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Introduction and Overview

Upset Mitigation Basics
« Upsets are NOT errors

« Upset-error relation for memories (Hamming
codes and the like)

TMR Basics

New “fitting” equation for TMR

Examples of application to real data




Basics of Upset Mitigation

Redundancy -

Extra information (bits) prevents all upsets from
yielding system errors.

Scrubbing required —

Accumulation of errors rapidly kills mitigation
effectiveness.

Effective —

Most spacecraft now fly large arrays of upset-soft
memories with few or no errors.

Typically, uncorrectable errors are detectable.

Basics of Upset Mitigation - cont’d

Common sense says -

At some point, upsets will occur too rapidly and
the mitigation will be “overwhelmed.”

In fact, Edmonds approx. equation says —
There’s not really a “cliff.”
The relationships are known; the error rate:
(1) increases with the square of upset rate
(2) decreases linearly with faster scrub rates
(3) is directly proportional to EDAC word sizet

T EDAC word size = data bits + check bits ; EDAC=error detection and correction



Basics of Upset Mitigation - Examples

32 data bits + 7 check bits -

Cassini Solid State Recorders with 2+ Gb DRAM array is
working well, in spite of architecture “flaw.”

128 data bits + 9 check bits —

This hidden EDAC word inside IBM Luna-C 16Mb DRAMs
used on RAD6000 boards on many missions requires
external accesses to prevent accumulation of upsets.

64 data bits + 16 check bits —

A specially design cyclical parity scheme on the RAD750
board corrects up to 4 upsets, if confined to a nibble,
allowing correct operation with a bad DRAM chip.

TMR Basics

TMR = triple-module redundancy
Three independent “legs” or domains performing
identical functions
Voters are inserted — typically at feedback points
Voters are triplicated also
— they are not a single point of failure

Error-free operation with any single upset
Two upsets might cause system failure

Scrubbing is again required to reduce the chance
of co-resident upsets.




Triple-module redundancy
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upsets in two parallel modules.
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Even multiple upsets may not cause errors




Model of TMR System

Functional Block, i Voter, i Feedback, i+1
\ p /
\\ —
—*y L, +,) > _:D_,
N, ... N;., N, N Ny |

+1

_:D :
>

v

> » ,
Nj. Nl—l Nl JNI-O-I ---N"
N, = # of “care’ bits in M= #of
each block and voter modules

Designs are likely to be “lumpy”

Edmonds TMR Equation — small r approx.
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Edmonds TMR Equation — small r approx.
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Example Application - Multipliers
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Example Application - Counter Design
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In Review ...

New Edmonds Equation for TMR is
* General (for TMR-ed systems)
* Powerful
x Works over many orders-of-magnitude
¢ Based on moments which are

x Statistically meaningful
x Of rapidly diminishing importance so only one (or two)
adjustable parameters are enough
x Calculable, in theory anyway; in practice, probably not.
¢ Useful
x In predicting system error rates in space
x In designing appropriate in-beam testing






