
Lessons Learned Implementing Multi-Mission Sequencing Software

l. Needels(l)

I!jJe/ Propulsion Lahora/or,v. .J800 Oak Grol'e Dr.. AI'S 30f-2jOD. Pasadena. CA, 91 j09-8099, US'A,
Laura. Needels@jp1.nasa.gol'

ABSTRACT

All of JPL's deep space miSSions rely on complex
sequencing (ground) software that is responsible for the
planning of science and engineering activities. checking
command syntax. checking mission and !light rules. and
translating the commands into packets which can be
uplinked to the spacecraft. The ground software is used
by operations teams for preliminary stages of sequence
design as well as final stages of sequence development.
In previous missions. significant effort was spent
validating the software since sequencing errors can
cause the spacecraft to enter fault protection or even
loss of spacecraft. Over the last decade. in an em)rt to
reduce costs and development time. the sequencing
software has been transformed into a multi-mission
formal.

This paper will describe the software and its uses to
provide context for its criticality. The different
approaches that have becn taken to implement the
software in a multi-mission format will be oullined.
The advantages and disadvantages as well as the lessons
learned during development and maintenance of these
different architectures will be discussed, Finally. the
use of multi-mission software in operations and the
lessons learned from using it will be discussed.

This paper will provide valuable information to
organizations exploring the use of multi-mission
software. regardless of whether the changc is to
minimize spacecraft ground software development time
or cost reduction. Similarly. the paper will provide
insight into some of the steps that can be taken during
software development and operational use that will
minimize difficulty later.

1. INTRODUCTION

During the cra of Faster. Better. Chcaper. in an effort to
reduce the costs associated with the planning and
sequencing portions of the software uscd in the uplink
process. JPL developed a multi-mission torm of
planning and sequencing software. The uplink software
is devcloped as two separate components. The multi­
mission "core" software provides. in a generic sense. the
capabi lity to perform the functions needed to support
the uplink process: planning and scheduling events.
checking mission and flight rules. monitoring resources.
command translation and "packeti/.ing" commands.

The "core" software is then '"adapted" to a project
specit1c mission. The "adaptation" part of the software
task involves providing the models I~)r activities needed
tor planning and scheduling. converting the Command
List lor the project into models that can be used t~)r

sequence checking. coding project and mission flight
rules and the modeling needed to support them. and
developing project blocks for repetitivc activities. This
soltware has been or is currently being used by Deep
Space I. TOPEX. JASON. Mars Global Surveyor. Mars
Odyssey. Gencsis. Stardust. Cassini. Spitzer (ftJrmerly
known as Space InfraRed Telescope Facility). NEAR.
Ulysses. Deep Impact. CONTOUR. MESSENGER.
DA WN. Mars Exploration Rovers. Phoenix. and Mars
Reconnaissance Orbiter.

At JPL. the software used to support the uplink process
is known as SEQ. and consists of about a dozen
different program sets. It is not neccssary t~)r a project
to use all of the SEQ programs. Interface specifications
for each program are well defined. and if a project
chooses to usc a non-SEQ program for one or more
parts of the system, it can easily be aceomplishcd.
Many projects use their own components in some part
of the uplink proccss. However. the SEQ software
covers the entire proccss from science and spacecraft
activity planning to radiation. In addition. the SEQ
system provides utility softwarc to help build inputs and
organize data for reviews,

At the front end. the component of SEQ software used
to perform science activity planning is the Scicnce
Opportunity Analyzer (SOA), SOA has a very user­
friendly interface that allows scientists and other
planners to exercise trade studics and preliminary
designs for science observations. Search engines are
available that will locate times of interest such as fly­
bys. how-shocks. occultations. anglcs. periapsis and
apparent diameter. Once these opportunities have heen
located. the user can design a specific observation (eg.
Continuous Scan. Roll Scan. Mosaic. Point at a Target).
Critieria such as the primary target. secondary target.
target otrsets. duration. primary obscrver. and secondary
ohserver are entered. Constraint chccking for activity
duration. distance. exclusion zones. and hardware limits
can also be excrcised hy SOA.

