* Noise is independent of oscillation frequency \(f_o \).

* \(Q \) increases with \(f_o \).

Noise Sources and Effect on Phase Noise

For OEO with 2km Fiber Length
Typical phase noise of an OEO (10GHz)

Other performance characteristics of the OEO

- Fixed frequency from MHz to 40GHz and beyond.
- Harmonics −40dBc.
- Frequency vs. temperature slope of −0.1ppm/°C.
- Allan deviation of 2⋅10^{-11} at 1sec.
- Frequency stability of 0.02ppm over 1 hour.
- Phase locking achievable through VCP.
- Vibration and acceleration sensitivity at 10^{-10}/g.
Multi-loop tunable OEO

YIG tunable OEO – phase noise

OEO phase noise level that is better by ~30dB compared with any commercial free running YIG tunable oscillator
Packaged OEO with Vibration Compensation

- Packaged OEO with vibration compensation (reduced the acceleration sensitivity).

Vibration Test Results (without fiber delay line compensation)	OEO 2.7 GHz, 1.1 km, 10 MHz, 20 °C, 14 °C			
1	0.123	0.050	32.755	32.324
3	0.050	0.040	33.755	32.948
4	0.050	0.040	32.845	31.857
5	0.050	0.040	33.845	33.857
Average	0.050	0.040	32.719	32.744

Phase Noise
(f_c=6.12GHz, with 4km fiber as the testing delay line)

Advantages:
* Dual electrical & optical outputs
* High spectral purity, low phase noise
* Frequency up to 100 GHz
* Compact & potentially low cost
* Tunable & VCO
* Eliminate external LO => lower cost

OEO and Optical distribution of Reference Signal

Advantages:
* Dual electrical & optical outputs
* High spectral purity, low phase noise
* Frequency up to 100 GHz
* Compact & potentially low cost
* Tunable & VCO
* Eliminate external LO => lower cost

No external LO needed

Transmitting

Receiving

53

LM, MTT 2005
Microsphere -- a low-loss photon trap, novel optical (micro)cavity

Whispering-gallery modes - closed circular waves under total internal reflection

(Term by J.W.S. Rayleigh, analogy to acoustic modes in the gallery of St Paul cathedral)

Sustained in any axisymmetric dielectric body with \(R \geq 2 \lambda \)

- low material loss (transparent material, e.g. fiber grade silica)
- low bending loss (\(R \gg 2 \lambda \))
- low scattering loss (TIR always under grazing incidence
 + molecular-size surface roughness)

Quality-factor \(Q = \frac{\lambda}{\Delta \lambda_{\text{RES}}} \)	\(\text{up to } \sim 10^{10} \)
Photon lifetime \(\tau = \frac{\lambda Q}{2 \pi c} \)	\(\text{up to } \sim 3 \mu s \)
(cavity ringdown time)	

Visualization of WG mode field by residual scattering in silica microsphere, V.S. Ilchenko et al. OptComun. 113, p.133(1994)

Opto-electronic Oscillator on Chip

Electro-absorption modulator section

Gain section

Microsphere

HR

RF output

Optical output

A gap to induce reflection

Gain section

Photodetector (reversely biased electro-absorption modulator)

LM, MTT 2005
COEO

Opto-electronic oscillator (OEO): ultra-low phase noise

Coupled OEO (COEO)

Er+ doped fiber amplifier (EDFA) mode-locked laser: ps pulse train generation

Approach 1: Direct phase-locked MLL

Approach 2: Cavity-based OEO: higher stability possible

Optical-microwave frequency stability transfer

Ultra-low jitter optical pulse trains

Applications:

Ultra-fast fiber communication

Fast sampling and optical analog-to-digital conversion

Precision optical measurement and opto-electronic material research

Ultra-low phase noise amplifier

Mode-locked Laser (MLL), Opto-electronic Oscillator (OEO) and Coupled Opto-electronic Oscillator (COEO)

10 GHz low phase noise microwave

(a) COEO

(b) OEO

LM, MTT 2005
Locking modes

Picosecond pulse

2 ps pulse every ~100 ps
Coupled opto-electronic oscillator

Measured Phase Noise of the COEO
Small Signal and off-Resonance Responses

Figure 2. The measured microwave frequency response of the phase step. A Lorentzian fit gives 8.5 kHz FWHM.

Experimental Verification of Leeson Frequency

LM, MTT 2005
Noises in the Mode-locked Laser As Filter

Noises in the mode-locked laser as a filter are:
1. Photon shot noise power $S_p(f) = 1/N$. Typical optical power at detector 1 mW, $N=10^{16}$, $S_p(f) = -160$ dBc.
2. Spontaneous emission, one photon per cycle/Hz per second, $N_0 = 1.3 \times 10^{15}$ W/Hz = -160 dBm/Hz.
3. For comparison, amplifier thermal noise $K_T = -174$ dBm/Hz.

Equivalent phase noise of the MLL laser as an rf filter:
The regenerative process in the loop amplifies the spontaneous emission by G, within the regenerative bandwidth with the gain-bandwidth product a constant Δf.

