SIMSCAPE Terrain Modeling Toolkit

Abhinandan Jain, Jonathan Cameron, Christopher Lim, John Guineau
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109

Abstract— Space mission applications involving landers and
surface exploration make extensive use of terrain models within
their simulation testbeds. Such terrain models are large, com-
plex and involve a variety of attributes including topography,
radiosity, soil mechanics, and hazard properties. Sources for
the terrain models include planetary data archives, field tests,
mathematically constructed models. Simulation users of such
models include surface rover vehicles’ kinematics and dynamics
models, instrument models, camera models, robotic arm models
etc. While each of these types of terrain models has certain unique
aspects, there is also a large degree of commonality among them.

This paper describes the SIMSCAPE middleware toolkit that
has been developed recently to provide a common infrastructure
for importing terrain model data from multiple data sources
and making them available to simulation applications. The
SIMSCAPE infrastructure simplifies the overall simulation design
by eliminating the traditional need for custom terrain model in-
terfaces to terrain data sources and simulation users. SIMSCAPE
provides a collection of libraries and tools to use and manage
terrain environment models within a wide range of simulation
applications.

I. INTRODUCTION

Space mission applications involving planetary landers and
surface exploration make extensive use of terrain models
within their simulation testbeds. Simulations of surface ex-
ploration rovers use terrain models as part of wheel slip-
page/sinkage dynamics models, for camera and sensor sim-
ulation models, and for collision checks. Lander spacecraft
simulations use terrain models for altimeter models, radar
models, and hazard detection. Science related studies use
terrain models for instrument specific simulations.

Such terrain models are large, complex and involve a variety
of attributes including topography, radiosity, soil mechanics,
hazards properties and other domain-specific information.
Sources for the terrain models include planetary data archives,
field tests, synthetic models (derived from existing terrain
models) as well as analytic ones (created mathematically).
Simulation users of such models include surface rover ve-
hicles” kinematics and dynamics models, instrument models,
camera models, robotic arm models etc. While each of these
uses of terrain models has certain unique aspects, there is also
a large degree of commonality among them.

This paper describes the SIMSCAPE middleware toolkit that
has been developed recently to provide common infrastructure
for importing terrain model data from multiple data sources
and making them available to simulation applications. These
terrain data sources include planetary and empirical terrain
data sets, terrain synthesis models and analytical models.
The SIMSCAPE infrastructure simplifies the overall simulation

design by eliminating the traditional need for custom terrain
model interfaces to terrain data sources and simulation users.
SIMSCAPE provides a collection of libraries and tools to
use and manage terrain environment models within spacecraft
simulation applications.

There are many products that offer parts of what we need
in SIMSCAPE but none that combine all the features that
we need. For instance, Daylon Graphics offers a product
called Leveller [2] that provides an ability to construct or
edit 3D terrains. It does not provide a run-time library to
use the resulting terrains in realistic applications. The GNU
Triangulated Surface Library (GTS) [1] has many useful func-
tions for modeling surfaces with triangles. but does not have
capabilities to deal efficiently with gridded elevation data. GTS
also has no tools for importing terrain data from a variety of
geographic sources. The Geospatial Data Abstraction Library
(GDAL) [4] has many tools for importing from a wide range
of geographic data sources. GDAL primarily uses raster bands
(sets of gridded data) to represent the wide range of data in
can assimilate. Tt does not deal with irregular meshes and
has no provision for hierarchical topographic structures, as
SIMSCAPE does. Similarly, the Planetary Data System (PDS)
[5] provides planetary images and data collected by various
NASA missions and some related software. The Integrated
Software from Images and Spectrometers (ISIS) [6] provides
software for modeling images and related instruments. Both
PDS and 1SIS have unique and useful contributions, but neither
addresses many of the needs of vehicle simulation. Several of
these products provide useful capabilities that SIMSCAPE in-
corporates directly via their software libraries. See Section 1V
for more details. There are also many Geographic Information
Systems products available, such as GRASS [7], that provide
useful tools for geographic data analysis, but do not address
many of the needs of vehicle simulation.

Goals of SIMSCAPE are:

« Support run-time use of terrain models in simulations

» Support multiple representations of the terrain geometry.
These include 2.5D digital elevation map grid represen-
tations, peint cloud representations, 3D mesh represen-
tations, and 2.5D triangulated irregular network (TIN)
mesh representations. In addition, SIMSCAPE inciudes
support for geo-referenced planetary data models. The
SIMSCAPE library provides several methods to transform
terrain models between these representations.

« Support for composite terrain models assembled from
heterogeneous component terrain models. e.g. base ter-
rains with component 3D rocks (Figure). This includes
the ability to assemble terrain models from a variety of to-

pographic components in a tree hierarchy with offsets and
rotations to position the subcomponents appropriately.

