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ABSTRACT 

We present maximum-likelihood (ML) coherent and 
noncoherent classifiers for discriminating between NRZ 
and Manchester coded (biphase-L) data formats for binary 
phase-shift-keying (BPSK) modulation. Such classification 
of the data format is an essential element of so-called 
autonomous  software defined radio (SDR) receivers 
(similar to so-called cognitive SDR receivers in the 
military application) where it is desired that the receiver 
perform each of its functions by extracting the appropriate 
knowledge from the received signal and, if possible, with 
as little information of the other signal parameters as 
possible. Small and large SNR approximations to the ML 
classifiers are also proposed that lead to simpler 
implementation with comparable performance in their 
respective SNR regions. Numerical performance results 
obtained by a combination of computer simulation and, 
wherever possible, theoretical analyses, are presented and 
comparisons are made among the various configurations 
based on the probability of misclassification as a 
performance criterion. Extensions to other modulations 
such as QPSK are readily accomplished using the same 
methods described in the paper. 

INTRODUCTION 

In autonomous radio operation, aside from classifying the 
modulation type, e.g, deciding between BPSK and QPSK, 
it is also desirable to have an algorithm for choosing the 
data format, e.g., NRZ versus Manchester encoding. In the 
absence of subcarriers, when NRZ is employed the carrier 
must be fully suppressed whereas Manchester coding 
allows for the possibility of a residual carrier, if desired. 
With this consideration in mind, there exist two different 
scenarios. In one case, independent of the data format, the 
modulations are assumed to be fully suppressed carrier. In 
the other case, which due to space limitations will be not 
be considered here, an NRZ data format is always used on 
a fully suppressed carrier modulation whereas a residual 

carrier modulation always employs Manchester coded 
data. In this case, the data format classification algorithm 
and its performance will clearly be a function of the 
moduiation index, i.e., the aIlocation of the power to the 
discrete and data-modulated signal components. In this 
paper, we derive the maximum-Iikelihood (ML)-based 
data format classification algorithms as well as reduced 
complexity versions of them obtained by applying suitable 
approximations of the nonlinearities resulting from the ML 
formulation. As in previous classification problems of this 
type, we shall first assume that all other system parameters 
are known. Following this, we relax the assumption of 
known carrier phase and, as was done for the modulation 
classification investigation, we shail consider the 
noncoherent version of the ML classifiers. Numerical 
performance evaluation will be obtained by computer 
simulations and, wherever possible, by theoretical analyses 
to verify the simulation results. 

MAXIMUM-LIKELIHOOD COHERENT 
CLASSIFIER OF DATA FORMAT FOR BPSK 

We begin by considering suppressed carrier BPSK 
modulation and a choice between NRZ and Manchester 
encoding. Thus, the received signal is given by 

where P is the signal power, {a,} is the sequence of 
binary independent, identically distributed (i.i.d.) data 
taking on values -+I with equal probability, p ( t )  is the 
pulse shape (the item to be classified), wc is the radian 
carrier frequency and n(t) is a bandpass additive white 
Gaussian noise (AWGN) source with single-sided power 
spectral density No WMz. Based on the above AWGN 
model, then for an observation of K, bit intervals, the 
conditional likelihood function (CLF) is given by 



where C is a constant that has no bearing on the 
classification. Averaging over the i.i.d. data sequence 
gives 

Finally, taking the logarithm of (3), we obtain the log- 
likelihood function (LLF) 

K,-l 7m [ L + I X  
A 4 in p(r(i)lp(t))  = c in C o s h ( L ~ G  r ( t )p ( t  - kT)cosmcfdf)(4) 

i = o  Ii'" i 
where we have ignored the additive constant In C. 

For NRZ data, p( t )  is a unit rectangular pulse of 
duration T,, i.e, 

i 1 , O l t l T ,  

'I(') = 0, otherwise 
For Manchester encoded data, p(r) is a unit square-wave 
pulse of duration T,, i.e, 

Thus, defining the received obsemables 

(1)  4fkt')' ~ ( t ) ~ ~  ( r  - k q )  cos mCtdt 
ni-, 

( k + 1 / 2 ) T ,  (k t l )T ,  1 r( t )  cos oCtdt - j r ( f )  cos w,idt; 1 = 2 
(k+llZ)T, 

then a classification choice between the two pulses shapes 
based on the LLF would be to choose Manchester if 

Othenvise, choose NRZ. 

