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Rationale JPL

e Stems from the need for consistent, transparent and auditable
decision-making processes and tools

* Project investments are selected through optimization of net mission
value as a function of capability level achieved, subject to cost and
time constraints.

 The uncertainty in the input data must be combined into a global
confidence range, which provides the decision maker with an

overall sense of quality and likelithood of success of the investment
strategy.

* Main intent: to gauge the degree of confidence in the optimal
solution and to provide the decision-maker with an array of viable
selection alternatives, which take into account input uncertainties
and possibly satisfty non-technical constraints.




Technology Portfolio Selection

JPL

Quantify NASA goals/sub-goals ===
in the context of the Next [vse
Generation Air Transportation
System (JPDO). Capture the

entire research program, and |
provide initial illustrative results
for Return on Investment.

Objective: to substantially
increase transport capacity while
improving or keeping constant
any harmful effects on the
environment (emissions, noise),
safety, and security.

Measures

Performance
Metrics
R&D Costs
Probability of
Success
DLinportarnce
Probability of
Acceptance




Example - Airspace Systems Program JPL
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Example - NASA JPDO Efforts

JPU
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Technology Portfolio Selection Problem JPL

The portfolio analysis targeted 1dentifying the best set of capabilities that
would support the implementation of desirable future scenarios that
contribute to the high-level Joint Planning and Development Office (JPDO)
goals, subject to performance requirements, and budget and development
time constraints

For each capability, the capability utility, probability of development
success, and the probability of acceptance are combined to compute an
overall expected utility of the capability

The expected utility, together with the development cost of the capability,
are the key quantities used in computing an optimal portfolio.

The optimal portfolio selection problem is to determine the set of
capabilities that provide the maximum composite value while fitting within
the available budget.




Optimal Portfolio Investment JPL

* The optimization problem:
* Find X, such that it maximizes z = 2.EU *X.
= subject to the cost constraint 2,C.* X. < B
= withi=1, N (N number of capabilities) and X, = {0,1}.

 Solved with the “Branch and Bound” algorithm (Martello &
Toth, 1988)

* The optimal set of selected capability 1s denoted by (X,)°P
* The cost of the optimal portfolio 1s CoPt = 2.C.* (X;)°P!

* The remaining budget (“investment slack ) S = B - CoPt




Postoptimality Analysis - Parametric Screening JPL

* This approach identifies the bounds of each parameter for which the
given optimal selection is valid.

* From a different point of view, this kind of analysis effectively
provides the independent uncertainty range for the cost and expected
utility of each capability.

* Capabilities close to the “optimal frontier” and weakly dominant are
sensitive to cost and utility variation.

* Two caveats regarding the nature of the results obtained:

* The cost and the expected utility are assumed independent and
varied independently of each other;

* In the expected utility analysis no physical constraints have been
taken into account to limit the improvement in performance of
each capability.
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Parametric Screening B0

*  Solve the optimization problem with one parameter - cost C, or expected utility
EU, - varied from the base value (first incremented and then decremented by AC or
AEU, respectively) until a change relative to the nominal solution is observed:

CIOW Cnom Chigh EUI()W EUnom EUhigh
e e
-AC +AC -AEU +AEU

e  This determines the parameter limits of each capability for which the base optimal
portfolio (X.)°P' is obtained:

C]uw “ Cnom = Chigh
EUIUW = EUnom = EUhigh
*  Track the capabilities which have a tendency to exit/enter the base optimal

portfolio.

. Sensitivity measure: cumulated changes over the runs = Z[Xi—(Xi)"i’t].
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Parametric Screening - A Priori Observations =Pk

Selected capability (X, = 1)  Capability not selected (X, = 0)
C,w= TBD (D Cow= TBD (5)
Cost
Chigh= C1‘10m +35 (2) Chigh= o (6)
Expected EU,..=TBD (3) EU, .= 0 (7)
Utility EU, = (4) EU,.n=TBD (8)
(I) Lowering the cost of a selected capability will introduce other
capabilities in the portfolio.
(2) Non-intuitive changes can occur. S = B - C°P.
(3) Lowering the expected utility will displace the capability.
(4) Selected capabilities have already a high expected utility.
(5) Can induce complex changes.
(6) Capabilities not selected are already too expensive.
(7) Capabilities not selected are already less performing.
(8) Caninduce complex changes. In this quadrant, to avoid unrealistic

changes, the expected utility is screened only up to twice the best
expected utility in the capability set.
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Expected Utility Margins

JPL

Expected Utility Margins
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v" The high limit of non-selected capabilities represents the utility to fit the capability in the optimum portfolio for a given budget
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Expected Utility Sensitivity Sets JPL
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Monte Carlo Analysis JPL

* Simultaneous variation of cost and expected utility

* Varied all capabilities with Monte Carlo sampling in two
trials

= +/-10%
= +/-25%
random variation relative to the initial assigned value

* Performed 1000 optimization runs for each case

The status (in or out) of each capability is accumulated
from each run such that a selection frequency is
computed from this stage of the parametric screening.