(Topcem)
| Tip->m)
(Toperiem)

(Topotesh) (Topobtesh)

Fig. 1. Assembling a terrain site model

« Support the use of overlays of surface properties such
as material composition, texture, albedo, terra-mechanics
parameters cte. SIMSCAPE supports the overlay of at-
tributes such as reflectivity. terra-mechanics, material etc.
onto the underlying terrain geometry.

« Support the use of terrain model data from many differ-
ent sources including planetary, empirical, synthetic and
analytical terrain models (Figure 2). The terrain data can
include archival planetary data, field test sites (eg. Mars
Yard). synthetic and analytical terrain data.

Other applications
{eqg. DSENDS EDL,
instrument sims.)

File System
Terrain
Data
Sources
Planetary data Field data Bl ytieal
Fig. 2. SmuScare as middleware for terrain models within simulation

applications

« Support algorithms and methods for transformations be-
tween the different terrain model types

« Support the exporting and importing of terrain models
to and from the variety of standard terrain data formats,
inluding PDS, GeoTiff, USGS ISIS, VRML etc.

« Provide a run-time library with efficient algorithms and
methods for use of the terrain models within applications.

« Provide clear interfaces for use as a general-purpose,
embeddable library by different applications.

« Provide an extensible architecture to allow extension of
the SIMScAPE library with new algorithms and terrain
model types by users.

=]

« Support off-line preparation and creation of complex

terrain models

« Support persistent storage and retrieval of terrain models

for run-time access.

Section IT provides an overview of the SIMSCAPE design
architecture, object types and their functionality. Section I1I
describes algorithms and methods for manipulating the S1M-
SCAPE objects as well as for transforming them into one an-
other. Section IV describes the various data formats supported
for importing and exporting terrain data. Section VI describes
user interfaces for visualizing terrain models and Section VII
describes simulation applications using SIMSCAPE,

II. ARCHITECTURE AND DESIGN
Since every application area has special needs for terrain
data that cannot be guessed in advance by the designers of
the SIMSCAPE architecture, it is important that the design
capture common basic terrain needs, as well as provide the
extensibility necessary for end users to extend the framework
to meet their specific needs.

A, Extensibility by Plugins

One of the key ways that SIMSCAPE provides extensibility
is via the mechanism of “plugins™. The user can extend any
of the base classes provided by SIMSCAPE and the new
classes can be easily loaded at run time so that the new
functionality is available. The user adds the compiled object
files for their newly derived classes to a plugin directory
and instructs the SIMSCAPE framework to search the plugin
directory to discover the new classes. Each new class would
also provide basic functions to save its data to a persistent
store so that its classes can be saved and restored from the
persistent store like any of the basic classes of SIMSCAPE.
The new user classes can be extensions of existing classes or
be created to perform a single function such import data from
external formats (“Importers™). export data to external formats
(“Exporter™), convert an object from one type to another
(“Transformers™), or modify an object without changing its
type (“Manipulator”). See Figure 1. More details about these
types of plugins will be covered in Section III and following.

,fﬁx /'—.__—H“"-.
(Manipulators) (Transforme@
s __,..-—"'} - 5

corvert between
% 3 hiect types

= Gporer)
UE| Exmort 1o external

\\§to re_s/,/

/‘“r“-—-h'“‘\]
SimScape Core

—_—

(Importers) ¢

&

Fig. 3. Plugins based extensions

B. SIMSCAPE Architecture

One of the main design goals for the SIMSCAPE framework
is to provide a tree-like structure to contain the terrain-related
objects necessary to model complex surfaces for various types
of simulations. With this in mind, there are two types of classes
of objects in SIMSCAPE: (1) basic topographic primitives
(such as DEMs) and (2) container objects (related to the tree
structure). Note that all of these classes are derived from a
single base class called "CoreObject” to enable storage and
retrieval with persistent stores. See Figure 4 for an overview
of the class hierarchy. We will start by examining the primary

topographic object classes.

.:;’::.'::;.@ﬂ@ C‘mm)@““') (’ _ooeatiee”)

o .

Frammmork “handle
€ amman (unstisnality
Sorage Interlace

wrenl i
habete r!-'::n::(“ﬂ’wu....m(’kd’run/)
Tranilomable

Mapped onto Tops
swrface

e ot
{Mumm b1¢ rammdnm) [tepotres)
Wepresents allribute Represents a
avarlays for Taps abjacts hies archy of taps
objests

Bepretents types of Tops objects

Fig. 4. The SIMSCAPE class hierarchy

C. Primitive topographic object classes

1) TopeDem: One of the primary topographic classes is the
ToroDEM. As the name implies, this is primarily a DEM
(Digital Elevation Map). The elevation values are laid out in
a regular x-y rectangular grid. For each x-y value pair, there
is only one elevation (7) value. The ToroDEM provides data
access and interpolation functions to compute the elevation
value for a specified x-y location. Each ToroDEM contains
information about the extent (physical area) that the data grid
covers.