The SEQ component used to do engineering activity
planning and resource modeling is Activitv Plan



Generator (ApGen). ApGen allo\\'s the user. more oJlen
a mission planner or a spacecraft engineer. rather than a
scientist. to plan activities while monitoring resource
constraints. Desired activities might be Deep Space
Network (DSN) contacts. science activities. and general
engineering activities. The resources monitored might
be solid state recorder space. propellant. and battery
state of charge. ApGen also contains a scheduler which
\vill allow a user to define activities. some of which are
lixed in time (e.g. DSN contacts). and additional desired
activities. The scheduler will place activities on the
timeline so that resources are not violated. The
scheduler will also show which of the desired activities
could not be scheduled.

Sequence development and verification is done by
Sequence Generator (SeqGen), SeqGen otTers 3
distinct capabilities. The first is to help the user
generate sequences. A GUI is provided which assists
the user in choosing commands and implementing the
correct parameters. The second is to merge different
sequences to produce a single. master sequence. The
third is to provide checking of command syntax,
mission rules. and flight rules. At .lPL. SeqGen's
primary usc is for mission and Oight rule checking.
Historically. the mission and Oight rules checked by
SeqGen were more timing related. such as "The cathed
heaters must be turned on 5 minutes before the thrusters
arc fired." or "Onee the spacecraft has been launched.
the mission phase may never be set to pre-launch",
SeqGen has also been used for checking commands
against spacecraft states. such as "The command may be
used only while the spacecraft is nadir pointed:' or "The
command may not be issued while the spacecraft is in
eel ipse", However. more recently. SeqGen has also
been used to check for resource constraints using
models at the command level. An example is using an
externally provided power model to monitor the battery
state of charge. SeqGen creates a spacecraft sequence
file that contains the commands that will be sent to the
spaeecraJl.

Another SEQ program. Spacecra1i Language Interpreter
and Collector (SLINC) is used to translate the
commands into spacecraft readable binaries and
converts the sequences into packets. SUNC calls the
Command Translation Subsystem (CTS) program to
perform the command translation to bits.

Virtual Machine Language (VML) is a relatively new
development in SEQ. VML provides more llexibility in
commanding by offering such capabilities as waiting for
a spaceerall state to occur. rather than an absolute or
relative time to occur. VML consists of 3 components.
The first is the VML Flight Code (VMLFC) which is a
Flight Software component that offers the additional
bonus of standardizing the Flight/Ground interface. The

second is the Otl~Line Virtual Machine (OLVM) which
is a simulator which permits rapid checkout or
sequences. The third is the VML Compiler which
performs the translation needed to generatc the binaries
that will bc uplinked.

Prior to using SeqGen. an adapter can create or mcrge
the Seq(ien input spaeeeraH model information files
using a utility program called Sequence Adapter
(SeqAdapt). This program is also be used to check
model file syntax.

Another util ity program is called Sequence Review
(SeqReview). SeqReview can be used to manipulate
sequence products into a format that is easier to review
by stripping out unnecessary data or by reformatting or
reordering data.

The Adaptation team for the Core Software also
provides tools and scripts to the project that are useful in
the processing that occurs. Even though different
projects may have different processes. the Adaptation
team attempts to keep the scripts and tools identical so
that one version of the program exists in all areas.
Changes and corrections can then be made to a single
version of the script and pushed out to all projects,

2. LESSONS LEARNED DURING MULTI­
MISSION SOFTWARE DEVELOPMENT

Looking back over the last decade. with twenty-twenty
hindsight. many lessons have been learned about
developing multi-mission software. Below are eight
lessons that may be useful to other organizations.

2.1. Make plans for handling legacy
software

The first. and perhaps easiest. lesson to understand is
that early in the design process, the team should develop
a strategy for dealing with legacy software. There are
three components to this issue. First. mission needs do
evolve. Sometimes. new hardware forces a change. or
opens up opportunities for new techniques. Second. a
project may have a need to do something radically
different. Finally. many spacecraft are designed for
much longer lifetimes. These changes result in tv,'o
different considerations with legacy soJlware.

One item for consideration occurs when newer missions
no longer need an old piece of sotIvvare that is required
by an operational spacecraft. Often. the newer missions
use completely dilTerent software for that function.
SEQ has chosen to offer recompilations of the old
software under newer versions of the Operating System
as long as more than one project is using the software,
No new changes or bug fixes will be made to the
software, When only one project is using the software.



the software is turned over to the project and is no
longer supported.