$S_{\phi}(f) = (\Delta f/\Delta f_{\phi})^2$

Relative high circulating optical power and free of flicker noise.

Analysis of the Measured Oscillator Phase Noise

Phase noise as a function of frequency is shown with different components: shot noise, amplifier flicker (measured), and ASE. The $1/f$ component is prominent at low frequencies.

LM, MIT 2005
The frequency of a mode is simply
\[F_N = N \times f_{\text{rep}} - \frac{f_0}{\tau_{\text{rep}}} \]

where \(N \) is an integer and \(f_0 \) is the free spectral range.

\[f_0 \approx 1000 \text{ MHz} \]

\(f_r = 1/\tau_{\text{rep}} \)
Optical Clock with a Femtosecond Synthesizer

IEEE JQE, Dec (2001)
IEEE JSTQE (Apr 2003)

Hyper-parametric oscillations in fluorite resonators

Selection rules
FWM: TE-TE
SRS: TE-TM

Optical spectrum

\[Q = 2 \times 10^{10} \text{ at } \lambda = 1310 \text{ nm} \]
Microwave beat note observed

- Second-order \((2\Omega_{\text{SR}}) \) beat note is insignificant
- Raman scattering is not observed (expected at 322 cm\(^{-1}\))

A.A. Savchenkov et al.,
Submitted to PRL (2004)

Noise sources in photonic systems

- Thermal noise: \(kT \)
- Shot noise: \(2\Delta R \)
- Laser RIN (relative intensity noise): \(<\Delta P^2>/P^2 \)
- \(1/f \) RIN (at \(< 10 \) kHz)
- Relaxation oscillation RIN peak
- Interferometric noise
- Double Rayleigh scattering noise
- Brillouin scattering caused noise
- Fiber dispersion mediated noise
- Fiber thermal noise
White Noise

![White Noise Graph]

1/f RIN & Relaxation Oscillation RIN

![1/f RIN & Relaxation Oscillation Graph]

* The low frequency 1/f noise & relaxation oscillation peak will be multiplied up by the modulator & affect the signal.
Fiber thermal fluctuation noise

Just like Johnson's noise, fiber's refractive index fluctuates with kT.

First studied by fiber gyro researchers.

For 9/125 um fiber @ 1.3 um:

$$\frac{\Delta f}{f} = \frac{\Delta L}{L} \sim 10^{-12}/L^{1/2}$$

$L = 100$ m $\Rightarrow \Delta f/f \sim 10^{-13}$

$L = 10$ km $\Rightarrow \Delta f/f \sim 10^{-14}$

Fiber dispersion mediated noise

Dispersion: different light frequency "see" different fiber lengths.

Optical frequency fluctuation \Rightarrow RF phase fluctuation.

For standard single mode fiber, 1 nm away from zero dispersion:

$$\frac{\Delta f}{f} = \frac{\Delta L}{L} \sim 0.6 \times 10^{-5} \Delta \nu/\nu$$

$\Delta \nu/\nu$: laser frequency stability.

$\Delta \nu/\nu = 10^{-10} \Rightarrow \Delta f/f = 6 \times 10^{-15}$

APPENDIX

LM. MTT 2005
Advantages of Optical Fiber

- Wide Bandwidth \Rightarrow High frequency
 - 20 MHz-km (multimode) to >100 GHz-km (single mode)
 - With wavelength division multiplexing, >1 Tbps over 600 km demonstrated.
- Low Loss \Rightarrow High Q delay line for low phase noise
 - ~0.5 dB/km @ 1300 nm, 0.2 dB/km @ 1550 nm
- Low thermal-induced delay change \Rightarrow High stability
 - Single mode fiber: 7 ppm/^\circ C, Special fiber: <0.1 ppm/^\circ C
- No RFI or EMI problems \Rightarrow Immune to spurious noise sources
- Electrical isolation between ends
- No ground loops
- Small, lightweight, & corrosion resistant
- Material is plentiful & inexpensive
- Cost/capacity ratio is extremely low

How Fiber Works

Snell Law

Reflection

Mirror

P_0 \Rightarrow Loss

All mirrored surfaces have loss!!

Total Internal Reflection

P_0 Critical angle

n_1 (Low index of refraction)

n_2 (High index of refraction)

No Loss!!

$* \quad n = c/v$

c = the speed of light in a vacuum (3×10^8 m/s)

v = the speed of light in the material ($\sim 2 \times 10^8$ m/s in glass)

$* \quad$ The index of refraction of glass can be changed by adding impurities (doping)
Basics of Optical Fiber

History

- 1910: Concept conceived by Hondros & Debye
- 1915: Existence of a dielectrically guided wave demonstrated by Zahn, Ruter & Schriever
- 1959: Waveguide modes in optical fiber observed by Snitzer & Hicks.
- 1965: Fibers with a loss less than 20-dB/km for fiber optic communications proposed by Kao.
- 1970: Practical fiber with 20 dB/km loss announced by Kapron, Keck, & Maurer.
- 1972: 4 dB/km loss fiber developed by Corning.
- Today: Fiber has a loss of 0.2 dB/km @ 1550 nm