REDUCED COMPLEXITY DATA FORMAT BPSK 
CLASSIFIERS 

To simplify the form of the classification rule in (8), we 
replace the lncosh!.) function by its small and large 
argument approximations. In particular, 

x2 / 2; x small 
In cosh x E 

1x1 - In 2; x large (9) 

r ( t )  cos o,tdt 
k=O )i 

or, equivalently 
K -1 

(P+I)Tb 
r ( t )  cos w,fdtlk 

+1/2)T, 
r(z) cos wc.rdz < 0 (1 1) 

k =a 
For high SNR, (8) reduces to 
Kb-' (k+l12)Tb ( k + l ) c  

/lkp ~ ( f )  cos a C f d f  + 1 (k+1/2)T,  r ( f )  C O ~  0,fd4 
k-0  

(k+iiTb 
(1 2) 

r( t )  cos ocrdf  - (k+l /2)Tb r( t )  cos wcrdtl 
k = O  

Note rhai whiie the optimum classifier of (8) requires 
knowledge of SNR, the reduced-complexity classifiers of 
(10) and (12) do not. Figure 1 is a block diagram of the 
implementation of the low and high SNR classifiers 
defined by ( I  1) and (1 2). 

PROBABILITY OF MISCLASSIFICATION FOR 
COHERENT BPSK 

T o  illustrate the behavior of the misclassification 
probability, P,, with signal-to-noise ratio (SNR), we 
consider the low SNR case and evaluate first the 
probability of the event in (1 I )  given that the transmitted 
data sequence was in fact NRZ encoded. In particular, we 
recognize that given a particular data sequence of K, bits, 

k = 0,1, ..., K, - 1 are mutually independent and identically 
distributed (i.i.d.) Gaussian random variables (RVs). 
Thus, the LLF 

k=O 

is a special case of a quadratic form of real Gaussian RVs 
and the probability of the event in (I I), namely, Pr(D < 0) 
can be evaluated in closed form by applying the results in 
[I ,  Appendix B] and the additional simplification of these 
in [2, Appendix 9A]. To see this connection, we define the 
complex Gaussian RVs Xk = X,, + jX,,k+l, < = qk + jYL+,. 

Then, the complex quadratic form X , K  + x,*Y,. is equal 

to ~(x,Y,, + X,,,+,Y, ,,,, ). Arbitrarily assuming K, is 

even, then we can rewrite D of (13) as 
Thus, for low SNR, (8) simpIifies to 



To compute the probability of choosing NRZ 
( I 4 )  when in fact Manchester is the true encoding, we need to 

I(-0 

Comparing (14) with [I,  Eq. (B.l)] we see that the former 
is a special case of the latter corresponding to 
A = B = 0, C = 1 I 2 .  Specifically, making use of the first 
and second moments of X, and given by 

F, = = (ai + jakil).JP/8~ 

then from [2, Eq. (9A. I 5)J 

where Q, (a ,  b) is the kth-order Marcum Q-function and 

with 

Substituting (1 8) into (1 7) gives 

a = O . b = d m = d m  (19) 

However, 

Q*(b,O) = 1 
Thus, using (1 9) and (20) in (16) gives the desired result 

L 

Noting that 

then (21) hrther simplifies to 

evaluate Pr{D 2 0 )  = 1 - P ~ { D  < 0 )  when instead of ( I  5) 
we have 

Xk = (a* + ja;+, )my, 
V, = -(a, + j a , , ) m ~ ,  

Since the impact of the negative mean for in (24) is to 
reverse the sign of 5, in (Is), then we immediately 
conclude that for this case the values of a and b in (19) 
merely switch roIes, i.e., 

Substituting these values in (16) now gives 

which again simplifies to 

(27) 
Since (23) and (27) are identical, the average probability of 
mismatch, P, is then either of the two results. 

Illustrated in Fig. 2 are numerical results for the 
misclassification probability obtained by computer 
simulation for the optimum and reduced-complexity data 
format classifiers as given by (a), (11) and (12). Also 
illustrated are the numerical results obtained from the 
closed-form analytical solution given in (23) for the low 
SNR reduced-complexity scheme. As can be seen, the 
agreement between theoretical and simulated results is 
exact. Furthermore, the difference in performance 
between the optimum and reduced-cornplex~ty classifiers 
is quite small over a large range of SNRs. 