There are currently two sources of elevation data that may
be used to create ToroDEMs. The primary one is stored
elevation data. The persistent store saves the grid of elevation
data values along with all necessary information to reconstruct
the coverage of the ToroDEM. The second source of data
for TOPODEMs is via an analytic construction capability.
ToroDEMs can be created with a number of ideal geometric
surfaces such as flat surfaces, sloped surfaces, wavy surfaces
(sine/cosine wave function), and other similar shapes.

Many sources of topographic data provide grids of regularly
spaced elevation data. Exactly how these elvation data values
should be interpreted varies. In some cases. each elevation
point represents an average elevutmn in the grid square (or
rectangle) the contains the point. In SIMSCAPE, this type of
data is called CENTERPIXEL. In some cases, the elevation
data is to be interpreted as the elevation at one of the corners
of the grid square. In SIMSCAPE, this type of data is called

FENCEPOST. TOPODEMs support both types of elevation
data representations.

TopoDems also provide a series of functions that provide
useful data beyond simple elevation lookup. These include
functions to compute the normal to the surface at a specified
location, compute statistics for a small patch surrounding a
specified location, and other functions geared towards ground
vehicle simulations.

Although the dominant use of the TOPODEM type is to
provide access to a regular, rectangular grid of elevation data,
the class itself is more general. A ToroDEM provides a
container for any 2-D, regularly spaced data. For instance,
the TopoDem could contain elevation data for radius and
angle data on a polar grid. Similarly, TopoDems are used to
contain the elevation data for latitude and longitude pairs in
the TopoPlanet class (see Section 1I-C.5 for more details about
ToroPLANETS). Since the data contained by a ToroDEM is
based on a C++ template. it can be applied various numerical
classes such as double, float, or even integer types.

2) TopoCloud: A ToroCLOUD is simply a group (or
“cloud™) of x-y-z points called vertices. TOPOCLOUDs sup-
port adding new vertices. merging TorPOCLOUDs. and other
related functions. A cloud of points may be the primary type
of data for a variety of applications. An example is the 3D
ranging data from stereoscopic image correlation.

3) TopoMesh: A key limitation of the TOPODEM is that
it is 2.5 dimensional (meaning that there is only one elevation
data value for each x-y location). For many vehicle simula-
tions, a truly 3D surface class is necessary to model terrain
surfaces with realistic 3D characteristics such as overhangs.
The ToroMESH class provides full 3-dimensional irregular
mesh capability similar to 3D meshes used to model surfaces
in popular graphics libraries. The surface is broken up into
a set of "Faces™ (which are usually triangles) and the ver-
tices necessary to define each face. The TOPOMESH class
derives from the ToroCrLoUD class (which provides basic
vertex storage and operations). The TOPOMESH type provides
functions to access/add/delete faces, merge ToOPOMESHS, and
refine (subdivide) existing faces to reduce the size of all faces
below a desired threshold.

4) TopoTinMesh: One of the key operations needed from
a terrain models by a ground vehicle is to determine the
elevation for a specific x-y location, This is easy to do with a
ToroDEM since it is inherently a 2.5D structure, but prob-
lematic with a TOPOMESH since it is 3D and could produce
two (or more) elevation values for a single x-y location.
The ToroTINMESH class implements a “Triangular Irregular
Network™ based on Delaunay triangulation. A TOPOTIN-
MESH is an irregular mesh with faces and vertices that is
constrained to be 2.5D by the vertex/face construction process.
This means that a TOPOTINMESH provides the unambiguous
elevation lookup of a TOPODEM with the data flexibility of a
ToroMEesH. A well constructed TOPOTINMESH represents
the same elevation data as a TopoDem with considerably
reduced storage requirements with minor run-time elevation
lookup penalties.

5) TopoPlanet: The TOPOPLANET class is the primary
end-user class for dealing with the surface of a planet. The

TOPOPLANET class provides various useful functions such
as the ability to compute the radius or elevation offset of the
surface at a specified latitude and longitude. compute local
surface normals, and compute the intersection of a ray with
the surface.