The second issue that should be considered is when a
project chooses to no longer accept new versions of the
software. The project may. because of reduction in
financial resources or workforce shortages. simply
choose not to take the new version of software. Anothcr
reason might be that a project is in a critical phase and
may not want to risk introducing new software. The
strategy SEQ has decided to j~)llow is that it does not
require users to take new versions of software.
However, if the projects need any sort of change. such
as a bug fix. a ncw capability. or just a rccompilation for
a new version of the Opcrating System. it must take the
new software.

Regardless of the strategy an organization decides to
implement in these areas. it should decide early. and
make users aware of this position.

2.2. Develop a strategy for when it is best
to fork off the software development

Thc idca bchind multi-mission softwarc is that sincc
many missions can use it. it offers the potential for cost
savings. rapid dcvelopment. etc. I1owever. there may
be a project that will require changes to the software
that are so dramatic. or need to be made on such a rapid
schedule. that it is difficult to support those needs in
multi-mission softwarc development.

It may be preferable to j~}rk the software into a project
specific version. If this is done. therc should be a elear
understanding at the outset whether the forked software
will cver merge hack into the main branch. If the
software will be merged into the main branch. the
responsibility for the multi-mission verification of the
changes in the software should be established. In
addition. thcre should also bc opcn channels ft}r
communicating changes in the multi-mission version of
the software. Both the multi-mission software and the
project specific software should ensure that anomalies
in thc multi-mission part of the software arc
communicated to the other party.

Forking thc software may be an undesirable outcome to
both parties. The project may object because it now has
to take on additional responsibility in devclopmcnt and
validation of the softwarc. Multi-mission software is
appealing to projects because much the validation work
is done for them. However. if the software is forked.
the project may have to redo all of the testing work.
Also. the multi-mission software group may object
because they may have a new competitor. or they may
have to make some major overhauls to the software to
merge project specific changes back in. Even with these
drawbacks. thcre may be times when it just does not

make sense to maintain a multi-mission version or the
sothvare to meet project needs.

2.3. Develop a testing strategy across all
users

There arc two facets to the testing lesson learned. The
first is. where does multi-mission soCLware testing
responsibility end? The second facet is that an easy to
usc sct of rcgression tests that span all uses of the
software should he developed and maintained. While
this strategy is just good software practice. it becomes
more relevant across multi-mission software or scripts
because one project team may he unaware of how a
different project team uses the soCLware.

At the onset. multi-mission soCLware developers should
decide where their responsibil ity ends when it comes to
testing the software. Docs the testing responsibil ity of
multi-mission software developers end with unit and
subsystem test cases'! Or. should the development team
have the responsibility of running project data through
the soHware for verification? Clcar responsibilities
should be established so that projects understand what
their role is. and so that all projects are treated
equitably.

With respect to the second facet SEQ has an adaptation
team that maintains a nearly multi-mission set of
scripts/util ities that are delivered to projects. Since
adapters on onc project may need to make changes to
the toolset it is highly recommended that an automatcd
testing systcm is established so an adapter can run
through a sct of multi-mission tests to ensure that
changes don't break something currently working. One
project's adapter/developer may not know how another
pr~ject uses the software. so that adapter/developer will
have dif1lculty ensuring that something is fully tested.
Having a test suite available and easy to use when the
modifications are being made is preferable to having
changes made. and delivered to a project. then Jlnding
that the changes negatively impact a different project.
causing a redelivery.

2.4. Implement a system for tracking
deployments

In SEQ. software deployment is handled by the
adaptation teams. Given that SEQ currently supports
approximately 10 different projects with the common
set of scripts/ utilities. the SEQ adaptation team finds it
is extremely valuable to have a tool to track what
versions of scripts/utilities each project is currently
using. When it is time to make a new delivery to a
project. the adapters can execute the version
management tool to find out what changes have been
made since their last delivery. and decide if they want to
include these changes In thcir delivery. \Vith scveral



hundred individual scripts/utilities. it is dinicult to
ensure that all the modifications are picked up by a
team. For example. if a change is made to the utilities
that affected 10 scripts/utilities. using this tool helps
prevent only part of the changes being picked up. and a
project receiving incomplete changes.