MAXIMUM-LIKELIHOOD NONCOHERENT 
CLASSIFIER OF DATA FORMAT FOR BPSK 

Here we assume that the carrier has a random phase, 8, 
that is unknown and uniformly distributed. Thus, the 
received signal of (1 ) is now modeled as 

and the corresponding CLF becomes 



At this point we have the option of first averaging over the 
random carrier phase and then the data or vice versa. 
Considering the first option, we start by rewriting (29) as 

p(r(t)I{an I* P ( ~ ? Q )  

4 -1 

C 
77 = tan-' ++---- 

C a,<, 
i = o  

Averaging over the carrier phase results in (ignoring 
constants) 

where I , ( . )  is the zero order modified Bessel function of 
the first kind. Unfortunately, the average over the data 
sequence cannot be obtained in closed form. Hence, the 
classification algorithm can only be stated as follows: 
Given that NRZ was transmitted, choose the Manchester 
format if 

where E{.) denotes expectation over the data sequence 
P 

a = (a,, a,, ..., a, ,) .  Otherwise, choose NRZ. 

Consider now the second option where we first 
ave rage  ove r  the  data s equence .  Then,  
P ( ~ ( ~ ) I P ( ~ I !  0) 

(33) 
Thus, a classification between NRZ and Manchester 
encoding would be based on a comparison of 

with 

To simplify matters, before averaging over the carrier 
phase, one must employ the approximations to the 
nonlinearities given in (9). In particular, for Iow SNR we 
have 

p(r(t)Ip(t)) 

where 

Thus. since 
' 2  r-  - 2% ~b 

cos 2qk = -, sin 277, = - 
rci + rrt. (36) 

T k  + <k 

we finally have 

where 
~ + I ) T &  

Y, 4 rck + jTqk = j:Tb ~ ( t ) ~ ( i  - k~~ )e jcrdt (38) 

Finally then, the classification decision rule analogous to 
(32) is: Given that NRZ data was transmitted, decide on 
Manchester coding if 

Equivalently, normalizing the observables to 

then (39'1 becomes 

Since we have already assumed low SNR in 
arriving at (41), we can further approximate the 



nonlinearities in that equation by their values for smali 
arguments. Retaining only linear terms, we arrive at the 
simplification 

or, equivalently 

which again does not require knowledge of SNR. On the 
other hand, if we retain second-order terms, then (41) 
simplifies to 

which is SNR-dependent. 
Expanding (43) in the form of (lo), we obtain 

which is the analogous result to ( I  1) for the coherent case. 
For high SNR, even after applying the 

approximations to the nonlinearities given in (9), it is still 
difficult to average over the random carrier phase. 
Instead, we take note of the resemblance between (46) and 
(1 1) for the low SNR case and propose an ad hoc complex 
equivalent to (12) for the noncoherent high SNR case, 
namely, 

Figure 3 is a block diagram of the implementation of the 
low and high SNR classifiers defined by (46) and (47). 

PROBABILITY OF MISCLASSIFICATION FOR 
NONCOHERENT BPSK 

To compute the probability of misclassification, we note 
that (46) is still made up of a sum of products of mutually 
independent real Gaussian RVs and thus can still be 
written in the form of (14) with twice as many terms, i.e., 

where now the complex Gaussian RVs are defined as 
X, = X,, + jX ,$,, Y,  = K ,  -t jx,. The means of the terms are 
given by 

Fk = < = a, (cos 8 - j sin ~) . \ IP /~T,  (49) 
whereas the variances and crosscorrelations are the same 
as in (15). Thus, since the magnitude of the means in (49) 
is reduced by a factor of f i  relative to that of the means 
in (15) ,  we conclude that the  probability of 
misclassification is obtained from (23) by replacing 
E, l No with E, l 2N0 and K, with 2K, resulting in 

(50) 
Fig. 4 illustrates numericaI results for the 

misclassification probability obtained by computer 
simulatioil for the low SNR and high SNR reduced- 
complexity data format classifiers as specified by (46) and 
(47), respectively, as well as the optimum classifier 
described by the comparison below Eq. (33). Also 
illustrated are the numerical results obtained from the 
closed-form analytical solution given in (50) for the low 
SNR reduced-complexity scheme (which are in exact 
agreement with the simulation results). As in the coherent 
case, the difference in performance between the low and 
high SNR reduced-complexity classifiers is again quite 
small over a large range of SNRs. Furthermore, we see 
here again that the performances of the approximate but 
simpler classification algorithms are in close proximity to 
that of the optimum one. Finally, comparison between the 
corresponding coherent and noncoherent classifiers is 
illustrated in Fig. 5 and reveals a penalty of approximately 
1 dB or less depending on the SNR. 
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