TOPOPLANET represents the surface of a planet in a
generalized way by adding an offset to an nominal planetary
radius value based on some idealized shape model (such as
a sphere or an ellipsoid). To accomplish this, TOPOPLANET
uses the PLANETMODEL class to compute radius values from
a latitude and longitude pair or convert from latitude and
longitude pairs to x.y.z cartesian locations (and vice versa).

PLANETMODEL is a generalized base class. It contains an
object of the PLANETSURFACEREFERENCE class that is the
base class for planetary reference surfaces and knows how to
compulte a reference surface radius for any specified (planeto-
centric) latitude and longitude pair. SIMSCAPE provides two
simple derived classes, ELLIPSOID and SPHERE. that model
a spherical and ellipsoidal reference surface, respectively.

The reference surface accounts for the fact that planets in
general are not perfectly spherical, but are usually elliptical
or oblate in shape, with flattening at the poles relative to the
equator. Using a fixed reference surface also allows software
to make use of the limited precision of floating point number
formats for describing the surface detail by factoring out a
large constant reference value associated with planetary radii.

There are two classes derived from PLANETMODEL:
PLANETDETIC and PLANETCENTRIC. These two classes
do the primary work of adding offsets to the reference surface
radius. PLANETCENTRIC assumes the offset is added to the
reference surface in a direction that radially outward the center
of the planet. PLANETDETIC assumes the offset is added
in a direction normal to the local reference surface at the
specified location. The PLANETMODEL class also uses the
class PLANETCOORDINFO (and several related classes) to
take care of whether longitudes increase in the eastward or
westward directions, and how to deal with longitude wrapping.

To provide the offset elevation data at any specified latitude
and longitude, the TOPOPLANET class uses an embedded
ToroDEM object. For this usage, the typical meaning of x
and y of the TOPODEM are replaced by longitude and latitude
(respectively) and the elevation values of the TorPODEM are
interpreted as offsets from the reference surface.

When a TOPOPLANET object is created. the user must
first create an appropriate PLANETMODEL object (using
the PLANETDETIC class or a PLANETCENTRIC class)
with the appropriate reference surface (such as ELLIPSOID).
The resulting PLANETMODEL object is used to create the

TOPOPLANET object and is installed as a data member of

the TOPOPLANET object for future surface location compu-
tations.,

The design of the TOPOPLANET class and that classes that
it uses provides a flexible and extendable way to implement
more complex planetary topographic systems.

6) Container Types - Trees and Nodes: In order to pro-
vide maximum flexibility to assemble topographic data from
various sources the SIMSCAPE framework provides a tree
structure populated by TOPOTREENODE objects. The topol-

ogy of the tree structure is a simple downward branching
tree. Each TorOTREENODE object can contain a set of
TorOTREENODE children. Each TOPOTREENODE con-
tains a single topographic data object such as a TorPoODEM
or & TOPOMESH.

| Gusev Cahokia region | Synthetic

model tree assembly ::’:‘:“n ; 30 rock field
+low res data driven el o d
| and texture

topography 8 texture | em pixals)

* hi-res synthetic
topography & texture

« analytical 3D rock field

MOC Gusev THEMIS
topography HRSC based
(10m pixels) texture

Fig. 5. Mars Gusev site terrain mesh with detail DEM and 3D rock meshes

The relative position and rotation of the node (with respect
to its parent node) can be specified using a “Transform™
object (which contains a position offset and a rotation matrix).
The position/rotation offset applies the node, all its children,
and the contained topographic object. This provides complete
flexibility to position all topographic objects within the tree as
needed.

An object of the TOPOTREE represents the entire tree
structure and contains the tree of TOPOTREENODES. It also
provides several functions for manipulating the entire tree
(such as normalization). Conceptually, the TOPOTREE and
ToroTREENODE classes could be merged. although they are
distinct in our current implementation.

D. Surface Property Overlays

Elevation data is essential to vehicle simulations but is not
the only type of data useful to describe an area of terrain.
Important science and engineering data related to terrains are
often available and must be associated with terrains so the
data can be accessed for locations within the terrain. Examples
include images to be overlaid on the surface for visualization
purposes, the nature of the soil at specific locations (soil types.
cohesion, etc), and spectral properties of the terrain surface.
These 2D raster data sets are called surface property "overlays”
in SIMSCAPE and are derived from the SURFACEPROPERTY
base class. Multiple such surface property overlays may be
associated with a TOPO object.