SPL

Selection Frequency Results

Sensitivity of Capabilities, Budget $15 B, varying Cost, Utility, & PoS by +/- %25

Straight Optimization

Monte Carlo
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Capabilities
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Recommended Portfolio Composition JPL

Robust Selection Not Recommended

Less than 10 exits for a selected capability in the Less than 10 entries for a non-selected capability in the
deterministic analysis. deterministic analysis.
Greater than 85% selection record for a selected Less than 15% selection record for a non-selected
capability in the Monte Carlo. capability in the Monte Carlo
2.1.1.A Protect/Prevent Abnormal Operations 2.21.B Low emission supersonic vehicles
& System Failures 2.21F Low emission UAVs
2.1.1.B Detect & Mitigate Natural Hazards 2.2.2.B Low noise supersonic vehicles
2.1.1.C Prevent Breakdown of Human/Machine 2.3.1.B General Aviation During Peak Demand
Interface 2.3.1.C Public Service Aircraft During Peak Demand
. . . 2.3.1.E Globally Harmonized Equipage & Operations
2.1.1.D Integrity & Efficiency of Accepting 2.3.2.A Efficient subsonic vehicles
Advanced Software Systems 2.3.2.F Complete Decision Information to All in NAS
2.1.2.A Detect & Inform Potential System 2.3.2.G Low Cost Vehicles for Bulk Cargo
Vulnerabilities 2.3.21 Minimum Impediments of Mode Change
21.2.B Mitigate Consequences from 10.5.2.A Extended Autonomous Flight in Mars
Intentional Attack Atmosphere

2.1.2.C Detect & Contain Diseases & Bio/Chem 10.5.3.A Incorporating Hypersonic Air-Breathing
Agents Propulsion

2.2.1.A  Low emission subsonic vehicles

2.21.D Low emission personal air vehicles

2.2.2.A Low noise subsonic vehicles

2.2.2.C Low noise ESTOL vehicles

2.2.2.D Low noise personal air vehicles

2.3.1.F Increase Arrival/lLanding Rates at
Commercial Airports

2.3.1.G Commercial Operations from
Small/Underused Airport

2.3.2.E Efficient all-weather rotorcraft

10.5.1.B Conduct Routine UAV in NAS

® The results from the two parametric approaches are mutually calibrated in order to

issue a common categorization of the projects sets as “robustly selected”, “robustly
rejected”, and “trade candidates™.
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Expected Utili

Capability Sets Map (EU vs. C)
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Most of the selected capabilities “dominate’ the rest of the global capability set.
The “optimal frontier” (green line) separates the optimal set region from the remaining domain.
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K-Best Sets JPL

*  The k-best sets approach provides solutions near the optimal
solution.

* Based on the k-best sets the decision-maker could evaluate aspects
of the problem that are not easily modeled quantitatively.

* By finding the k-best sets of technologies with the base-case input
parameters, and then comparing the values of these sets over the
entire range of possible values for the input parameters, one can
identify competitor portfolios.

* The intersection of the k-best portfolios with the optimal portfolio
produces a set of project selections deemed as “persistent.”
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5-Best Solutions SBP0L

5-Best Sets
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* Relative positioning of the five closest competitive portfolios with respect to the optimal
recommendation in an aggregated expected utility / total cost mapping.
* KB3 is close to the optimal portfolio, but in addition it minimizes the budget slack.




Overall Presence in the 5-Best Portfolios JPL
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* The categorization of the capabilities by their overall percent presence
in the suboptimal portfolios (including the “persistent” set displayed in
green color).

* The parametric sensitivity analysis and the k-best analysis generate
consistent choices of “robust” and “persistent” recommendations.
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Conclusions JPBL

* Two complementary methods - parametric sensitivity analysis and k-
best sets analysis - have been used for qualifying optimal technology
portfolios.

* Although the two above approaches are complementary, their results
are consistent, in that the “persistent” set is similar in composition to the
“robust” set.

*The goal of the postoptimality study is to enhance and improve the
decision-making process by providing additional qualifications and
substitutes to the optimal solution.

*The methodology proposed here is demonstrated on a NASA
technology project selection.

*The results highlight the importance and the usefulness of the
postoptimality analysis in providing a higher level of confidence to the
technology portfolio recommendations.
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