2.5. Develop a clear statement of use
strategies for the software

Many organizations have different standards for
development for different types of sortware. For
example. ""mission critical" soflware is very hcavily
tested. while "personal utility" software may not receive
any testing at all. It is important that a multi-mission
software pr(~ject decides on the classification of the
software that it is developing and ensure that any project
that wants to use the soltware understands this criteria.
Thcre are no issues if a project's uses of the soltware
are for less critical uses than the software is developed
against. However, it will help prevent a project from
using soltware lor a more critical task than the software
has been developed for. A project could then decide if
it wants to providc the additional support needed to
bring the software up to the level of criticality the
project needs. or if the project wants to use other
software/methods lor the more critical task.

2.6. Evaluate different architecture styles
for multi-mission software

Multi-mission software can be developed with different
architecture styles. SEQ has used two different
methods, and currently does not havc an opinion on
which is preferable. One style used by SEQ is to
develop a core piece of software. and use little
languages to adapt it to project needs. The second style
is to provide software that has separate threads
internally to perfjxm the adaptation to the project.

Developing a core piece of software that gets adapted
using little languages provides the advantage that a
project does not need to make any changes to the core
software to usc it. The project can simply use the little
language to adapt it for its needs. Ilowcver. developing
this style of software is often more expensive. more
complicated. more time consuming. and more difJicult
to ensure robustncss.

Developing software that has separate threads internally
to perform the adaptation to the project is often easier.
cheaper. and faster to develop. However. every project
must modify core software to obtain the functionality it
needs. Another ramification of this style may exist
when missions have a proprietary need. because this
format does not readily support that requirement.

2.7. Evaluate the needs for an
architecture that will support shared
hardware resources

Several of the .TPL projects share computer resources
and staffing for sequencing activities. This is a truly
multi-mission installation. Most projects want to fi'eeze
thc sothvarc for somc length of timc up to and through
mission critical events. Depending on the number of
projects. and the number and duration of mission critical
events. it may be extremely difficult to get changes to
the software approved. Some of the .TPL mission
software freezes have lasted several months. Because
of the needs for changes during extended freezes. the
SEQ Adaptation team has begun to dcvelop ideas for a
architecture that will allow for new software to bc
installed on shared resourccs during software free7.cs.
While the obvious solution would be to eliminate the
shared computer resources. this solution may add
significant hardware and maintenance cost. The new
architeelure has not been studied thorough Iy. it will be
cxamined if a new multi-mission installation is planned.

2.8. Be careful of developing "quick and
dirty" tools or prototyping software

The last lesson learned. while not specific to developing
multi-mission software. is a fundamental lesson just the
same. The impact may be significantly greater on
multi-mission software than on project specific software
f()r this problem.

In the tirst case. prototype software was developed for a
mission critical function. and it was liked so much by
the users that it was adopted. Unfortunately, it had been
developed as prototype software without the rigor
needed to support mission critical software. And. since
the prototype version of the software was reasonably
capable. there was little support for spending the money
or taking the time needed to develop it in a more formal
manner. It was only aftcr scveral years. and the
apparent short comings in extensibility of the software.
that funding was made available to develop the software
in a manner more appropriate lor such critical software.

In the second case. software was developed to provide a
"quick and dirty" analysis capability that was extremel)
easy to use. so that rapid design trades could be made
early in the mission. rather than using the software that
handles more sophisticated models. In this case. the
software was easy to use. however. users resisted giving
up any of the capability for detailed modeling. The
users pushed the software to become "not so quick and
not so dirty".

In both these cases. user desires and expectations were
not managed. which caused negative impacts on the
software.



3. SUMMARY

The development of multi-mission software at JPL has
been going on tt)r more than 10 years. It has provided
some real benctits to projects in the areas of cost
savings and development time. However. several
problems related to multi-mission software development
have been encountered in recent years. While none of
the problems would change the decision to develop
software in a multi-mission fj)[ma1. these lessons should
be thought about at the beginning of the development
project. lIopefully. future developments will be able to
learn from these lessons:

• Make plans it))' handling legacy software

• Develop a strategy for when it is best to fork off the
software development

• Develop a testing strategy across all users

• Implement a system for tracking deployments

• Develop a clear statement of usc strategies for the
software

• Evaluate different architecture stylcs for multi­
mission software

• Evaluate the need for an architecture that will
support shared hardware resources

• Be careful of developing "quick and dirty" tools or
prototyping software.

4. ACKNOWLEDGEMENTS

The research described in this publication was carried
out at the Jet Propulsion Laboratory. California Institute
of Technology. under a contract vvith the National
Aeronautics and Space Administration.