SIMSCAPE allows such overlay properties to be specified
in frames different from that of the parent TOPO object. In
order however to access a surface property value at a Toro
vertex. the overlay data set must be “bound™ to the vertices
on the parent Topro object. The “binding”™ process (see
Figure 6) registers the overlay (including a position/rotation
offset) with the parent topographic object and sets up various
internal data structures for accessing the overlay data. Each
overlay provides its own accessor functions that return SUR-
FACEPROPERTY values for specific locations (x-y or x-y-z

- e

AttributedVertex // =
SurfacePropartyEntry® /,.-/
[-
SOlTYPe, #—eeed— ="
TextureGoord /a‘]
] /
.f
¢ end:
N peturfaceEropertyl,))
LY

N
A\
M

il i}

SoilCharacteristics

TopoMesh

Fig. 6. Binding of surface attributes to the TOPO surface objects

depending on the type of topographic object). For instance,
an image o be overlaid over a topographic object is called
a TEXTUREOVERLAY. The TEXTUREOVERLAY class is
derived from SURFACEPROPERTY and provides a primitive
data type called TEXTURECOORDINATE (containing an s.t
image coordinate pair). When the bound TEXTUREOVERLAY
information is needed. it can be accessed from the parent
topographic object and TEXTURECOORDINATES can be gen-
erated for specified x-y coordinates.

In the process of binding surface properties on to topo-
graphic objects, a coordinate map can be specified. It the to-
pographic object is essentially 2.5 dimensional (for TopoDems.
for instance), a simple one-to-one correspondence between the
surface property set and the underlying topographic object
might be appropriate. However, if the topographic object is 3
dimensional (like a TOPOMESH), controlling how to map the
surface property to the 3D object is not so simple. Several co-
ordinate mapping classes are provided for this purpose (and the
user can create new mapping classes derived from one of the
existing ones). For instance. the class COORDAFFINEMAP2D
can introduce an arbitrary affine transform (offset, rotation. and
skew) in the mapping process. See the left part of Figure 7
for an example. The user can also define a custom mapping
using COORDCUSTOMMAP2D as shown in the right part of
Figure 7.

Fig. 7.

2D Coordinate Mappings For Binding of Surface Properties

Interesting and useful mappings for 3-dimensional figures
are also available, including a 2D mapping, a spherical map-
ping using COORDSPHERICALMAP3D (see left image in
Figure 8) and a user defined custom mapping using COORD-
CusTOMMAP3ID (see the right image in Figure 8 and note
that the same texture is mapped to each face of the cube).

Although these example surface property mappings are shown
for textures (images). the same capability can be used to map
other types of surface properties.

Fig. 8. Lefi: 3D Coordinate Mappings For Binding of Surface Properties

It is also possible to bind an overlay (along with relative
position/rotation offsets) to ToOPOTRELE nodes. Such overlays
are applied to the TOPOTREENODE sub-tree.

E. Anributes

The base class CoreObject not only provides the basic
functionality to save objects to persistent stores, it provides a
set of functions relating to meta-data about the object, referred
to here as “attributes”. There are two types of attributes
with two different purposes. One type of attributes are user-
defined attributes. Their purpose is to provide a way for users
to store and retrieve textual data about an object such as
labels, annotations, data sources, etc. CoreObject provides the
capability to save and retrieve arbitrary text strings with keys.
A second type of attribute provides simple access to known
data internal to each topographic object. For instance, the
number of samples for a TopoDem can be accessed via a read-
only attribute with the key ‘samples’. Other known attributes
such as the textual description of the TOPODEM (that has the
key “description’) can be accessed or modified via the attribute
get/set functions. These two types of attributes use the same
type of underlying mechanisms to store their information in
the persistent store so that objects retrieved from the persistent
store will include all of their attribute data.

I1I. TRANSFORMERS AND MANIPULATORS

Many common operations on the basic topographic object
involve performing some type of manipulation of the data
in the topographic object and returning a new topographic
object of the same type. These functions can be thought of
as manipulators since the object returned is of the same
type as the original, but the internals have been changed or
manipulated. (In most cases. the original object has not been
modified.) For instance:

« The function ToroDEM:getPatch() allows the caller to

specify a region/patch of a terrain TOPODEM and return
the patch as a TOPODEM.

« In ToroMESH:refine(resolution), the ToroMESH
adds vertices as necessary 1o ensure that no vertex is
farther away from another vertex than the specified res-
olution. The TOPOMESH is updated in place.

o In ToroTRrREE::normalize(), the TOPOTREE is traversed
and a new TopoTree is constructed for which all trans-
forms are applied to the internal data of the topographic
objects (such as vertex data) so that all the transforma-
tions become identity transformations and the original
transforms are no longer necessary. The normalized tree
is more efficient at run-time because the transtorms are
not needed.

In addition, there is a need at times to tranform a terrain
model from one type into another. This can happen for instance
if the source data is of a specific type. eg. an irregular mesh
while the application has a need for a 2.5D grid terrain
data type. At times. in more complex simulation scenarios.
it is possible to use multiple different representations of the
same terrain by different modules within the simulations.
For instance a TOPOTREE representation with component
3D mesh models is very suitable for graphics visualization,
while a 2.5D ToroDeEM version of the same tree may be
needed for a wheel/soil dynamics model. Algorithms and
methods that convert one model type into another are referred
to as transformers. Examples of such transformers within
SIMSCAPE include:

o A transformer that converts a 3D ToroMESH into
a 2.5D ToroDEM model. This transformer takes as
arguments a projection plane and a grid resolution for
the desired ToroDEM. The algorithm projects the irreg-
ular TOPOMESH onto the plane and samples along the
desired grid to create the ToPODEM. This transformer
makes use of the transformer from a TOPOMESH to a
ToroTINMESH during the projection process.

« A transformer to convert a normalized TOPOTREE into
a ToroDEM. This transformer essentially merges all the
component TOPO objects within the TOPOTREE into a
ToroOMESH and then converts it into a TOPODEM.

We plan to add additional transformers such as those generat-
ing surface property overlays for properties such as roughness,
slopes. height fields from a TOPO object.

IV. EXPORTERS AND IMPORTERS

SIMSCAPE has been designed to build terrain models from
data available in various different formats. The import and
export of data for the different formats is supported by plugin
importer/exporter extensions for SIMSCAPE, This mechanism
allows the addition of support for new formats in the future.

Most common data formats are for data in regular grid
format that are suitable data formats for creation of Toro-
DEM and TOPOPLANET terrain models. Several providers
also support the specification of geo-referencing data along
with projection information to interpret this data, These data
providers also often provide libraries that support the process-
ing of such data files. SIMSCAPE makes use of these libraries
where available to allow the importing of such terrain models.

The key data import formats supported by SIMSCAPE

include:

« The Geospatial Data Abstraction Library (GDAL) [4]
is an open source software library for raster geospatial
data formats, As a library, it presents a single abstract
data model to the calling application for all supported
formats. The GDAL library has been used to develop
an import extension to allow the import of a large
number of widely used data formats [8] into SIMSCAPE.
SiMScArE includes a GDAL based terrain model data
importer for the creation of TOPODEM terrain models
from a variety of data formats. This importer can also
handle raster data from several image format files.

e The Planetary Data System (PDS) [5] is a publicly
available archive that distributes scientific data from
NASA planetary missions, astronomical observations,
and laboratory measurements. The data is available in
the PDS format with header information describing the
data sets. The PDS site also provides software for pro-
cessing the PDS data and has been used to develop a
TOPOPLANET importer for SIMSCAPE.

« The Integrated Software for Imagers and Spectrome-
ters (ISIS) [6] provides a tool for processing, analyzing,
and displaying remotely sensed image data. ISIS primar-
ily handles 2-D image data (as single-band cubes) and
3-D data (as multispectral or hyperspectral cubes) from
imagers and spectrometers. SIMSCAPE imports ISIS data
by using the ISIS toolkit to export data into TIFF format
followed by the use of the GDAL importer to complete
the import.

e« SIMSCAPE also can import a simple raster format con-
sisting of ascii height field data into a TOPODEM object.

« SIMSCAPE also can import range map data generated
from a stereo camera pair into a ToroCLOUD. Such
data typically is obtained by camera sensors on surface
exploration rovers.

Exporting of terrain models into external data files is

supported in SIMSCAPE as follows:

o SIMSCAPE uses the GDAL library for exporting Toro-
DEM model data into external data formats. The data
formats that the GDAL library supports exporting is a
much smaller subset of those supported for importing.
All of these formats are available to SIMSCAPE via the
GDAL library.

« To facilitate 3D graphics visualization, SIMSCAPE sup-
ports the export of all Toro object data into VRML files.

V. PERSISTENT STORE

SIMSCAPE provides a local cache for managing and sharing
terrain data products. SimScape provides APIs for handling a
whole host of terrain attributes including topography, texture,
feature lists ete. properties. SIMSCAPE also includes classes
to efficiently interact with and manipulate the terrain model
information at run-time.

A persistent storage system allows SIMSCAPE objects
(surfaces, rocks, textures, etc.) to be saved to a storage device
for later retrieval even after the original objects are deleted.

The persistent storage class (“Store™) in SIMSCAPE can be
thought of as an “input/output stream™: objects can read and
write to the stream and the PersistentStore class will take care
of loading or storing the object’s binary data from/to storage.

PersistentStore has an abstract device interface to support
different types of storage. Currently SIMSCAPE uses an XML
schema to save objects but other storage types such as SQL
databases and even flat files can be implemented in the future.
The resulting PersistentStore storage files are portable and
can be transported between different machines that support
SiMSCAPE.

The PersistentStore is extensible and can support any C++
class type; new SIMSCAPE objects can be added without the
need for recompiling the entire SIMSCAPE library. This is
implemented by requiring each SIMSCAPE object to register
methods with to load and save itself to the PersistentStore.
The list of loading and saving methods is keyed by the object’s
class type. To load an object from the store, the PersistentStore
searches the list of registered objects for the class type and
invokes the necessary load methods to reconstruct the object.
Since a SIMSCAPE object may be derived (subclassed) from
another SIMSCAPE object. each SIMSCAPE object also saves
it’s complete class hierarchy (type chain) to the store. Each
SIMSCAPE object gives itself a unique 1D string to distinguish
itself from other SIMSCAPE objects of the same type.

When writing to the store, each SIMSCAPE object also
saves a version number: when loading from the store the Sinm-
SCAPE object can therefore detect whether the stored object
was created with a newer or older version of SIMSCAPE and
act appropriately.

As mentioned earlier, the PersistentStore currently stores
objects into an XML file. The XML schema is implemented
as follows:

1) Objects are saved in a tree structure in the XML file
with each child object saved as a leal (node) of it’s
parent object’s node so reconstructing an object with
child objects is simply a matter of walking the tree.

2) Arrays of simple data types (integers. strings and floating
point numbers) are compressed and stored in separate
files to save space. The path to the array file is stored
in the XML file.

3) Large data files (e.g. image files) are also stored in
separate files: the path to the image file is kept in the
XML file,

V1. USER INTERFACE

The SIMSCAPE toolkit includes a GUI for browsing and
editing terrain models as well as a 3D visualization interface
based on the Dspace 3D graphics toolkit for visualizing the
terrain models. In addition to the C++ APL SIMSCAPE
includes a Python binding that provides a scripting interface
for user scripts and run-time interaction with the models.

While SIMSCAPE provides a portable and well-defined
C++ interface for use in applications, a Python [9] scripting
interface is available for all the SIMSCAPE object classes.
The Python interface is auto-generated using the SWIG [10]
tool designed for this purpose. The SIMSCAPE Python classes

closely mimic the underlying C++ classes. SIMSCAPE’s
Python interface is very handy for creating scripts to imple-
ment functions needed to prepare and manipulate SIMSCAPE
terrain models. Such scripts have been used to develop a
regression test suite as well as a host of tutorial examples
of using the SIMSCAPE objects.

The Python scripting interface has also been used to develop
a GUI browser for SIMSCAPE persistent stores (Figure 9).
The browser allows a user to browse and edit the contents

Ef tiep
3 =] ™) W B @ & x a
Browse FredeBromse Save &y Open Fonda Opuens Flerbond D
Fervn tond Sleser
Lo 48 camyC ache.) iy ey
1DMame [cunvivme 3% [D Type | v e B [y
" et
Waaber eyt ROCE NG Vopaliom LI | LOWERARTT dratrphon e s, ¥
V0 toed TugeTree ey "y
oy Towutoem L LOKTRIEEY pomden’ | aimles 108
=y, Trputrer oExtent »
At Nt AL L B 1 e L
b o Toguihem s 1 LOWER LEFT Mhabed v Wy "
b oy n— 5 AMax u
Vo Toem [} TOWERIENT W] yihn "
¢ Trpelem s 1 NOWER AETT yhan "
® Vg o 1 AT BT elane 0
L Togmle L i
¥ [P it
b o Voputore L O
G Teeafrer v rpete
- TopaTus M ae ANALYTIC)
srve Bincled TopuTertionde 1 . 1 15
Vol L] 1 TOWERLLEFT
T Grwaherd pee NodeD SurtacePomem © Larfae sihenee, AafT it sm.
b M sew Topwlre " 1 LOWER LEET Muder b
T omagand] Togmilem n 1 LOWER LEFT Mard var
o
Fig. 9. The SIMSCAPE gui browser

of one or more SIMSCAPE stores. The gui also displays
the defined attributes for objects in the store. Several of the
manipulator and transformer methods available for the objects
can be invoked from the gui as well. The gui also provides
hooks to visualize a 3D graphics model of any of the Toro
objects.

VII. APPLICATIONS

We describe here briefly a few simulation applications that
are currently using SIMSCAPE for their terrain modeling
needs. SIMSCAPE is in use by the ROAMS rover simulator
[11]. the DSENDS entry, descent and landing simulator [12]
and instrument simulators. Beyond the terrain model defini-
tion, SIMSCAPE provides high-performance algorithms for
embedded use by these simulations.

« ROAMS (Rover Analysis, Modeling and Simulation)
[11] is a physics based simulation tool for the analysis.
design, development, test and operation of rovers for
planetary surface exploration missions. ROAMS provides
a modular rover simulation framework to facilitate use
by planetary exploration missions for system engineering
studies, technology development, and mission operation
teams. ROAMS currently is being developed and used
by NASA’s Mars Program as a virtual testing ground for
various rover subsystems and components. ROAMS is
capable of modeling vehicle dynamics, engineering sen-
sors and actuators. environments. The terrain environment
and surface property overlays needed for the wheel/soil
dynamics models, the onboard camera sensors, and the
3D graphics visualization are provided by SIMSCAPE.

Fig. 10. Roams - Rover Vehicle Simulation Environment

« DSENDS [12] is a high-fidelity spacecraft simulator for
Entry, Descent and Landing (EDL) on planetary bod-
ies. DSENDS (Dynamics Simulator for Entry, Descent
and Surface landing) is an EDL-specific extension of a
JPL multi-mission simulation toolkit Darts/Dshell. which
is capable of modeling spacecraft dynamics, devices,
and subsystems and is in use by interplanetary and
science-craft missions such as Cassini, Galileo, SIM,
and Starlight. DSENDS is currently in use by the JPL
Mars Science Laboratory project to provide a high-
fidelity testbed for the test of precision landing and
hazard avoidance functions for future Mars missions.
SIMSCAPE provides the terrain modeling capability for
DSENDS’ radar altimeter and landing hazard sensing
models.

Fig. I1.

DSENDS - Mars Entry Descent and Landing Simulation

VIII. CONCLUSIONS

We have described the design and use of the SIMSCAPE
terrain modeling toolkit that has been developed to serve as a
general-purpose framework for meeting the terrain modeling
needs of various simulation applications. SIMSCAPE is al-
ready in use by some key simulation applications for space

missions such as planetary landing and surface operations.
SIMSCAPE’s ability to handle a variety of different terrain
model types. import/export data formats, and support for
assembling hierarchical terrain models is proving to be very
useful in addressing the diverse set of terrain modeling needs
that arise within sophisticated physics-based simulations. The
SIMSCAPE implementation has adopted open-source toolkits
where avaialable in its design. SIMSCAPE provides both a
portable C++ implementation. as well as a Python binding
to facilitate its use from within scripts. Future SIMSCAPE
developments will continue to mature the existing classes and
algorithms. as well as develop various plugin extensions based
on the ongoing use of this toolkit.

ACKNOWLEDGMENTS

We would like to thank Dr. Meemong Lee and James Wood
for their many suggestions during the design and implemen-
tation of the SIMSCAPE software, The research described in
this paper was performed at the Jet Propulsion Laboratory,
California Institute of Technology. under contract with the
National Aeronautics and Space Administration, and has been
supported partly by the National Science Foundation Grant
ASC 92 19368.

REFERENCES

[1] “GNU Triangulated Surface Library (GTS) website.”

sourceforge.net

http://gts.

[2] “The Daylon Leveller Heighfield/Bumpmap/Terrain Modeler website.”
http://www.daylongraphics.com/products/leveller
[3] “Terrain Server, Client, and Maker website” http://terrain.
jpl.nasa.gov/.

[4] “GDAL - Geospatial Data Abstraction Library website” http:
www.remotesensing.org/gdal/.

[5] “The Planetary Data System (PDS) website” http://pds.jpl.
nasa.gov/.

[6] “Integrated Software for Imagers and Spectrometers (ISIS)

website.”

isis-bin

http://isis.astrogeology.usgs.gov/Isis2

isis.cgi/

[7] “Geographic Resources Analysis Support System (GRASS) website.”
http://grass.itc.it

8] “GDAL Raster Formats.,” http:
gdal/formate_list.html,

[91 “Python website.” http://www.python.org/.

“Simplified Wrapper and Interface Generator (SWIG) website.” http:

www . swig.org/.

A. Jain,). Guineau, C. Lim, W. Lincoln, M. Pomerantz, G. Sohl, and

R. Steele, “Roams: Planetary surface rover simulation environment,”

in fternational Symposinm on Artificial Intelligence. Robotics and

Automation in Space (i-SAIRAS 2003), (Nara, Japan). May 2003,

J. Balaram, R. Austin, P. Banerjee, T. Bentley, D. Henriquez, B. Martin,

E. McMahon, and G. Sohl, “DSENDS - A High-Fidelity Dynamics and

Spacecraft Simulator for Entry, Descent and Surface Landing.” in [EEE

2002 Aerospace Conf., (Big Sky. Montana), Mar, 2002,

‘www . remotesensing.org

(12]

